首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Monitoring of the fluctuations of groundwater storage is particularly important in arid and semi-arid regions where water scarcity brings about various challenges. Remote sensing data and techniques play a preponderant role in developing solutions to environmental problems. The launch of Gravity Recovery and Climate Experiment (GRACE) satellites has eased the remote monitoring and evaluation of groundwater resources with an unprecedented precision over large scales. Within the scope of the current study, the latest release (RL06) of GRACE mass concentrations (Mascons) from Jet Propulsion Laboratory (JPL) dataset as well as Global Land Data Assimilation System (GLDAS) models of Noah and Catchment Land Surface Model (CLSM) were used to provide Groundwater Storage Anomalies (GWSA) over Turkey. The temporal interactions of the estimated GWSA with the climatic variables of precipitation and temperature (derived from the reanalysis datasets of CHELSA [Climatologies at High resolution for the Earth's Land Surface Areas] and FLDAS [the Famine Early Warning Systems Network Land Data Assimilation System], respectively) were investigated statistically. The results suggest that there is a descending trend (from 2003 to 2016) for Terrestrial Water Storage Anomalies (TWSA) and GWSA over Turkey with a total loss of 11 and 6 cm of water, respectively. The statistical analysis results also indicate that the monthly variations of GWSA over Turkey are highly correlated with precipitation and temperature at 2-month lag. The analysis of the climatology (long-term) values of monthly GWSA, precipitation and temperature also revealed high agreement between the variables.  相似文献   

2.
Large proportions of rainwater and snowmelt infiltrate into the subsurface before contributing to stream flow and stream water quality. Subsurface flow dynamics steer the transport and transformation of contaminants, carbon, weathering products and other biogeochemistry. The distribution of groundwater ages with depth is a key feature of these flow dynamics. Predicting these ages are a strong test of hypotheses about subsurface structures and time-varying processes. Chlorofluorocarbon (CFC)-based groundwater ages revealed an unexpected groundwater age stratification in a 0.47 km2 forested catchment called Svartberget in northern Sweden. An overall groundwater age stratification, representative for the Svartberget site, was derived by measuring CFCs from nine different wells with depths of 2–18 m close to the stream network. Immediately below the water table, CFC-based groundwater ages of already 30 years that increased with depth were found. Using complementary groundwater flow models, we could reproduce the observed groundwater age stratification and show that the 30 year lag in rejuvenation comes from return flow of groundwater at a subsurface discharge zone that evolves along the interface between two soil types. By comparing the observed groundwater age stratification with a simple analytical approximation, we show that the observed lag in rejuvenation can be a powerful indicator of the extent and structure of the subsurface discharge zone, while the vertical gradient of the age-depth-relationship can still be used as a proxy of the overall aquifer recharge even when sampled in the discharge zone. The single age stratification profile measured in the discharge zone, close to the aquifer outlet, can reveal the main structure of the groundwater flow pattern from recharge to discharge. This groundwater flow pattern provides information on the participation of groundwater in the hydrological cycle and indicates the lower boundary of hydrological connectivity.  相似文献   

3.
David F. Boutt 《水文研究》2017,31(7):1479-1497
This study analyzes a long‐term regional compilation of water table response to climate variability based on 124 long‐term groundwater wells distributed across New England, USA, screened in a variety of geologic materials. The New England region of the USA is located in a humid‐temperature climate underlain by low‐storage‐fractured metamorphic and crystalline bedrock dissected by north–south trending valleys filled with glacial and post‐glacial valley fill sediments. Uplands are covered by thin glacial till that comprises more than 60% of the total area. Annual and multi‐annual responses of the water table to climate variability are assessed to understand how local hydraulic properties and hydrogeologic setting (located in recharge/discharge region) of the aquifer influence the hydrologic sensitivity of the aquifer system to climate variability. This study documents that upland aquifer systems dominated by thin deposits of surface till comprise ~70% of the active and dynamic storage of the region. Total aquifer storage changes of +5 to ?7 km3 occur over the region during the study interval. The storage response is dominated by thin and low permeability surficial till aquifer that fills and drains on a multi‐annual basis and serves as the main mechanism to deliver water to valley fill aquifers and underlying bedrock aquifers. Whereas the till aquifer system is traditionally neglected as an important storage reservoir, this study highlights the importance of a process‐based understanding of how different landscape hydrogeologic units contribute to the overall hydrologic response of a region.  相似文献   

4.
Y. Huang  X. Chen  Y. P. Li  G. H. Huang  T. Liu 《水文研究》2010,24(25):3718-3732
In this study, a fuzzy‐based simulation method (FBSM) is developed for modelling hydrological processes associated with vague information through coupling fuzzy vertex analysis technique with distributed hydrological model. The FBSM can handle uncertainties existed as fuzzy sets in the hydrological modelling systems, and solutions under an associated number of α‐cut levels can be generated by solving 2n deterministic models. The lower reach of the Tarim River Basin in China is selected as a study case for demonstrating applicability of the proposed method. The developed model is calibrated and validated against observed groundwater elevation for four wells during the period 2000–2001, and generally performed acceptable for model Nash–Sutcliffe coefficient (R2) and correlation coefficient (R). The R2 is approximately over 0·65 and the correlation coefficient is higher than 0·90. Based on the technique of fuzzy simulation, the uncertainties of two parameters (KH and LC) are reflected under different α‐cut levels. The results indicate that, under a lower degree of plausibility, the interval between the lower and upper bounds of the groundwater elevation is wider; conversely, a higher degree of plausibility would lead to a narrow interval. The main effect of KH is more significant than the effect of LC at most well sites. The proposed method is useful for studying hydrological processes within a system containing multiple factors with uncertainties and providing support for identifying proper water resources management strategies. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Epikarst exerts a strong control on run‐off generation in karst regions, but it is still unclear in karst regions. Our study aimed to demonstrate the effect of epikarst on near‐surface hydrological processes in a subtropical cockpit karst region of southwest China, using plot‐scale rainfall simulation experiments with different rainfall intensities (low and high) and antecedent moisture conditions (dry and wet). A trench excavated to the epikarst lower boundary allowed identification of flow pathways in the entire soil–epikarst architecture system, thus facilitating the water balance calculations using a conceptual model with the assumption of a two‐stage hydrological evolution. More than 70% of the total rainfall water moved vertically through the shallow soil layer and then was redistributed by the epikarst as subsurface flow occurring on the soil–epikarst interface, depression filling on epikarst surface, water held by epikarst and deep percolation. Epikarst water regulation capacity, defined as the sum of depression filling on epikarst surface, water held by epikarst, epikarst seepage flow and deep percolation, was 58 mm (wet antecedent condition) and 223 mm (dry antecedent condition). Total run‐off from the soil–epikarst system was dominated by saturated subsurface flow showing a threshold process controlled by epikarst storage capacity (storing as much as 181 mm of rainfall water under dry antecedent condition). Our study proved that despite the epikarst being relatively poorly developed and covered by a soil mantle, it still exerted a strong influence on near‐surface hydrological processes and thus should be adequately considered in future modelling of water recharge and depletion dynamics in this integrated soil–epikarst system. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
In the present study, the stable isotopes δ18O and δ2H were used for assessment of the water balance in a heterogeneously structured catchment area in the Lusatian Lignite Mining District, in particular, for estimation of the annual groundwater inflow and outflow (IGW and OGW) of Mining Lake Plessa 117. The application of stable isotopes was possible since the water exchange in the catchment area had reached steady‐state conditions after the abandonment of mining activities in 1968 and the filling of the voids and aquifers by re‐rising groundwater in the years thereafter. Diverging slopes of the Evaporation Line and the Global Meteoric Water Line manifested as evaporation from the lake catchment area. The calculated isotope water balance was compared with the commonly used surface water balance, which is unable to differentiate between IGW and OGW, and with a local groundwater model. The groundwater model calculated an IGW of about 811 000 m3 yr?1 and an OGW close to zero, whereas the isotope water balance showed fluxes of about 914 000 and 140 000 m3 yr?1, respectively. Considering the contribution of the groundwater inflow to the total annual input into the lake (ΔIT) and the mean residence time (τ), where the groundwater model and the isotope water balance calculated 42 and 47% for ΔIT and 4·3 and 3·9 years for τ, respectively, it was shown that both water balance calculation methods led to comparable results despite the differences in IGW and OGW. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Water storage depletion is an increasing hydrological threat to agricultural production and social stability across the globe. It is fast approaching threshold levels especially in arid/semiarid regions with low precipitation and excessive evapotranspiration (ET). This study analyses water storage dynamics in the North China Region (NCR) – an important grain‐production base in China. It uses monthly Gravity Recovery and Climate Experiment (GRACE), Global Land Data Assimilation System (GLDAS) and field‐measured precipitation data products for 2002–2009. The datasets are analysed in a basin‐scale water balance equation to determine the state of storage in the NCR study area. Based on the validated satellite‐based data products with field‐measured values, average error/bias in the datasets is <10%. The analysis also shows favourable agreements among the GRACE‐derived and flux‐based storage changes at various temporal scales. Whereas the amplitudes and phases of the precipitation and ET fluxes are largely stable for 2002–2009, those of GLDAS runoff and GRACE total water storage anomaly apparently narrow out. The linear trends in the monthly, seasonal and annual storage changes are negative for the study period, suggesting storage loss. There is an apparent seasonality of storage change in the study area; with summer storage gain, winter storage loss and an overall storage loss that is on the average of 16.8 mm/yr. Storage loss is most severe in the central floodplain region (the main irrigated production zone) of the study area. Storage depletion in this important agro‐based semi‐arid region could have negative implications for the millions of people in the region and beyond in terms of water supply, crop production, food security and social stability. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
Submarine groundwater discharges (SGD) were investigated in a marine watershed in south‐eastern Korea using water budget analysis and a 222Rn mass balance model. Multi‐layered TOPMODEL added hydrological assumption was used to estimate groundwater components in the water budget analysis. Field observations of soil moisture, rainfall, runoff and groundwater fluctuations were used for calibration and validation of the hydrologic model. Based on observed hydrological data and terrain analyses, parameters for the hydrologic model were delineated and used to describe several hydrologic responses in the watershed. SGD estimations by 222Rn mass balance method were also performed at Il‐Gwang bay in July, 2010, and May, June, July and Nov. 2011. The estimated groundwater through hydrologic modeling and water balance analysis was 1.3x106 m3/year, which rapidly increased during typhoon season due to heavy rainfall and permeable geologic structure. The estimated groundwater was approximately 3.7–27.1% of SGD as evaluated by 222Rn mass balance method ranges 3.44 and 17.45 m3m?2year?1. Even though SGD is predominantly influenced by tide fluctuation, the head gradient (difference) from hydrologic processes associated with heavy rainfalls can also have extra significant influences. Comprehensive understanding of SGD evaluation can be improved through a simultaneous application of both these approaches. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
黑河流域陆地水储量变化对流域下游等周边区域水资源的合理利用以及经济和社会发展等有着重要的意义.本文利用2003年1月至2013年12月的GRACE RL05数据反演了黑河流域陆地水储量长时间序列的变化,并针对重力场模型和数据处理中产生的信号泄漏问题,采用Forward-Modeling方法进行了改正并恢复泄漏信号;将GRACE获得的泄漏信号恢复前后的黑河流域水储量变化结果与全球水文模型GLDAS和CPC进行比较分析,结果表明泄漏信号改正后的结果与水文模型结果的时间序列相关性均有明显提高,从其空间分布结果可以看出Forward-Modeling方法有效地恢复初始信号、增强被湮没的信号,泄漏信号误差减小;通过分析黑河流域水储量变化的长时间序列结果,发现其具有明显的阶段性变化特征,即2003—2006年呈明显下降趋势,约为-0.86 cm·a-1,在2007—2010年趋于平衡状态,而2011—2013年则呈现缓慢上升趋势约为0.14 cm·a-1;联合GRACE数据和GLDAS数据反演了黑河流域地下水储量变化,并与全球降雨数据GPCC进行了比较分析,两者相关性可达到0.88以上.  相似文献   

10.
Calibration and validation of hydrological models is a challenge, particularly in remote regions that are minimally gauged. This paper develops a novel methodology for large‐scale (>1000 km2) hydrological model calibration and validation using stable water isotopes founded on the rigorous constraints imposed by the need to conserve both water mass and stable isotopes simultaneously. The isoWATFLOOD model is applied to five basins within the Fort Simpson, Northwest Territories region of northern Canada to simulate stream discharge and oxygen‐18 signals over a 3‐year period. The isotopic variation of river discharge, runoff components, and evaporative fractionation are successfully simulated on both a seasonal and continual basis over the watershed domain to demonstrate the application of isotope tracers to regional hydrologic calibration. The intended application of this research is to remote, large‐scale basins, showing promise for improving predictions in minimally gauged basins and climate change research where traditional, rigorous approaches to constraining parameter uncertainty may be impractical. This coupled isotope‐hydrological (i.e. iso‐hydrological) approach to modelling reduces the number of possible parameterizations, resulting in potentially more physically‐based hydrological predictions. isoWATFLOOD provides a tool for water resource managers and utilities to use operationally for water use, allocation, and runoff generation estimations. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
12.
Many studies have investigated the exchange processes that occur between rivers and groundwater systems and have successfully quantified the water fluxes involved. Specifically, these exchange processes include hyporheic exchange, river–aquifer exchange (groundwater discharge and river loss) and bank storage exchange. Remarkably, there are relatively few examples of field studies where more than one exchange process is quantified, and as a consequence, the relationships between them are not well understood. To compare the relative magnitudes of these common exchange processes, we have collected data from 54 studies that have quantified one or more of these exchange flux types. Each flux value is plotted against river discharge at the time of measurement to allow the different exchange flux types to be compared. We show that there are positive relationships between the magnitude of each exchange flux type and increasing river discharge across the different studies. For every one order of magnitude increase in river discharge, the hyporheic, river–aquifer and bank storage exchange fluxes increase by factors of 2.7, 2.9 and 2.5, respectively. On average, hyporheic exchange fluxes are almost an order of magnitude greater than river–aquifer exchange fluxes, which are, in turn, approximately four times greater than bank storage exchange fluxes for the same river discharge. Unless measurement approaches that can distinguish between different types of exchange flux are used, there is potential for hyporheic exchange fluxes to be misinterpreted as river–aquifer exchange fluxes, with possible implications for water resource management decisions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.

利用GPS垂直位移反演区域陆地水储量变化(TWSC)属于典型的病态问题,其关键是如何进行稳定求解并提高反演结果的精度和可靠性.本文引入TSVD-Tikhonov组合正则化方法对利用GPS垂直位移反演区域TWSC的病态问题进行求解,并以四川省TWSC反演为例进行分析与验证.首先,通过数值模拟对TSVD、Tikhonov和TSVD-Tikhonov正则化方法采用不同正则化参数选取策略(RMSE最小准则、GCV法和L-curve法)进行反演,结果显示基于TSVD-Tikhonov正则化反演的TWSC比单独使用TSVD或Tikhonov正则化反演结果的精度和可靠性更高,这三种正则化方法反演2005年1月至12月的TWSC差值的平均STD分别为14.97 mm、7.03 mm和5.04 mm.其次,利用中国地壳运动观测网络(CMONOC)的72个GPS测站的垂直位移数据,基于TSVD-Tikhonov正则化反演了四川省2010年12月至2021年2月的TWSC时间序列,结果表明GPS反演的TWSC与GRACE/GFO Mascon模型(JPL、CSR和GSFC)的空间分布特征及季节性变化符合较好,但其TWSC信号的振幅比GRACE/GFO Mascon模型更强.最后,采用广义三角帽方法(GTCH)融合不同类型的降水、蒸散发和径流数据,并根据水量平衡方程计算的dTWSC/dt序列(PER-dS/dt)对GPS反演的dTWSC/dt序列(GPS-dS/dt)和GRACE/GFO Mascon模型融合的dTWSC/dt序列(GRACE/GFO-dS/dt)进行验证,结果表明这三类dTWSC/dt序列的季节性变化符合较好,平滑后GPS-dS/dt和GRACE/GFO-dS/dt序列与PER-dS/dt序列的相关系数分别为0.78和0.87,但GPS相比GRACE/GFO对降水变化的响应更为敏感.本文研究证明了TSVD-Tikhonov组合正则化方法能够提高GPS垂直位移反演区域TWSC的精度和可靠性,同时也表明GPS观测数据对局部水质量负荷变化更为敏感,可作为GRACE/GFO反演区域TWSC的有益补充.

  相似文献   

14.
The hydrology of Quebec, Canada, boreal fens is poorly documented. Many peatlands are located in watersheds with impounded rivers. In such cases, their presence influences reservoir inflows. In recent years, some fens have been subjected to an increase of their wet area, a sign that they may be evolving towards an aquatic ecosystem. This dynamic process is called aqualysis. This article presents the seasonal and monthly hydrological budgets of a small watershed including a highly aqualysed fen (James Bay region). The monitoring of precipitation (P), runoff (Q) and groundwater levels (WL) was conducted during the ice‐free season. Three semiempirical equations (Thornthwaite, Priestley–Taylor and Penman–Monteith) were used and compared to calculate potential evapotranspiration. The first two equations, having fewer parameters, estimate higher potential evapotranspiration values than the third equation. The use of pressure‐level gauges installed in wells, for the calculation of peatland water storage, is inconclusive. Swelling of peat, peat decomposition and plant composition could be responsible for nonnegligible amounts of absorbed water, which are not entirely accounted for by well levels. The estimation of peat matrix water storage is potentially the largest source of error and the limiting factor to calculate water balances in this environment. The results show that the groundwater level and the water storage vary depending on the season and especially after a heavy rainfall. Finally, the results illustrate the complexity of water routing through the site and thus raise several questions to be resolved in the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Pore water radon (222Rn) distributions from Indian River Lagoon, Florida, are characterized by three zones: a lower zone where pore water 222Rn and sediment-bound radium (226Ra) are in equilibrium and concentration gradients are vertical; a middle zone where 222Rn is in excess of sediment-bound 226Ra and concentration gradients are concave-downward; and an upper zone where 222Rn concentration gradients are nearly vertical. These 222Rn data are simulated in a one-dimensional numerical model including advection, diffusion, and non-local exchange to estimate magnitudes of submarine groundwater discharge components (fresh or marine). The numerical model estimates three parameters, fresh groundwater seepage velocity, irrigation intensity, and irrigation attenuation, using two Monte Carlo (MC) simulations that (1) ensure the minimization algorithm converges on a global minimum of the merit function and the parameter estimates are consistent within this global minimum, and (2) provide 90% confidence intervals on the parameter estimates using the measured 222Rn activity variance. Model estimates of seepage velocities and discharge agree with previous estimates obtained from numerical groundwater flow models and seepage meter measurements and show the fresh water component decreases offshore and varies seasonally by a factor of nine or less. Comparison between the discharge estimates and precipitation patterns suggests a mean residence time in unsaturated and saturated zones on the order of 5 to 7 months. Irrigation rates generally decrease offshore for all sampling periods. The mean irrigation rate is approximately three times greater than the mean seepage velocity although the ranges of irrigation rates and seepage velocities are the same. Possible mechanisms for irrigation include density-driven convection, wave pumping, and bio-irrigation. Simulation of both advection and irrigation allows the separation of submarine groundwater discharge into fresh groundwater and (re)circulated lagoon water.  相似文献   

16.
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

17.
18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well‐instrumented research catchment in north‐central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed‐basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
A water budget was established for the open, undisturbed bog Stormossen, central Sweden, for the growing seasons of 1996 and 1997 as a part of the NOPEX project. The water budget was complemented with data on the spatial variation of groundwater levels and water contents in different microrelief elements (ridge, hollow and ridge margin). The seasonal (24 May to 4 October) rainfall, evaporation and runoff were 200, 256, and 43 mm in 1996, respectively, and 310, 286 and 74 mm in 1997, giving negative budgets of ?99 mm in 1996 and ?50 mm in 1997. Approximately 60% of the total budget was caused by storage changes in the upper 40 cm of the bog and 40% by swelling/shrinking in the layers below. This ‘mire breathing’ must be incorporated in future models of mire‐water dynamics. The water content varied diversely among the different microrelief elements, much depending on the properties of moss and peat together with distance to water table. There also was a strong hysteresis in the relationships between groundwater level and measured volumetric water content, depending partly on pore‐throat effects and partly on swelling/shrinking of the peat matrix. A seasonal variation of volumetric water content in a layer beneath water table was found to be larger than what could be justified by compression alone. We think that probable causes could be methane gas expansion together with temperature effects. The main conclusions of this study were: (i) water‐transport and storage characteristics are distinctly different among hummocks, ridges and hollows, (ii) mire wetness cannot be deduced from groundwater levels only, and (iii) an important part of the total water storage was caused by swelling/shrinking of the peat, not by changes in unsaturated water content. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

19.
童冰星  姚成  李致家  黄小祥 《湖泊科学》2017,29(5):1238-1244
对于分布式水文模型而言,如何获得参数的空间分布是模型应用的重点和难点问题.本文将分水源参数中的敏感参数——自由水蓄水容量为研究对象.建立地形指数与自由水蓄水容量的函数关系,以此提取流域内的自由水蓄水容量空间分布.最后利用本方法提取了陕西省陈河流域的自由水蓄水容量空间分布,并将之作为栅格型新安江模型的参数进行洪水模拟演算.应用结果表明本文提出的方法得到了理想的模拟结果.该方法以物理规律为基础能较为准确地计算出流域内自由水蓄水容量的空间分布,为分布式模型的发展奠定了坚实的基础.  相似文献   

20.
Evaporation dominates the water balance in arid and semi‐arid areas. The estimation of evaporation by land‐cover type is important for proper management of scarce water resources. Here, we present a method to assess spatial and temporal patterns of actual evaporation by relating water balance evaporation estimates to satellite‐derived radiometric surface temperature. The method is applied to a heterogeneous landscape in the Krishna River basin in south India using 10‐day composites of NOAA advanced very high‐resolution radiometer satellite imagery. The surface temperature predicts the difference between reference evaporation and modelled actual evaporation well in the four catchments (r2 = 0·85 to r2 = 0·88). Spatial and temporal variations in evaporation are linked to vegetation type and irrigation. During the monsoon season (June–September), evaporation occurs quite uniformly over the case‐study area (1·7–2·1 mm day?1), since precipitation is in excess of soil moisture holding capacity, but it is higher in irrigated areas (2·2–2·7 mm day?1). In the post‐monsoon season (December–March) evaporation is highest in irrigated areas (2·4 mm day?1). A seemingly reasonable estimate of temporal and spatial patterns of evaporation can be made without the use of more complex and data‐intensive methods; the method also constrains satellite estimates of evaporation by the annual water balance, thereby assuring accuracy at the seasonal and annual time‐scales. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号