首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Estrela 《水文科学杂志》2013,58(6):1154-1167
Abstract

Impacts on water resources produced by climate change can be exacerbated when occurring in regions already presenting low water resources levels and frequent droughts, and subject to imbalances between water demands and available resources. Within Europe, according to existing climate change scenarios, water resources will be severely affected in Spain. However, the detection of those effects is not simple, because the natural variability of the water cycle and the effects of water abstractions on flow discharges complicate the establishment of clear trends. Therefore, there is a need to improve the assessment of climate change impacts by using hydrological simulation models. This paper reviews water resources and their variability in Spain, the recent modelling studies on hydrological effects of climate change, expected impacts on water resources, the implications in river basins and the current policy actions.

Editor Z.W. Kundzewicz

Citation Estrela, T., Pérez-Martin, M.A., and Vargas, E., 2012. Impacts of climate change on water resources in Spain. Hydrological Sciences Journal, 57 (6), 1154–1167.  相似文献   

2.
General circulation model outputs are rarely used directly for quantifying climate change impacts on hydrology, due to their coarse resolution and inherent bias. Bias correction methods are usually applied to correct the statistical deviations of climate model outputs from the observed data. However, the use of bias correction methods for impact studies is often disputable, due to the lack of physical basis and the bias nonstationarity of climate model outputs. With the improvement in model resolution and reliability, it is now possible to investigate the direct use of regional climate model (RCM) outputs for impact studies. This study proposes an approach to use RCM simulations directly for quantifying the hydrological impacts of climate change over North America. With this method, a hydrological model (HSAMI) is specifically calibrated using the RCM simulations at the recent past period. The change in hydrological regimes for a future period (2041–2065) over the reference (1971–1995), simulated using bias‐corrected and nonbias‐corrected simulations, is compared using mean flow, spring high flow, and summer–autumn low flow as indicators. Three RCMs driven by three different general circulation models are used to investigate the uncertainty of hydrological simulations associated with the choice of a bias‐corrected or nonbias‐corrected RCM simulation. The results indicate that the uncertainty envelope is generally watershed and indicator dependent. It is difficult to draw a firm conclusion about whether one method is better than the other. In other words, the bias correction method could bring further uncertainty to future hydrological simulations, in addition to uncertainty related to the choice of a bias correction method. This implies that the nonbias‐corrected results should be provided to end users along with the bias‐corrected ones, along with a detailed explanation of the bias correction procedure. This information would be especially helpful to assist end users in making the most informed decisions.  相似文献   

3.
I. W. Jung  D. H. Bae  B. J. Lee 《水文研究》2013,27(7):1033-1045
Seasonality in hydrology is closely related to regional water management and planning. There is a strong consensus that global warming will likely increase streamflow seasonality in snow‐dominated regions due to decreasing snowfall and earlier snowmelt, resulting in wetter winters and drier summers. However, impacts to seasonality remain unclear in rain‐dominated regions with extreme seasonality in streamflow, including South Korea. This study investigated potential changes in seasonal streamflow due to climate change and associated uncertainties based on multi‐model projections. Seasonal flow changes were projected using the combination of 13 atmosphere–ocean general circulation model simulations and three semi‐distributed hydrologic models under three different future greenhouse gas emission scenarios for two future periods (2020s and 2080s). Our results show that streamflow seasonality is likely to be aggravated due to increases in wet season flow (July through September) and decreases in dry season flow (October through March). In South Korea, dry season flow supports water supply and ecosystem services, and wet season flow is related to flood risk. Therefore, these potential changes in streamflow seasonality could bring water management challenges to the Korean water resources system, especially decreases in water availability and increases in flood risk. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
The question of which climate model bias correction methods and spatial scales for correction are optimal for both projecting future hydrological changes as well as removing initial model bias has so far received little attention. For 11 climate models (CMs), or GCM/RCM – Global/Regional Climate Model pairing, this paper analyses the relationship between complexity and robustness of three distribution‐based scaling (DBS) bias correction methods applied to daily precipitation at various spatial scales. Hydrological simulations are forced by CM inputs to assess the spatial uncertainty of groundwater head and stream discharge given the various DBS methods. A unique metric is devised, which allows for comparison of spatial variability in climate model bias and projected change in precipitation. It is found that the spatial variability in climate model bias is larger than in the climate change signals. The magnitude of spatial bias seen in precipitation inputs does not necessarily correspond to the magnitude of biases seen in hydrological outputs. Variables that integrate basin responses over time and space are more sensitive to mean spatial biases and less so on extremes. Hydrological simulations forced by the least parameterized DBS approach show the highest error in mean and maximum groundwater heads; however, the most highly parameterised DBS approach shows less robustness in future periods compared with the reference period it was trained in. For hydrological impacts studies, choice of bias correction method should depend on the spatial scale at which hydrological impacts variables are required and whether CM initial bias is spatially uniform or spatially varying. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
ABSTRACT

Climate change may have significant consequences for water resources availability and management at the basin scale. This is particularly true for areas already suffering from water stress, such as the Mediterranean area. This work focused on studying these impacts in the Llobregat basin supplying the Barcelona region. Several climate projections, adapted to the spatiotemporal resolution of the study, were combined with a daily hydrological model to estimate future water availability. Depending on the scenario and the time period, different assessment indicators such as reliability and resilience showed a future decrease in water resources (up to 40%), with drought periods becoming more frequent. An additional uncertainty analysis showed the high variability of the results (annual water availability ranging from 147 hm3/year to 274 hm3/year), thus making accurate projections difficult. Finally, the study illustrates how climate change could be taken into account to provide adaptive measures for the future.
Editor M.C. Acreman; Associate editor J. Thompson  相似文献   

6.
Climate change and its impact on hydrological processes are overarching issues that have brought challenges for sustainable water resources management. In this study, surface water resources in typical regions of China are projected in the context of climate change. A water balance model based on the Fu rational function equation is established to quantify future natural runoff. The model is calibrated using data from 13 hydrological stations in 10 first-class water resources zones of China. The future precipitation and temperature series come from the ISI-MIP (Inter-Sectoral Impact Model Intercomparison Project) climate dataset. Taking natural runoff for 1961–1990 as a baseline, the impacts of climate change on natural runoff are studied under three emissions scenarios: RCP2.6, RCP4.5 and RCP8.5. Simulated results indicate that the arid and semi-arid region in the northern part of China is more sensitive to climate change compared to the humid and semi-humid region in the south. In the near future (2011–2050), surface water resources will decrease in most parts of China (except for the Liaozhong and Daojieba catchments), especially in the Haihe River Basin and the middle reaches of the Yangtze River Basin. The decrement of surface water resources in the northern part of China is more than that in the southern part. For the periods 2011–2030 and 2031–2050, surface water resources are expected to decrease by 12–13% in the northern part of China, while those in the southern part will decrease by 7–10%.
EDITOR D. Koutsoyiannis

ASSOCIATE EDITOR R. Hirsch  相似文献   

7.
Climate change can cause considerable changes in water resources and assessing the potential impacts can provide important information for regional sustainable development. The objectives were to evaluate the possible impacts of climate change during 2010-2039 on water resources (runoff, soil water content, and evapotranspiration) in the Heihe watershed on the Loess Plateau of China and to further explore adaptive measures to cope with the changes. Projections of four climate models (CCSR/NIES, CGCM2, CSIRO...  相似文献   

8.
Climate change impact assessments form the basis for the development of suitable climate change adaptation strategies. For this purpose, ensembles consisting of stepwise coupled models are generally used [emission scenario → global circulation model → downscaling approach (DA) → bias correction → impact model (hydrological model)], in which every item is affected by considerable uncertainty. The aim of the current study is (1) to analyse the uncertainty related to the choice of the DA as well as the hydrological model and its parameterization and (2) to evaluate the vulnerability of the studied catchment, a subcatchment of the highly anthropogenically impacted Spree River catchment, to hydrological change. Four different DAs are used to drive four different model configurations of two conceptually different hydrological models (Water Balance Simulation Model developed at ETH Zürich and HBV‐light). In total, 452 simulations are carried out. The results show that all simulations compute an increase in air temperature and potential evapotranspiration. For precipitation, runoff and actual evapotranspiration, opposing trends are computed depending on the DA used to drive the hydrological models. Overall, the largest source of uncertainty can be attributed to the choice of the DA, especially regarding whether it is statistical or dynamical. The choice of the hydrological model and its parameterization is of less importance when long‐term mean annual changes are compared. The large bandwidth at the end of the modelling chain may exacerbate the formulation of suitable climate change adaption strategies on the regional scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Two approaches can be distinguished in studies of climate change impacts on water resources when accounting for issues related to impact model performance: (1) using a multi-model ensemble disregarding model performance, and (2) using models after their evaluation and considering model performance. We discuss the implications of both approaches in terms of credibility of simulated hydrological indicators for climate change adaptation. For that, we discuss and confirm the hypothesis that a good performance of hydrological models in the historical period increases confidence in projected impacts under climate change, and decreases uncertainty of projections related to hydrological models. Based on this, we find the second approach more trustworthy and recommend using it for impact assessment, especially if results are intended to support adaptation strategies. Guidelines for evaluation of global- and basin-scale models in the historical period, as well as criteria for model rejection from an ensemble as an outlier, are also suggested.  相似文献   

10.
Climate change due to global warming is a public concern in Central Asia. Because of specific orography and climate conditions, the republic of Tajikistan is considered as the main glacial center of Central Asia. In this study, regional climate change impacts in the two large basins of Tajikistan, Pyanj and Vaksh River basins located in the upstream sector of the Amu Darya River basin are analysed. A statistical regression method with model output statistics corrections using the ground observation data, Willmott archived dataset and GSMaP satellite driven dataset, was developed and applied to the basins to downscale the Global Climate Model Projections at a 0.1‐degree grid and to assess the regional climate change impacts at subbasin scale. It was found that snow and glacier melting are of fundamental importance for the state of the future water resources and flooding at the target basins since the air temperature had a clearly increasing trend toward the future. It was also found that the snowfall will decrease, but the rainfall will increase because of the gradual increase in the air temperature. Such changes may result in an increase in flash floods during the winter and the early spring, and in significant changes in the hydrological regime during a year in the future. Furthermore, the risks of floods in the target basins may be slightly increasing because of the increase in the frequencies and magnitudes of high daily precipitation and the increase in the rapid snowmelt with high air temperatures toward the future. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Assessment of potential climate change impacts on stream water temperature (Ts) across large scales remains challenging for resource managers because energy exchange processes between the atmosphere and the stream environment are complex and uncertain, and few long‐term datasets are available to evaluate changes over time. In this study, we demonstrate how simple monthly linear regression models based on short‐term historical Ts observations and readily available interpolated air temperature (Ta) estimates can be used for rapid assessment of historical and future changes in Ts. Models were developed for 61 sites in the southeastern USA using ≥18 months of observations and were validated at sites with longer periods of record. The Ts models were then used to estimate temporal changes in Ts at each site using both historical estimates and future Ta projections. Results suggested that the linear regression models adequately explained the variability in Ts across sites, and the relationships between Ts and Ta remained consistent over 37 years. We estimated that most sites had increases in historical annual mean Ts between 1961 and 2010 (mean of +0.11 °C decade?1). All 61 sites were projected to experience increases in Ts from 2011 to 2060 under the three climate projections evaluated (mean of +0.41 °C decade?1). Several of the sites with the largest historical and future Ts changes were located in ecoregions home to temperature‐sensitive fish species. This methodology can be used by resource managers for rapid assessment of potential climate change impacts on stream water temperature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
J. Vaze  A. Davidson  J. Teng  G. Podger 《水文研究》2011,25(16):2597-2612
The impact of future climate on runoff generation and the implications of these changes for management of water resources in a river basin are investigated by running these changes through catchment and river system models. Two conceptual daily rainfall‐runoff models are used to simulate runoff across the Macquarie‐Castlereagh region for historical (1895–2006) and future (~2030) climate based on outputs from 15 of the 23 IPCC AR4 GCMs for the A1B global warming scenario. The estimates of future runoff are used as inputs to the river system model. The mean annual historical rainfall averaged across the Macquarie‐Castlereagh region is 544 mm and the simulated runoff is 34 and 30 mm for SIMHYD and Sacramento rainfall‐runoff models, respectively. The mean annual future rainfall and runoff across the region are projected to decrease. The modelling results show a median estimate of a 5% reduction for SIMHYD (50% confidence interval ? 11 to + 7%) and a 7% reduction for Sacramento (50% confidence interval ? 15 to + 8%) in mean annual runoff under a ~2030 climate for the region. The results from the river system modelling indicate that under the ~2030 climate scenario, the median of general security and supplementary diversions are projected to decrease by 4% (50% confidence interval ? 10 to + 5%) and 2% (50% confidence interval ? 5 to + 3%) respectively for the SIMHYD inflows and 8% (50% confidence interval ? 17 to + 6%) and 5% (50% confidence interval ? 11 to + 3%) for the Sacramento inflows. The future annual and seasonal storage volumes for the Burrendong Dam and inflows at all major locations across the region are projected to be lower than the historical records. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this article, we propose an investigation of the modifications of the hydrological response of two Peruvian Amazonas–Andes basins in relationship with the modifications of the precipitation and evapotranspiration rates inferred by the IPCC. These two basins integrate around 10% of the total area of the Amazonian basin. These estimations are based on the application of two monthly hydrological models, GR2M and MWB3, and the climatic projections come from BCM2, CSMK3 and MIHR models for A1B and B1 emission scenarios (SCE A1B and SCE B1). Projections are approximated by two simple scenarios (anomalies and horizon) and annual rainfall rates, evapotranspiration rates and discharge were estimated for the 2020s (2008–2040), 2050s (2041–2070) and 2080s (2071–2099). Annual discharge shows increasing trend over Requena basin (Ucayali river), Puerto Inca basin (Pachitea river), Tambo basin (Tambo river) and Mejorada basin (Mantaro river) while discharge shows decreasing trend over the Chazuta basin (Huallaga river), the Maldonadillo basin (Urubamba river) and the Pisac basin (Vilcanota river). Monthly discharge at the outlet of Puerto Inca, Tambo and Mejorada basins shows increasing trends for all seasons. Trends to decrease are estimated in autumn discharge over the Requena basin and spring discharge over Pisac basin as well as summer and autumn discharges over both the Chazuta and the Maldonadillo basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Water resource assessment on climate change is crucial in water resource planning and management. This issue is becoming more urgent with climate change intensifying. In the current research of climate change impact, climate natural variability (fluctuation) has seldom been studied separately. Many studies keep attributing all changes (e.g. runoff) to climate change, which may lead to wrong understanding of climate change impact assessment. Because of lack of long enough historical series, impacts of climate variability have been always avoided deliberately. Based on Latin hypercube sampling technique, a block sampling approach was proposed for climate variability simulation in this study. The widely used time horizon (1961–1991) was defined as baseline period, and the runoff variation probability affected by climate natural variability was analysed. Allowing for seven future climate projections in total of three GCMs (CSIRO, NCAR, and MPI) and three emission scenarios (A1B, A2, and B1), the impact of future climate change on water resources was estimated in terms of separating the contribution from climate natural variability. Based on the analysis of baseline period, for the future period from 2021 to 2051, the impact of climate natural variability may play a major part, whereas for the period from 2061 to 2091, climate change attributed to greenhouse gases may dominate the changing process. The results show that changes from climate variability possess a comparable magnitude, which highlights the importance to separate impacts of climate variability in assessing climate change, instead of attributing all changes to climate change solely. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Among the processes most affected by global warming are the hydrological cycle and water resources. Regions where the majority of runoff consists of snowmelt are very sensitive to climate change. It is significant to express the relationship between climate change and snow hydrology and it is imperative to perform climate change impact studies on snow hydrology at global and regional scales. Climate change impacts on the mountainous Upper Euphrates Basin were investigated in this paper. First, historical data trend analysis of significant hydro-meteorological data is presented. Available future climate data are then explained, and, finally, future climate data are used in hydrological models, which are calibrated and validated using historical hydro-meteorological data, and future streamflow is projected for the period 2070–2100. The hydrological model outcomes indicate substantial runoff decreases in summer and spring season runoff, which will have significant consequences on water sectors in the Euphrates Basin.

Citation Yilmaz, A.G. & Imteaz, M.A. (2011) Impact of climate change on runoff in the upper part of the Euphrates basin. Hydrol. Sci. J. 56(7), 1265–1279.  相似文献   

16.
Combining the temperature and precipitation data from 77 climatological stations and the climatic and hydrological change data from three headstreams of the Tarim River: Hotan, Yarkant, and Aksu in the study area, the plausible association between climate change and the variability of water resources in the Tarim River Basin in recent years was investigated, the long-term trend of the hydrological time series including temperature, precipitation, and stream-flow was detected, and the possible association between the El Nino/Southern Oscillation (ENSO) and these three kinds of time series was tested. The results obtained in this study show that during the past years, the temperature experienced a significant monotonic increase at the speed of 5%, nearly 1℃rise; the precipitation showed a significant decrease in the 1970s, and a significant increase in the 1980s and 1990s, the average annual precipitation was increased with the magnitude of 6.8 mm per decade. A step change occurred in both temperature and  相似文献   

17.
ABSTRACT

A semi-distributed hydrological model of the Niger River above and including the Inner Delta is developed. GCM-related uncertainty in climate change impacts are investigated using seven GCMs for a 2°C increase in global mean temperature, the hypothesised threshold of “dangerous” climate change. Declines in precipitation predominate, although some GCMs project increases for some sub-catchments, whilst PET increases for all scenarios. Inter-GCM uncertainty in projected precipitation is three to five times that of PET. With the exception of one GCM (HadGEM1), which projects a very small increase (3.9%), river inflows to the Delta decline. There is considerable uncertainty in the magnitude of these reductions, ranging from 0.8% (HadCM3) to 52.7% (IPSL). Whilst flood extent for HadGEM1 increases (mean annual peak +1405 km2/+10.2%), for other GCMs it declines. These declines range from almost negligible changes to a 7903 km2 (57.3%) reduction in the mean annual peak.
Editor Z.W. Kundzewicz; Associate editor not assigned  相似文献   

18.
This study aimed to quantify possible climate change impacts on runoff for the Rheraya catchment (225 km2) located in the High Atlas Mountains of Morocco, south of Marrakech city. Two monthly water balance models, including a snow module, were considered to reproduce the monthly surface runoff for the period 1989?2009. Additionally, an ensemble of five regional climate models from the Med-CORDEX initiative was considered to evaluate future changes in precipitation and temperature, according to the two emissions scenarios RCP4.5 and RCP8.5. The future projections for the period 2049?2065 under the two scenarios indicate higher temperatures (+1.4°C to +2.6°C) and a decrease in total precipitation (?22% to ?31%). The hydrological projections under these climate scenarios indicate a significant decrease in surface runoff (?19% to ?63%, depending on the scenario and hydrological model) mainly caused by a significant decline in snow amounts, related to reduced precipitation and increased temperature. Changes in potential evapotranspiration were not considered here, since its estimation over long periods remains a challenge in such data-sparse mountainous catchments. Further work is required to compare the results obtained with different downscaling methods and different hydrological model structures, to better reproduce the hydro-climatic behaviour of the catchment.
EDITOR M.C. Acreman

ASSOCIATE EDITOR R. Hirsch  相似文献   

19.
The northern mid‐high latitudes form a region that is sensitive to climate change, and many areas already have seen – or are projected to see – marked changes in hydroclimatic drivers on catchment hydrological function. In this paper, we use tracer‐aided conceptual runoff models to investigate such impacts in a mesoscale (749 km2) catchment in northern Scotland. The catchment encompasses both sub‐arctic montane sub‐catchments with high precipitation and significant snow influence and drier, warmer lowland sub‐catchments. We used downscaled HadCM3 General Circulation Model outputs through the UKCP09 stochastic weather generator to project the future climate. This was based on synthetic precipitation and temperature time series generated from three climate change scenarios under low, medium and high greenhouse gas emissions. Within an uncertainty framework, we examined the impact of climate change at the monthly, seasonal and annual scales and projected impacts on flow regimes in upland and lowland sub‐catchments using hydrological models with appropriate process conceptualization for each landscape unit. The results reveal landscape‐specific sensitivity to climate change. In the uplands, higher temperatures result in diminishing snow influence which increases winter flows, with a concomitant decline in spring flows as melt reduces. In the lowlands, increases in air temperatures and re‐distribution of precipitation towards autumn and winter lead to strongly reduced summer flows despite increasing annual precipitation. The integration at the catchment outlet moderates these seasonal extremes expected in the headwaters. This highlights the intimate connection between hydrological dynamics and catchment characteristics which reflect landscape evolution. It also indicates that spatial variability of changes in climatic forcing combined with differential landscape sensitivity in large heterogeneous catchments can lead to higher resilience of the integrated runoff response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The potential impacts of climate change are an increasing focus of research, and ever‐larger climate projection ensembles are available, making standard impact assessments more onerous. An alternative way of estimating impacts involves response surfaces, which present the change in a given indicator for a large number of plausible climatic changes defined on a regular sensitivity domain. Sets of climate change projections can then be overlaid on the response surface and impacts estimated from the nearest corresponding points of the sensitivity domain, providing a powerful method for fast impact estimation for multiple projections and locations. However, the effect of assumptions necessary for initial response surface development must be assessed. This paper assesses the uncertainty introduced by use of a sensitivity framework for estimating changes in 20‐year return period flood peaks in Britain. This sensitivity domain involves mean annual and seasonal precipitation changes, and a number of simplifications were necessary for consistency and to reduce dimensionality. The effect of these is investigated for nine catchments across Britain, representing nine typical response surfaces (response types), using three sets of climate projections. The results show that catchments can have different causes of uncertainty and some catchments have an overall higher level of uncertainty than others. These differences are compatible with the underlying climatological and hydrological differences between the response types, giving confidence in generalization of the results. This enables the development of uncertainty allowances by response type, to be used alongside the response surfaces to provide more robust impact estimates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号