首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To assess recharge through floodwater spreading, three wells, approx. 30 m deep, were dug in a 35-year-old basin in southern Iran. Hydraulic parameters of the layers were measured. One well was equipped with pre-calibrated time domain reflectometry (TDR) sensors. The soil moisture was measured continuously before and after events. Rainfall, ponding depth and the duration of the flooding events were also measured. Recharge was assessed by the soil water balance method, and by calibrated (inverse solution) HYDRUS-1D. The results show that the 15 wetting front was interrupted at a layer with fine soil accumulation over a coarse layer at the depth of approx. 4 m. This seemed to occur due to fingering flow. Estimation of recharge by the soil water balance and modelling approaches showed a downward water flux of 55 and 57% of impounded floodwater, respectively.  相似文献   

2.
Forests in the Southeastern United States are predicted to experience future changes in seasonal patterns of precipitation inputs as well as more variable precipitation events. These climate change‐induced alterations could increase drought and lower soil water availability. Drought could alter rooting patterns and increase the importance of deep roots that access subsurface water resources. To address plant response to drought in both deep rooting and soil water utilization as well as soil drainage, we utilize a throughfall reduction experiment in a loblolly pine plantation of the Southeastern United States to calibrate and validate a hydrological model. The model was accurately calibrated against field measured soil moisture data under ambient rainfall and validated using 30% throughfall reduction data. Using this model, we then tested these scenarios: (a) evenly reduced precipitation; (b) less precipitation in summer, more in winter; (c) same total amount of precipitation with less frequent but heavier storms; and (d) shallower rooting depth under the above 3 scenarios. When less precipitation was received, drainage decreased proportionally much faster than evapotranspiration implying plants will acquire water first to the detriment of drainage. When precipitation was reduced by more than 30%, plants relied on stored soil water to satisfy evapotranspiration suggesting 30% may be a threshold that if sustained over the long term would deplete plant available soil water. Under the third scenario, evapotranspiration and drainage decreased, whereas surface run‐off increased. Changes in root biomass measured before and 4 years after the throughfall reduction experiment were not detected among treatments. Model simulations, however, indicated gains in evapotranspiration with deeper roots under evenly reduced precipitation and seasonal precipitation redistribution scenarios but not when precipitation frequency was adjusted. Deep soil and deep rooting can provide an important buffer capacity when precipitation alone cannot satisfy the evapotranspirational demand of forests. How this buffering capacity will persist in the face of changing precipitation inputs, however, will depend less on seasonal redistribution than on the magnitude of reductions and changes in rainfall frequency.  相似文献   

3.
Infiltration into frozen soil plays an important role in soil freeze–thaw and snowmelt-driven hydrological processes. To better understand the complex thermal energy and water transport mechanisms involved, the influence of antecedent moisture content and macroporosity on infiltration into frozen soil was investigated. Ponded infiltration experiments on frozen macroporous and non-macroporous soil columns revealed that dry macroporous soil produced infiltration rates reaching 103 to 104 mm day−1, two to three orders of magnitude larger than dry non-macroporous soil. Results suggest that rapid infiltration and drainage were a result of preferential flow through initially air-filled macropores. Using recorded flow rates and measured macropore characteristics, calculations indicated that a combination of both saturated flow and unsaturated film flow likely occurred within macropores. Under wet conditions, regardless of the presence of macropores, infiltration was restricted by the slow thawing rate of pore ice, producing infiltration rates of 2.8 to 5.0 mm day−1. Reduced preferential flow under wet conditions was attributed to a combination of soil swelling, due to smectite-rich clay (that reduced macropore volume), and pore ice blockage within macropores. In comparison, dry soil column experiments demonstrated that macropores provided conduits for water and thermal energy to bypass the frozen matrix during infiltration, reducing thaw rates compared with non-macroporous soils. Overall, results showed the dominant control of antecedent moisture content on the initiation, timing, and magnitude of infiltration and flow in frozen macroporous soils, as well as the important role of macropore connectivity. The study provides an important data set that can aid the development of hydrological models that consider the interacting effects of soil freeze–thaw and preferential flow on snowmelt partitioning in cold regions.  相似文献   

4.
This study examined the effects of different soil texture configurations on water movement and solute transport to provide a reliable scientific basis for the application of negative‐pressure irrigation (NPI) technology. HYDRUS‐2D was used to analyse water movement and solute transport under NPI. The main results are as follows: (a) HYDRUS‐2D can be used to simulate water movement and solute transport under NPI, as there was good agreement between the simulated and measured values for water contents, NaCl concentrations, cumulative water infiltration, and wetting distances in the horizontal and vertical directions; the Nash–Sutcliffe efficiency coefficients were in the range of 0.94–0.97. (b) Layered soils have obvious effects on water movement under NPI. With the emitter position in the loam layer, when a coarse texture of loamy sand was present below the loam layer (namely, L‐LS), irrigation water accumulated in the topsoil, and this led to an increase in evaporation compared with the homogeneous loam profile. However, fine texture silty loam or silty clay loam layers beneath the loam layer (namely, L‐SiL or L‐SiCL, respectively) was more conducive to water infiltration into the lower layer, and this increased the amount of water infiltration and simultaneously reduced the surface evaporation effectively. (c) Layered soils have obvious effects on solute transport under NPI, and salt accumulation will readily occur in the clay‐rich soil layer at the interface. The maximum soil salt accumulation of L‐LS occurred above the soil interface between the two soil layers with a value of 21.80 g/kg; however, for L‐SiCL and L‐SiL, the maximum salt accumulation occurred below the soil interface between the two soil layers, with values of 23.80 g/kg and 20.08 g/kg, respectively. (d) Interlayered soils showed remarkable changes in the water infiltration characteristics and salt‐leaching intensities under NPI, and the properties for the soil profile with a silty loam interlayer were better than those for the soil profile with a silty clay loam interlayer. The soil profile with a loamy sand interlayer had the lowest amount of water infiltration, which resulted in reductions of the salt‐leaching intensities. Thus, NPI is clearly not suitable for loamy sand soil. Overall, the results demonstrated that soil texture configurations affected water movement and solute transport under NPI. Therefore, careful consideration should be given to the use of NPI to achieve target soil water and solution conditions and reduce water loss.  相似文献   

5.
The analysis of the physical processes involved in a conceptual model of soil water content balance is addressed with the objective of its application as a component of rainfall–runoff modelling. The model uses routinely measured meteorological variables (rainfall and air temperature) and incorporates a limited number of significant parameters. Its performance in estimating the soil moisture temporal pattern was tested through local measurements of volumetric water content carried out continuously on an experimental plot located in central Italy. The analysis was carried out for different periods in order to test both the representation of infiltration at the short time‐scale and drainage and evapotranspiration processes at the long time‐scale. A robust conceptual model was identified that incorporated the Green–Ampt approach for infiltration and a gravity‐driven approximation for drainage. A sensitivity analysis was performed for the selected model to assess the model robustness and to identify the more significant parameters involved in the principal processes that control the soil moisture temporal pattern. The usefulness of the selected model was tested for the estimation of the initial wetness conditions for rainfall–runoff modelling at the catchment scale. Specifically, the runoff characteristics (runoff depth and peak discharge) were found to be dependent on the pre‐event surface soil moisture. Both observed values and those estimated by the model gave good results. On the contrary, with the antecedent wetness conditions furnished by two versions of the antecedent precipitation index (API), large errors were obtained. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
Previous experimental studies of capillary barriers have identified highly hysteretic soil moisture retention characteristics in the materials used. In this study, numerical modelling is used to analyse the role of soil moisture hysteresis in capillary barrier functioning. Comparisons between published experimental results and model simulations indicate that soil moisture hysteresis was a necessary inclusion in the modelling approach to adequately reproduce pore water pressure distributions and the timing of breakthrough occurrences. Under hypothetical intermittent infiltration and evaporation conditions, the predicted volumetric water content in the moisture retention layer was significantly different for hysteretic and non‐hysteretic models. The hysteresis effect was found to be dependent on the nature of infiltration–evaporation cycling, although the predicted volume of flow through the hysteretic barrier was lower than that of the non‐hysteretic case, regardless of the nature of the cyclic upper boundary conditions. For practical engineering designs, where the water leakage through the barrier is the primary concern, the inclusion of soil moisture hysteresis in numerical modelling is needed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
Preferential flowpaths transport phosphorus (P) to agricultural tile drains. However, if and to what extent this may vary with soil texture, moisture conditions, and P placement is poorly understood. This study investigated (a) interactions between soil texture, antecedent moisture conditions, and the relative contributions of matrix and preferential flow and (b) associated P distributions through the soil profile when fertilizers were applied to the surface or subsurface. Brilliant blue dye was used to stain subsurface flowpaths in clay and silt loam plots during simulated rainfall events under wet and dry conditions. Fertilizer P was applied to the surface or via subsurface placement to plots of different soil texture and moisture condition. Photographs of dye stains were analysed to classify the flow patterns as matrix dominated or macropore dominated, and soils within plots were analysed for their water‐extractable P (WEP) content. Preferential flow occurred under all soil texture and moisture conditions. Dye penetrated deeper into clay soils via macropores and had lower interaction with the soil matrix, compared with silt loam soil. Moisture conditions influenced preferential flowpaths in clay, with dry clay having deeper infiltration (92 ± 7.6 cm) and less dye–matrix interaction than wet clay (77 ± 4.7 cm). Depth of staining did not differ between wet (56 ± 7.2 cm) and dry (50 ± 6.6 cm) silt loam, nor did dominant flowpaths. WEP distribution in the top 10 cm of the soil profile differed with fertilizer placement, but no differences in soil WEP were observed at depth. These results demonstrate that large rainfall events following drought conditions in clay soil may be prone to rapid P transport to tile drains due to increased preferential flow, whereas flow in silt loams is less affected by antecedent moisture. Subsurface placement of fertilizer may minimize the risk of subsurface P transport, particularily in clay.  相似文献   

8.
We assess the relative merits of application of the most commonly used field methods (soil‐water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro‐irrigated and non‐irrigated areas of a semi‐arid coastal orchard located in a relatively complex geological environment. Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil‐water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non‐irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non‐irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year. The SWB method, constructed for a 15‐year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 – 98 and 1996 – 98 periods, respectively. Assuming similar soil‐water holding capacity, these recharge rates applied to both irrigated and non‐irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil‐water holding capacity and estimation of rainfall interception – runoff losses. Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 – 1998 period in both the orchards and non‐irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed by progressive wetting during the winter rainy season was observed in both irrigated and non‐irrigated soil profiles, confirming that groundwater recharge was rainfall driven and that micro‐irrigation did not ‘predispose’ the soil profile to excess rainfall recharge. The ability to make this recharge assessment, however, depended on making multiple field measurements associated with all three methods, suggesting that any one should not be used alone. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

9.
To enhance the utilization efficiency of farmland irrigation water and reduce the leakage of water conveyance channels, the leakage process of channels was simulated dynamically. The simulated results were compared with data measured in laboratory experiments, and the performance of the model was evaluated. The results indicated that the simulated values of the model were consistent with the observation values, and the R2 values varied between 0.91 and 0.99. In addition, based on the laboratory experiments, a water supply system (Mariotte bottles) and soil box were built using plexiglass. Three influencing factors, namely, the channel form, soil texture and channel cross-sectional area, were varied to observe and calculate the resulting cumulative infiltration amount, infiltration rate and wetting front migration distance. HYDRUS-3D software was used to solve the three-dimensional soil water movement equation under different initial conditions. The results demonstrated that the U-shaped channel was more effective than the trapezoidal channel in increasing the utilization efficiency of the water resources. A U-shaped channel with a small channel cross-sectional area should be adopted and the soil particle size should be prioritized in the construction of water conveyance channels for farmlands. The simulation results were in agreement with the observed results, which indicates that HYDRUS-3D is a reliable tool that can accurately simulate the soil moisture movement in water conveyance channels. The research results can provide a reference for the design and operation of farmland irrigation systems.  相似文献   

10.
One‐dimensional flow simulations were conducted at four locations of the shallow alluvial aquifer of the upper Rhine River (at the Erstein polder) to quantify the time‐dependent moisture distribution, the water flux and the water volume infiltrated in the unsaturated zone as a function of soil heterogeneities during a five‐day‐long flooding event. Three methods of estimating the hydraulic parameters of soil in the vadose zone were tested. They are based on the following: (1) experimental data, (2) soil particle‐size distribution and (3) pedology information on soils. Water fluxes calculated from modelling approaches 2 and 3 were compared with those of the experiment‐based values and the effect of these differences on the arrival time and velocity of water at the water table were analysed. Major differences in water fluxes were found among the methods of estimating the hydrodynamic parameters. At the Terrace location, the groundwater recharge predicted using soil data from methods 1 and 2 are approximately 4500 and 2400 mm, respectively. Flow simulations using soil data and the experiment‐based method show the highest velocities of infiltrating water at the soil surface and largest volume of groundwater infiltration but result in the lowest centres of the moisture content mass. The results obtained using soil data based on the pedological method are similar to those calculated using soil parameters based on the particle‐size distribution of extracted soil samples. Water pressure profiles calculated on Terrace and Channel location, 3 and 7 days after the inundation event agreed reasonably well with those observed when using hydrodynamic parameters from the experiment‐based method. However, the flow model using the pedology‐based parameters largely underestimates the time needed to achieve hydrostatic conditions of the soil water profile once water flooding at the soil surface stops. This can be mainly attributed to the low values of estimated van Genuchten parameter α. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
This paper examines the impact of contrasting antecedent soil moisture conditions on the hydrochemical response, here the changes in dissolved nitrogen (NO3?, NH4+ and dissolved organic nitrogen (DON)) and dissolved organic carbon (DOC) concentrations, of a first‐order stream during hydrological events. The study was performed in the Hermine, a 5 ha forested watershed of the Canadian Shield. It focused on a series of eight precipitation events (spring, summer and fall) sampled every 2 or 3 h and showing contrasted antecedent moisture conditions. The partition of the eight events between two groups (dry or wet) of antecedent moisture conditions was conducted using a principal component analysis (PCA). The partition was controlled (first axis explained 86% of the variability) by the antecedent streamflow, the streamflow to precipitation ratio Q/P and by the antecedent groundwater depth. The mean H+, NO3?, NH4+, total dissolved nitrogen and DOC concentrations and electrical conductivity values in the stream were significantly higher following dry antecedent conditions than after wetter conditions had prevailed in the Hermine, although the temporal variability was high (17 to 138%). At the event scale, a significantly higher proportion of the changes in DON, NO3?, and DOC concentrations in the stream was explained by temporal variations in discharge compared with the seasonal and annual scales. Two of the key hydrochemical features of the dry events were the synchronous changes in DOC and flow and the frequent negative relationships between discharge and NO3?. The DON concentrations were much less responsive than DOC to changes in discharge, whereas NH was not in phase with streamflow. During wet events, the synchronicity between streamflow and DON or NO3? was higher than during dry events and discharge and NO3? were generally positively linked. Based on these observations, the hydrological behaviour of the Hermine is conceptually compatible with a two‐component model of shallow (DON and DOC rich; variable NO3?) and deep (DON and DOC poor; variable NO3?) subsurface flow. The high NO3? and DOC levels measured at the early stages of dry events reflected the contribution from NO3?‐rich groundwaters. The contribution of rapid surface flow on water‐repellent soil materials located close to the stream channel is hypothesized to explain the DOC levels. An understanding of the complex interactions between antecedent soil moisture conditions, the presence of soil nutrients available for leaching and the dynamics of soil water flow paths during storms is essential to explain the fluxes of dissolved nitrogen and carbon in streams of forested watersheds. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Probabilistic water balance modelling provides a useful framework for investigating the interactions between soil, vegetation, and the atmosphere. It has been used to estimate temporal soil moisture dynamics and ecohydrological responses at a point. This study combines a nonlinear rainfall–runoff theory with probabilistic water balance model to represent varied source area runoff as a function of rainfall depth and a runoff coefficient at hillslope scale. Analytical solutions of the soil‐moisture probability density function and average water balance model are then developed. Based on a sensitivity analysis of soil moisture dynamics, we show that when varied source area runoff is incorporated, mean soil moisture is always lower and total runoff higher, compared with the original probabilistic water balance model. The increased runoff from the inclusion of varied source area runoff is mainly because of a reduction in leakage when the index of dryness is less than one and evapotranspiration when the index of dryness is greater than one. Inclusion of varied source area runoff in the model means that the actual evapotranspiration is limited by less available water (i.e. water limit), which is stricter than Budyko’s and Milly’s water limit. Application of the model to a catchment located in Western Australia showed that the method can predict annual value of actual evapotranspiration and streamflow accurately. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Rainfall is considered as the dominant water replenishment in desert ecosystems, and the conversion of rainfall into soil water availability plays a central role in sustaining the ecosystem function. In this study, the role of biological soil crusts (BSCs), typically formed in the revegetated desert ecosystem in the Tengger Desert of China, in converting rainfall into soil water, especially for the underlying soil moisture dynamics, was clarified by taking into account the synthetic effects of BSCs, rainfall characteristics, and antecedent soil water content on natural rainfall conditions at point scale. Our results showed that BSCs retard the infiltration process due to its higher water holding capacity during the initial stage of infiltration, such negative effect could be offset by the initial wet condition of BSCs. The influence of BSCs on infiltration amount was dependent on rainfall regime and soil depth. BSCs promoted a higher infiltration through the way of prolonged water containing duration in the ground surface and exhibited a lower infiltration at deep soil layer, which were much more obvious under small and medium rainfall events for the BSCs area compared with the sand area. Generally, the higher infiltration at top soil layer only increased soil moisture at 0.03 m depth; in consequence, there was no water recharge for the deep soil, and thus, BSCs had a negative effect on soil water effectiveness, which may be a potential challenge for the sustainability of the local deep‐rooted vegetation under the site specific rainfall conditions in northwestern China.  相似文献   

14.
Soil moisture is a consideration for soil conservation, agricultural production and climate modelling. This article presents a simple method for estimating soil moisture storage under water stress and storage depletion conditions. The method is driven by the common agro‐hydrologic variables of precipitation (PPT), irrigation (IRR) and evapotranspiration (ET). The proposed method is successfully tested for the 152 000 km2 floodplain region of Hai River Basin using 48 consecutive months (2003–2006) of data. Soil moisture data from global land data assimilation system/Noah land surface model are validated with ground‐truth data from 102 soil moisture monitoring sites. The validated soil moisture is used in combination with in situ groundwater data to quantify total water storage change (TWSC) in the region. The estimated storage change is in turn compared with gravity recovery and climate experiment‐derived TWSC for the study area. The soil moisture and TWSC terms show favourable agreements, with discrepancies of < 10% on the average. While there is no consistent seasonal trend in soil moisture, TWSC shows a strong seasonality. It is low in spring and high in summer. This trend corresponds with the IRR–PPT season in the study area. Change in groundwater and total water storage indicates storage depletion in the basin. Storage depletion in the region is driven mainly by groundwater IRR and ET loss. Despite the low PPT and high ET, there is narrowing seasonal trend in soil moisture. This is achieved at the expense of groundwater storage. IRR pumping has induced extensive groundwater depletion in the basin. It is therefore vital to develop cultivation strategies that aim at limiting IRR pumping and ET loss. Water management practices that not only reduce waste but also ensure high productivity and ecological sustainability could also mitigate storage depletion in the region. These measures could reduce further not only the seasonal trend in soil moisture but also that in groundwater storage. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

15.
Antecedent soil moisture significantly influenced the hydraulic conductivity of the A1, A2e and B21 horizons in a series of strong texture‐contrast soils. Tension infiltration at six supply potentials demonstrated that in the A1 horizon, hydraulic conductivity was significantly lower in the ‘wet’ treatment than in the ‘dry’ treatment. However in the A2e horizon, micropore and mesopore hydraulic conductivity was lower in the ‘dry’ treatment than the ‘wet’ treatment, which was attributed to the precipitation of soluble amorphous silica. In the B21 horizon, desiccation of vertic clays resulted in the formation of shrinkage cracks which significantly increased near‐saturated hydraulic conductivity and prevented the development of subsurface lateral flow in the ‘dry’ treatment. In the ‘wet’ treatment, the difference between the hydraulic conductivity of the A1 and B21 horizons was reduced; however, lateral flow still occurred in the A1 horizon due to difficulty displacing existing soil water further down the soil profile. Results demonstrate the need to account for temporal variation in soil porosity and hydraulic conductivity in soil‐water model conceptualisation and parameterisation. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Cosmic‐ray soil moisture sensors have the advantage of a large measurement footprint (approximately 700 m in diameter) and are able to operate continuously to provide area‐averaged near‐surface (top 10–20 cm) volumetric soil moisture content at the field scale. This paper presents the application of this technique at four sites in southern England over almost 3 years. Results show the soil moisture response to contrasting climatic conditions during 2011–2014 and are the first such field‐scale measurements made in the UK. These four sites are prototype stations for a UK COsmic‐ray Soil Moisture Observing System, and particular consideration is given to sensor operating conditions in the UK. Comparison of these soil water content observations with the Joint UK Land Environment Simulator 10‐cm soil moisture layer shows that these data can be used to test and diagnose model performance and indicate the potential for assimilation of these data into hydro‐meteorological models. The application of these large‐area soil water content measurements to evaluate remotely sensed soil moisture products is also demonstrated. Numerous applications and the future development of a national COsmic‐ray Soil Moisture Observing System network are discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
Gangcai Liu  Jianhui Zhang 《水文研究》2007,21(20):2778-2784
High frequency seasonal drought in purple soils (Regosols in FAO taxonomy) of the hilly upland areas of Sichuan basin, China, is one of the key restrictive factors for crop production. In order to manage irrigation and fertilizer application in these soils effectively, the soil water content in a sloped plot with 60 cm soil depth was measured by neutron probe devices to investigate the soil moisture regime during the 1998 rainy season after various amounts of rainfall events. The results showed that variation of soil moisture along the slope positions was highest in the top soil layer during the period of sporadic rainfall that did not induce any runoff. The coefficients of variation of soil moisture at various slope positions (upper, middle, and lower) are 17·36%, 8·95%, 10·25%, 8·58%, 8·05% and 9·21% at the 10 cm, 20 cm, 30 cm, 40 cm, 50 cm and 60 cm soil depths respectively. When surface runoff occurred, the soil moisture dynamics at various positions on the plot were then very different. Soil water content decreased more rapidly on the upper slope than on the middle and lower slope positions. When both surface runoff and throughflow occurred, the soil moisture dynamics in the various layers showed a stable period (soil water content is near constant as time elapses) that lasted about 1 week. Also, the pattern of moisture dynamics is ‘decreasing–stabilization–decreasing’. Thus, irrigation and fertilization management according to the spatial and temporal features of soil moisture dynamics on sloped land can increase the water and fertilizer utilization efficacy by reducing their losses during the stable period. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
Rapidly depleting unconfined aquifers are the primary source of water for irrigation on the North China Plain. Yet, despite its critical importance, groundwater recharge to the Plain remains an enigma. We introduce a one‐dimensional soil‐water‐balance model to estimate precipitation‐ and irrigation‐generated areal recharge from commonly available crop and soil characteristics and climate data. To limit input data needs and to simplify calculations, the model assumes that water flows vertically downward under a unit gradient; infiltration and evapotranspiration are separate, sequential processes; evapotranspiration is allocated to evaporation and transpiration as a function of leaf‐area index and is limited by soil‐moisture content; and evaporation and transpiration are distributed through the soil profile as exponential functions of soil and root depth, respectively. For calibration, model‐calculated water contents of 11 soil‐depth intervals from 0 to 200 cm were compared with measured water contents of loam soil at four sites in Luancheng County, Hebei Province, over 3 years (1998–2001). Each 50‐m2 site was identically cropped with winter wheat and summer maize, but received a different irrigation treatment. Average root mean‐squared error between measured and model‐calculated water content of the top 180 cm was 4·2 cm, or 9·3% of average total water content. In addition, model‐calculated evapotranspiration compared well with that measured by a large‐scale lysimeter. To test the model, 12 additional sites were simulated successfully. Model results demonstrate that drainage from the soil profile is not a constant fraction of precipitation and irrigation inputs, but rather the fraction increases as the inputs increase. Because this drainage recharges the underlying aquifer, improving irrigation efficiency by reducing seepage will not reverse water‐table declines. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

19.
The incidence of large rain events in Mediterranean ecosystems vary among years. Summer aridity is interpreted as a resetting event, eliminating previous soil‐moisture dynamics. The dynamics of soil moisture and retention are critical to tree survival, particularly in dry regions. This study examines the long‐term soil water content (θV) dynamics in two distinct locations within the forest, under the canopy and forest clearing, within two diverse oak forests: subhumid mixed oak forests (MG) and semiarid monospecific oak woodlands (YE). Plots were established at small‐scale catchments and soil water contents were measured during 2010–2013, at three depths in the two different locations. Cumulative rainfall was used as an independent proxy for θV analysis. A novel bell‐bilogistic mathematical model of wetting, saturation, and drying arms was developed. We aimed to study the θV distribution differences between soil profiles giving the large climatic gradient between the two forested sub basins, the differences in vegetation traits along with soil attributes. We further aimed at determining the role of an individual tree in regulating soil‐moisture dynamics. We hypothesized the occurrence of distinct responses between sites in all soil‐moisture indices with higher θV at the wetter site. We tested the hypothesis that seasonal cumulative rainfall dictates the variations in soil‐moisture regimes throughout contiguous years. Annual rainfall was higher than long‐term average throughout the study. Soil profiles under the canopies at both sites were consistently wetter. Infiltration and depletion constants were higher at MG whereas maximum soil moisture was higher at YE. Homogenous recharge patterns were seen at MG although YE evinced more variation. Oaks had no effect on recharge at MG compared with the forest clearing. Soil properties primarily affected the wetting arm whereas vegetation composition regulated the drying arm. Mixed‐stands characterized by ever‐green and deciduous species may maintain favourable soil‐moisture conditions, in comparison with other mixed stand morphologies. The increasing role of slacking forces in infiltration process may alter the interaction between trees and herbaceous vegetation.  相似文献   

20.
Understanding the dynamics and mechanisms of soil water movement and solute transport is essential for accurately estimating recharge rates and evaluating the impacts of agricultural activities on groundwater resources. In a thick vadose zone (0–15 m) under irrigated cropland in the piedmont region of the North China Plain, soil water content, matric potential, and solute concentrations were measured. Based on these data, the dynamics of soil water and solutes were analysed to investigate the mechanisms of soil water and solute transport. The study showed that the 0–15‐m vadose zone can be divided into three layers: an infiltration and evaporation layer (0–2 m), an unsteady infiltration layer (2–6 m), and a quasi‐steady infiltration layer (6–15 m). The chloride, nitrate, and sulphate concentrations all showed greater variations in the upper soil layer (0–1 m) compared to values in the deep vadose zone (below 2 m). The average concentrations of these three anions in the deep vadose zone varied insignificantly with depth and approached values of 125, 242, and 116 mg/L. The accumulated chloride, sulphate, and nitrate were 2,179 ± 113, 1,760 ± 383, and 4,074 ± 421 kg/ha, respectively. The soil water potential and solute concentrations indicated that uniform flow and preferential flow both occurred in the deep vadose zone, and uniform flow was the dominant mechanism of soil water movement in this study. The piston‐like flow velocity of solute transport was 1.14 m per year, and the average value of calculated leached nitrate nitrogen was 107 kg/ha?year below the root zone. The results can be used to better understand recharge processes and improve groundwater resources management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号