首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Discharge in most rivers consists mainly of baseflow exfiltrating from shallow groundwater reservoirs, while surface or other direct flows cease soon after rain storms or snowmelt. Analysis of observed baseflow recessions of two rivers in Turkey with intermittent flows and different geographical and climatic characteristics yielded nonlinear storage–outflow relationships of the highly seasonal aquifers. Baseflow separation was carried out using a nonlinear reservoir algorithm. Baseflow seasonality is related to the hydro-climatic conditions influencing groundwater recharge and evapotranspiration of groundwater. As intermittent streams generally have zero flows in the dry season, calibration of recession parameters is in many cases a complicated task.

Citation Aksoy, H. & Wittenberg, H. (2011) Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrol. Sci. J. 56(2), 226–237.  相似文献   

2.
Diel fluctuations can comprise a significant portion of summer discharge in small to medium catchments. The source of these signals and the manner in which they are propagated to stream gauging sites is poorly understood. In this work, we analysed stream discharge from 15 subcatchments in Dry Creek, Idaho, Reynolds Creek, Idaho, and HJ Andrews, Oregon. We identified diel signals in summer low flow, determined the lag between diel signals and evapotranspiration demand and identified seasonal trends in the evolution of the lag at each site. The lag between vegetation water use and streamflow response increases throughout summer at each subcatchment, with the rate of increase as a function of catchment stream length and other catchment characteristics such as geology, vegetation and stream geomorphology. These findings support the hypothesis that variations in stream velocity are the key control on the seasonal evolution of the observed lags. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

3.
Bruno Ambroise 《水文研究》2016,30(20):3560-3577
In the small Ringelbach research catchment, where studies on the water cycle components in a granitic mountainous environment have been conducted since 1976, the water‐saturated areas that are hydraulically connected to the outlet play a major role in the streamflow generation, as it is here that complex interactions between atmosphere, surface and ground waters take place. During baseflow recession periods, which may last several months between two groundwater recharge events, the atmospheric inputs of water and energy on these contributing areas only explain the streamflow fluctuations observed around the master recession curve, which defines the groundwater contribution: fluctuating above it in the case of precipitation input on these areas, below it in the case of evaporation output from these areas. Streamflow may therefore largely deviate from the master recession curve in the case of long, hot, dry spells. Detailed mapping has shown that their variable extent is well related to baseflow by a loglinear curve. On the other hand, a synthetic master recession curve, well fitted by a second‐order hyperbolic function, has been obtained from numerous pure recession periods. Both based on these two curves, a simple procedure and a simple model have been used to (i) validate the hypothesis that the connected saturated areas are the only permanent variable contributing areas and (ii) simulate the daily streamflow volumes over long baseflow recession periods by a water balance of the aquifer below these areas only. The storm runoff ratio for small to moderate rainfall events is indeed corresponding to the catchment saturated fraction at that time. The volume of daily streamflow oscillations is indeed corresponding to the evaporation at the potential rate from the saturated areas only. In both cases, streamflow naturally tends towards the master recession curve after the end of any atmospheric perturbation. Introducing these findings into TOPMODEL led to significantly improved simulation results during baseflow recession periods. The master recession curve may therefore be considered as a dynamic equilibrium curve. Together with the relationship between saturated extent and baseflow, it provides the main characteristics necessary to understand and model the interactions at this complex interface and the resulting daily streamflow variations during baseflow recession periods in this type of catchment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

4.
5.
This analysis compares decreases in soil moisture (SM) at Utah snow telemetry (SNOTEL) sites during the summer months with discharge at nearby stream gauging locations using data from water years 2008–2012. The following characteristics were evaluated: (1) the influence of the SM loss at mid‐depths (20 cm) on hydrograph recession, (2) the influence of moisture loss from deeper portions of the soil (50 cm) on late‐season baseflow and (3) the timing of this transition. Thirty‐four pairings were used between SNOTEL sites and nearby stream gauges in select locations throughout Utah, for 3–5 years each depending on data quality, to generate 143 total comparisons of soil moisture loss and stream discharge. Regressions were fairly strong (r2 > 0.8) where the SNOTEL site was in a location with slow meltout rates, ample infiltration and minimal summer precipitation. In a few cases, the correlation was remarkably strong (r2 > 0.95), even for SNOTEL sites located far from respective stream gauges (e.g. >30‐km, >1000‐m elevation difference for the best pairing). At such sites, transition timing in 2013 (between predominantly 20‐ vs 50‐cm SM loss) was well predicted from 2012 data given the similarity in water years, with discharges at the transition point less than 30% different than observed values in 2013. An index of the robustness of each pairing was generated to determine where this type of analysis might be most successful; however, results suggest that identification of high‐quality pairings may need to be site by site. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
An understanding of surface and subsurface water contributions to streamflow is essential for accurate predictions of water supply from mountain watersheds that often serve as water towers for downstream communities. As such, this study used the end‐member mixing analysis technique to investigate source water contributions and hydrologic flow paths of the 264 km2 Boulder Creek Watershed, which drains the Colorado Front Range, USA. Four conservative hydrochemical tracers were used to describe this watershed as a 3 end‐member system, and tracer concentration reconstruction suggested that the application of end‐member mixing analysis was robust. On average from 2009 to 2011, snowmelt and rainwater from the subalpine zone and groundwater sampled from the upper montane zone contributed 54%, 22%, and 24% of the annual streamflow, respectively. These values demonstrate increased rainwater and decreased snow water contributions to streamflow relative to area‐weighted mean values derived from previous work at the headwater scale. Young water (2.3 ± 0.8 months) fractions of streamflow decreased from 18–22% in the alpine catchment to 8–10% in the lower elevation catchments and the watershed outlet with implications for subsurface storage and hydrological connectivity. These results contribute to a process‐based understanding of the seasonal source water composition of a mesoscale watershed that can be used to extrapolate headwater streamflow generation predictions to larger spatial scales.  相似文献   

7.
The estimation of catchment‐scale soil properties, such as water storage capacity and hydraulic conductivity, is of primary interest for the implementation of distributed hydrological models at the regional scale. This estimation is generally performed on the basis of information provided by soil databases. However, such databases are often established for agronomic uses and generally do not document deep‐weathered rock horizons (i.e. pedologic horizons of type C and deeper), which can play a major role in water transfer and storages. Here, we define the Drainable Storage Capacity Index (DSCI), an indicator that relies on the comparison between cumulated streamflow and precipitation to assess catchment‐scale storage capacities. DSCI is found to be reliable to detect underestimation of soil storage capacities in soil databases. We also use the streamflow recession analysis methodology defined by Brutsaert and Nieber in 1977 to estimate water storage capacities and lateral saturated hydraulic conductivities of the nondocumented deep horizons. The analysis is applied to a sample of 23 catchments (0.2–291 km2) located in the Cévennes‐Vivarais region (south of France). For regionalization purposes, the obtained results are compared with the dominant catchment geology and present a clear hierarchy between the different geologies of the area. Hard crystalline rocks are found to be associated with the thickest and less conductive deep soil horizons. Schist rocks present intermediate values of thickness and of saturated hydraulic conductivity, whereas sedimentary rocks and alluvium are found to be less thick and most conductive. These results are of primary interest in view of the future set‐up of distributed hydrological models over the Cévennes‐Vivarais region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Forest biomass reductions in overgrown forests have the potential to provide hydrologic benefits in the form of improved forest health and increased streamflow production in water-limited systems. Biomass reductions may also alter evaporation. These changes are generated when water that previously would have been transpired or evaporated from the canopy of the removed vegetation is transferred to transpiration of the remaining vegetation, streamflow, and/or non-canopy evaporation. In this study, we combined a new vegetation-change water-balance approach with lumped hydrologic modelling outputs to examine the effects of forest biomass reductions on transpiration of the remaining vegetation and streamflow in California's Sierra Nevada. We found that on average, 102 mm and 263 mm (8.0% and 20.6% of mean annual precipitation [MAP]) of water were made available following 20% and 50% forest biomass-reduction scenarios, respectively. This water was then partitioned to both streamflow and transpiration of the remaining forest, but to varying degrees depending on post-biomass-reduction precipitation levels and forest biomass-reduction intensity. During dry periods, most of the water (approximately 200 mm [15.7% on MAP] for the 50% biomass-reduction scenario) was partitioned to transpiration of the remaining trees, while less than 50 mm (3.9% on MAP) was partitioned to streamflow. This increase in transpiration during dry periods would likely help trees maintain forest productivity and resistance to drought. During wet periods, the hydrologic benefits of forest biomass reductions shifted to streamflow (200 mm [15.7% on MAP]) and away from transpiration (less than 150 mm [11.8% on MAP]) as the remaining trees became less water stressed. We also found that streamflow benefits per unit of forest biomass reduction increased with biomass-reduction intensity, whereas transpiration benefits decreased. By accounting for changes in vegetation, the vegetation-change water balance developed in this study provided an improved assessment of watershed-scale forest health benefits associated with forest biomass reductions.  相似文献   

9.
Compared to hydrograph recession analysis, which is widely applied in engineering hydrology, the quantitative assessment of stream salinity with time (i.e. the salinograph) has received significantly less attention. In particular, while in many previous hydrological studies an inverse relationship between hydrograph and salinograph responses is apparent, the concept of salinity accession (the inversely related salinity counterpart to hydrograph recession) has not been introduced nor quantitatively evaluated in previous literature. In this study, we conduct a mathematical analysis of salinograph accession, and determine new quantitative relationships between salinity accession and hydrograph recession parameters. An equation is formulated that reproduces the general trend in salinity accession. A salinity accession parameter kc is then introduced and is shown to be the ratio of direct runoff to total stream flow recession parameters: kr/k. The groundwater recession parameter kg was estimated using a simple and rapid method that uses both salinograph and hydrograph data. Salinity accession type‐curves illustrate that under certain conditions, the relative steepness of individual salinographs is dependent upon the ratio of groundwater salinity to direct runoff salinity: Cg/Cr. The salinity accession algorithms are applied to two contrasting field settings: Scott Creek, South Australia and Sandy Creek, northern Queensland, Australia. It was found that kg > k during periods of obvious stream flow recession, for the events analysed. Salinograph accession behaviour was fairly similar for both sites, despite contrasting environments. Using assumed end‐member salinities for groundwater and direct runoff based upon field observations, the behaviour of kc from the Scott Creek site was approximately reproduced by varying the initial groundwater to runoff flow ratio: Qg0/Qr0, within reasonable parameter ranges. The use of salinograph information when used in addition to standard hydrograph analyses provided useful information on recession characteristics of stream components. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
The hydrochemical behaviour of catchments is often investigated by inferring stream chemistry through identification of source areas involved in hydrograph separation analysis, yet its dynamic evolution of hydrologic pathways has received little attention. Intensive hydrometric and hydrochemical measurements were performed during two different storms on March 29, 2001 and August 21–22, 2001 to define hydrochemical evolution under the dynamic of flow pathways in a 5·2 ha first‐order drainage of the Kawakami experimental basin (KEB), Central Japan, a forested headwater catchment with various soil depths (1·8 to 5 m) overlying late Neogene of volcanic bedrocks. The hydraulic potential distribution and flow lines data showed that the change in flow direction, which was controlled by rainfall amount and antecedent wetness of the soil profile, agreed well with the hydrochemical change across the slope segment during the storm. Hydrograph separation predicted by end‐member mixing analysis (EMMA) using Ca2+ and SiO2 showed that near surface riparian, hillslope soil water and deep riparian groundwater were important in stream flow generation. The evidence of decrease in solutes concentration at a depth of 1 m in the hillslope and 0·6 m in the near surface riparian during peak storm suggested a flushing of high solutes concentration. Most of the solutes accumulated in the deep riparian groundwater zone, which was due to prominent downward flow and agreed well with the residence time. The distinct flow pathways and chemistry between the near surface riparian and deep riparian groundwater zones and the linkage hillslope aquifer and near surface riparian reservoir, which controls rapid flow and solutes flushing during the storm event, are in conflict with the typical assumption that the whole riparian zone resets flow pathways and chemical signature of hillslope soil water, as has been reported in a previous study. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
In central Chile, many communities rely on water obtained from small catchments in the coastal mountains. Water security for these communities is most vulnerable during the summer dry season and, from 2010 to 2017, rainfall during the dry season was between 20% and 40% below the long-term average. The rate of decrease in stream flow after a rainfall event is a good measure of the risk of flow decreasing below a critical threshold. This risk of low flow can be quantified using a recession coefficient (α) that is the slope of an exponential decay function relating flow to time since rainfall. A mathematical model was used to estimate the recession coefficient (α) for 142 rainstorm events (64 in summer; 78 in winter) in eight monitored catchments between 2008 and 2017. These catchments all have a similar geology and extend from 35 to 39 degrees of latitude south in the coastal range of south-central Chile. A hierarchical cluster analysis was used to test for differences between the mean value of α for different regions and forest types in winter and summer. The value of α did not differ (p < 0.05) between catchments in winter. Some differences were observed during summer and these were attributed to morphological differences between catchments and, in the northernmost catchments, the effect of land cover (native forest and plantation). Moreover, α for catchments with native forest was similar to those with pine plantations, although there was no difference (p < 0.05) between these and Eucalyptus plantations. The recession constant is a well-established method for understanding the effect of climate and disturbance on low flows and baseflows and can enhance local and regional analyses of hydrological processes. Understanding the recession of flow after rainfall in small headwater catchments, especially during summer, is vital for water resources management in areas where the establishment of plantations has occurred in a drying climate.  相似文献   

12.
13.
The paper presents the result of an application of the GeoWEPP model in a heterogeneous semi‐agricultural catchment located in the northern Italian Apennines mountain range. The objectives were: (a) to evaluate the GeoWEPP model in a heterogeneous catchment in a Mediterranean climate and (b) to examine the effect of digital elevation model grid size on hydrological and sediment yield simulations. The catchment is characterized by large heterogeneity in geology, soil type, vegetation cover and topography. In addition, 10% of its area is occupied by calanchi (badlands), characterized by steep, bare soil and accentuated erosion. Experimental streamflow data were compared with those simulated by GeoWEPP for a period of eight years and the results were evaluated by means of statistical indices, with the analysis of the flow duration curve. Simulated sediment yields were compared with experimental data for one year. The streamflow cumulative annual results were satisfactory with NSE oscillating between 0.40 and 0.83 and RMSE between 1.1 and 2.9 mm. Also, the performance of the model with daily streamflow data was positive (NSE = 0.68 and RMSE = 1.9 mm). The flow duration curve indicated that GeoWEPP could represent the experimental streamflow for fluxes over 1 mm d?1. The model performance for simulation of sediment yield was satisfactory with both digital elevation models of different grid sizes (NSE = 0.84 and 0.87). Indeed, the sensitivity analysis tests of the model showed that there was no statistically significant improvement in the accuracy of the digital elevation model between 10 and 2 m resolution. These results were confirmed for both streamflow as well as sediment yield. Additional sensitivity analysis of other model parameters performed on the entire catchment and badlands hillslopes showed that bedrock hydraulic conductivity primarily affected the model in both settings. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
The rate of recession (dQ/dt) in a given time interval has long been plotted in log–log space against the concurrent mean discharge (Qavg). Recent interpretations of these dQ/dt–Qavg plots have sought to look at curves for individual events instead of the data cloud from all the data points together. These individual recession curves have been observed to have near‐constant slope but to have varying intercepts, features hypothesized to possibly be explained by the nature of the contraction of the active channel network during recession. For a steep, 150‐ha forested catchment in central New York state with an 8.8‐km channel network, changes in the active channel network were mapped between April and November 2013. Streamflow recession occurred in a matter of days, but changes in the active channel network occurred over a matter of weeks. Thus, in this catchment, it does not appear that channel contraction directly controls recession. Additionally, field observations indicate that dry down did not occur in a spatially organized, sequential way such that the upper end of higher‐order streams dried first. Instead, the location of groundwater seeps, in part, controlled the active portion of the channel network. Consistent with the presence of different types of flow contributing zones, the paper presents a conceptual model that consists of multiple parallel reservoirs of varying drainage rate and varying degrees of recharge at different times of the year. This conceptual model is able to reproduce a slope of 2 and a seasonal shift in intercept typical of individual recession curves. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
In this paper, we examined the role of bedrock groundwater discharge and recharge on the water balance and runoff characteristics in forested headwater catchments. Using rigorous observations of catchment precipitation, discharge and streamwater chemistry, we quantified net bedrock flow rates and contributions to streamwater runoff and the water balance in three forested catchments (second‐order to third‐order catchments) underlain by uniform bedrock in Japan. We found that annual rainfall in 2010 was 3130 mm. In the same period, annual discharge in the three catchments varied from 1800 to 3900 mm/year. Annual net bedrock flow rates estimated by the chloride mass balance method at each catchment ranged from ?1600 to 700 mm/year. The net bedrock flow rates were substantially different in the second‐order and third‐order catchments. During baseflow, discharge from the three catchments was significantly different; conversely, peak flows during large storm events and direct runoff ratios were not significantly different. These results suggest that differences in baseflow discharge rates, which are affected by bedrock flow and intercatchment groundwater transfer, result in the differences in water balance among the catchments. This study also suggests that in these second‐order to third‐order catchments, the drainage area during baseflow varies because of differences between the bedrock drainage area and surface drainage area, but that the effective drainage area during storm flow approaches the surface drainage area. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
The temporal variability in nitrogen (N) transport in the Corbeira agroforestry catchment (NW Spain) was analysed from October 2004 to September 2008. Nitrate (NO3–N) and total Kjeldahl nitrogen (TKN) loads and concentrations were determined at various timescales (annual, seasonal and event). The results revealed a strong intra‐annual and inter‐annual variability in N transport influenced by weather patterns and consequently by the hydrological regime. Mean annual export of total N in the catchment was 5.5 kg ha?1 year?1, with NO3–N being the dominant form. Runoff events comprised 10% of the study period but contributed 40 and 61% of the total NO3–N and TKN loads, respectively. The NO3–N and TKN concentrations were higher during runoff events than under baseflow conditions, pointing to diffuse sources of N. The mobilization of TKN during runoff events was attributed to surface runoff, while NO3–N might be related to subsurface and groundwater flow. Runoff events were characterized by high variability in N loads and concentrations. Higher variability was observed in N loads than in N concentrations, indicating that event magnitude plays an important role in N transport in this catchment; event magnitude explained approximately 96% of the NO3–N load. However, a combination of variables related to runoff event intensity (rainfall, discharge increase and kinetic energy) explained only 66% of the TKN load. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
For a better management of water resources, the information on water stored in a basin in the form of snow is of immense use. Changes in the snow water storage with time influence the recession characteristics of the hydrographs. Recession is found to be slower in a basin when it contains higher snow water storage and becomes faster as the volume of stored water reduces. In other words, the recession coefficient is not constant throughout the melt season, it changes with time. In the present study, the possibility of assessing snow water storage at any time during the melt season using recession coefficients is examined. The hydrograph analyses have been made for the Glatzbach watershed in the Hohe Tauern region of the Austrian Alps. For this purpose, a relationship between snow water storage and the recession coefficients is developed. This study suggests a simple and useful approach to assess the snow water storage in a basin at any time during the snowmelt season. The information on the snow water storage of a basin can be obtained using a readily derived single parameter, the recession coefficient. The results are based on limited data, but they are sufficient to illustrate how the changes in snow water storage control the recession characteristics of the hydrographs. These investigations set the pace for further research in this area. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
In a headwater basin covered with boreal forest in northern Japan, the summer dry flow was monitored each summer from 1985 to 1993. Streamflow and specific electrical conductance fluctuated diurnally and these variations were attributed to daytime evapotranspiration. In 1989, the daytime reduction in streamflow and conductance were accompanied by a reduction in the HCO?3 concentration. The low flow hydrograph was separated into two components using HCO?3 and Cl? concentrations in August 1989, assuming low flow to be a mixture of delayed subsurface flow and of quick shallow flow. The slight diurnal variation in the ratio of shallow flow to subsurface flow caused the diurnal variation in conductance by changing the HCO?3 concentration.  相似文献   

19.
Low‐flow events can cause significant impacts to river ecosystems and water‐use sectors; as such, it is important to understand their variability and drivers. In this study, we characterise the variability and timing of annual total frequency of low‐streamflow days across a range of headwater streams within the continental United States. To quantify this, we use a metric that counts the annual number of low‐flow days below a given threshold, defined as the cumulative dry days occurrence (CDO). First, we identify three large clusters of stream gauge locations using a Partitioning Around Medoids (PAM) clustering algorithm. In terms of timing, results reveal that for most clusters, the majority of low‐streamflow days occur from the middle of summer until early fall, although several locations in Central and Western United States also experience low‐flow days in cold seasons. Further, we aim to identify the regional climate and larger scale drivers for these low‐streamflow days. Regionally, we find that precipitation deficits largely associate with low‐streamflow days in the Western United States, whereas within the Central and Eastern U.S. clusters, high temperature indicators are also linked to low‐streamflow days. In terms of larger scale, we examine sea surface temperature (SST) anomalies, finding that extreme dry years exhibit a high degree of co‐occurrence with different patterns of warmer SST anomalies across the Pacific and Northern Atlantic Oceans. The linkages identified with regional climate and SSTs offer promise towards regional prediction of changing conditions of low‐streamflow events.  相似文献   

20.
Groundwater movements in volcanic mountains and their effects on streamflow discharge and representative elementary area (REA) have remained largely unclear. We surveyed the discharge and chemical composition of spring and stream water in two catchments: the Hontani river (NR) catchment (6.6 km2) and the Hosotani river (SR) catchment (4.0 km2) at the southern part of Daisen volcano, Japan. Daisen volcano is a young volcano (17 × 103 years) at an early stage of erosion. Our study indicated that deep groundwater that moved through thick lava and pyroclastic flows and that could not be explained by shallow movements controlled by surface topography contributed dominantly to streamflow at larger catchment areas. At the NR catchment, the deep groundwater contribution clearly increased at a catchment boundary defined by an area of 3.0 km2 and an elevation of 800 m. At the SR catchment, the contribution deep groundwater to the stream also increased suddenly at a boundary threshold of 2.0 and 700 m. Beyond these thresholds, the contributions of deep bedrock groundwater remained constant, indicating that the REA is between 2 and 3 km2 at the observed area. These results indicate that the hydrological conditions of base flow were controlled mainly by the deep bedrock groundwater that moved through thick lava and pyroclastic flows in the undissected volcanic body of the upper part of the catchment. Our study demonstrates that deep and long groundwater movements via a deep bedrock layer including thick deposits of volcanic materials at the two catchments on Daisen volcano strongly determined streamflow discharge instead of the mixing of small‐scale hydrological conditions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号