首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Saturated hydraulic conductivity (K) is one of the most important parameters determining groundwater flow and contaminant transport in both unsaturated and saturated porous media. Although several well‐established laboratory methods exist for determining K, in situ measurements of this parameter remain very complex and scale dependent. Often, the limited accessibility of subsurface sediments for sampling means an additional impediment to our ability to quantify subsurface K heterogeneity. One potential solution is the use of outcrops as analogues for subsurface sediments. This paper investigates the use of air permeameter measurements on outcrops of unconsolidated sediments to quantify K and its spatial heterogeneity on a broad range of sediment types. The Neogene aquifer in northern Belgium is used as a case study for this purpose. To characterize the variability in K, 511 small‐scale air permeability measurements were performed on outcrop sediments representative over five of the aquifer's lithostratigraphic units. From these measurements, outcrop‐scale equivalent K tensors were calculated using numerical upscaling techniques. Validation of the air permeameter‐based K values by comparison with laboratory constant head K measurements reveals a correlation of 0.93. Overall, the results indicate that hand‐held air permeameters are very efficient and accurate tools to characterize saturated K, as well as its small‐scale variability and anisotropy on a broad range of unconsolidated sediments. The studied outcrops further provided a qualitative understanding of aquifer hydrostratigraphy and quantitative estimates about K variability at the centimetre‐scale to metre‐scale. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A better understanding of solute transport and retention mechanism in rock fractures has been challenging due to difficulty in their direct observations in microscale rough‐walled fractures. Six representative troughs in a rough‐walled fracture were selected for microscale observations of eddy formation with increasing flow velocity and its effect on spatiotemporal changes of solute concentration. This experimental study was enabled by a microscale visualization technique of micro particle image velocimetry. With increasing flow velocity (Re ≤ 2.86), no eddies were generated, and solutes along the main streamlines transported rapidly, whereas those near the wall moved slowly. A larger amount of solutes remained trapped at all troughs at Re = 2.86 than Re < 1. For Re = 8.57, weak eddies started to be developed at the troughs on the lee side, which little contributed to overall solute flushing in the fracture. Accordingly, a large of amount of water was needed for solute flushing. The flow condition of 1 < Re < 10, before a full development of eddies, was least favourable in terms of time and amount of remediation fluid required to reach a target concentration. After large eddies were fully developed at troughs on the lee side for Re = 17.13, solutes were substantially reduced by eddies with less amount of water. Fully developed eddies were found to enhance solute transport and recovery, as opposed to a general consensus that eddies trap and delay solutes. Direct inflow into troughs on the stoss side also made a great contribution to solute flushing out of the troughs. This study indicates that fully developed eddies or strong inflows at troughs are highly possible to form for Re > 10 and this flow range could be favourable for efficient remediation.  相似文献   

3.
Remediation of subsurface contamination requires an understanding of the contaminant (history, source location, plume extent and concentration, etc.), and, knowledge of the spatial distribution of hydraulic conductivity (K) that governs groundwater flow and solute transport. Many methods exist for characterizing K heterogeneity, but most if not all methods require the collection of a large number of small‐scale data and its interpolation. In this study, we conduct a hydraulic tomography survey at a highly heterogeneous glaciofluvial deposit at the North Campus Research Site (NCRS) located at the University of Waterloo, Waterloo, Ontario, Canada to sequentially interpret four pumping tests using the steady‐state form of the Sequential Successive Linear Estimator (SSLE) ( Yeh and Liu 2000 ). The resulting three‐dimensional (3D) K distribution (or K‐tomogram) is compared against: ( 1 ) K distributions obtained through the inverse modeling of individual pumping tests using SSLE, and ( 2 ) effective hydraulic conductivity (Keff) estimates obtained by automatically calibrating a groundwater flow model while treating the medium to be homogeneous. Such a Keff is often used for designing remediation operations, and thus is used as the basis for comparison with the K‐tomogram. Our results clearly show that hydraulic tomography is superior to the inversions of single pumping tests or Keff estimates. This is particularly significant for contaminated sites where an accurate representation of the flow field is critical for simulating contaminant transport and injection of chemical and biological agents used for active remediation of contaminant source zones and plumes.  相似文献   

4.
Tracer experiments conducted in the laboratory on undisturbed core samples (<7.3-cm-diameter) have been a standard method for estimating hydraulic and transport properties of fractured till since the 1980s. This study assesses the relationship between visible fractures on the top and bottom of core samples and the resulting hydraulic and mass transport properties of the core. We hypothesized that more visible fractures would indicate the presence of a well-connected fracture network, leading to greater hydraulic conductivity (K) values and earlier chemical breakthrough times. To test this hypothesis, water flow and bromide (Br-) tracer experiments were performed on 10, 16-cm diameter, 16-cm-tall samples of fractured Dows Formation till from central Iowa. Visually identifiable fractures were present on the top and bottom of every sample. Results indicate that the visual identification of fractures does not predict a connected fracture network, as some samples produced breakthrough curves showing rapid first arrival times and shapes characteristic of solute transport in a fractured medium, while others appeared similar to an unfractured medium. No correlation was found between the number of visible fractures and K (Pearson's r = 0.25), or Br- first arrival time (r = −0.33), but a strong negative correlation between K and first arrival time (r = −0.92). Results indicate that the sample volume was not large enough to reliably contain a connected fracture network. Thus, testing large volumes of till at the field scale coupled with fracture-flow modeling likely represents the best approach for estimating hydraulic and mass transport properties for fractured till.  相似文献   

5.
Considering heterogeneity in porous media pore size and connectivity is essential to predicting reactive solute transport across interfaces. However, exchange with less‐mobile porosity is rarely considered in surface water/groundwater recharge studies. Previous research indicates that a combination of pore‐fluid sampling and geoelectrical measurements can be used to quantify less‐mobile porosity exchange dynamics using the time‐varying relation between fluid and bulk electrical conductivity. For this study, we use macro‐scale (10 s of cm) advection–dispersion solute transport models linked with electrical conduction in COMSOL Multiphysics to explore less‐mobile porosity dynamics in two different types of observed sediment water interface porous media. Modeled sediment textures contrast from strongly layered streambed deposits to poorly sorted lakebed sands and cobbles. During simulated ionic tracer perturbations, a lag between fluid and bulk electrical conductivity, and the resultant hysteresis, is observed for all simulations indicating differential loading of pore spaces with tracer. Less‐mobile exchange parameters are determined graphically from these tracer time series data without the need for inverse numerical model simulation. In both sediment types, effective less‐mobile porosity exchange parameters are variable in response to changes in flow direction and fluid flux. These observed flow‐dependent effects directly impact local less‐mobile residence times and associated contact time for biogeochemical reaction. The simulations indicate that for the sediment textures explored here, less‐mobile porosity exchange is dominated by variable rates of advection through the domain, rather than diffusion of solute, for typical low‐to‐moderate rate (approximately 3–40 cm/day) hyporheic fluid fluxes. Overall, our model‐based results show that less‐mobile porosity may be expected in a range of natural hyporheic sediments and that changes in flowpath orientation and magnitude will impact less‐mobile exchange parameters. These temporal dynamics can be assessed with the geoelectrical experimental tracer method applied at laboratory and field scales.  相似文献   

6.
Coastal wetlands are characterized by strong, dynamic interactions between surface water and groundwater. This paper presents a coupled model that simulates interacting surface water and groundwater flow and solute transport processes in these wetlands. The coupled model is based on two existing (sub) models for surface water and groundwater, respectively: ELCIRC (a three‐dimensional (3‐D) finite‐volume/finite‐difference model for simulating shallow water flow and solute transport in rivers, estuaries and coastal seas) and SUTRA (a 3‐D finite‐element/finite‐difference model for simulating variably saturated, variable‐density fluid flow and solute transport in porous media). Both submodels, using compatible unstructured meshes, are coupled spatially at the common interface between the surface water and groundwater bodies. The surface water level and solute concentrations computed by the ELCIRC model are used to determine the boundary conditions of the SUTRA‐based groundwater model at the interface. In turn, the groundwater model provides water and solute fluxes as inputs for the continuity equations of surface water flow and solute transport to account for the mass exchange across the interface. Additionally, flux from the seepage face was routed instantaneously to the nearest surface water cell according to the local sediment surface slope. With an external coupling approach, these two submodels run in parallel using time steps of different sizes. The time step (Δtg) for the groundwater model is set to be larger than that (Δts) used by the surface water model for computational efficiency: Δtg = M × Δts where M is an integer greater than 1. Data exchange takes place between the two submodels through a common database at synchronized times (e.g. end of each Δtg). The coupled model was validated against two previously reported experiments on surface water and groundwater interactions in coastal lagoons. The results suggest that the model represents well the interacting surface water and groundwater flow and solute transport processes in the lagoons. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The fractional Brownian motion (fBm) and fractional Lévy motion (fLm) can easily describe the geometry and the statistical structure of hydraulic conductivity (K) for real-world. However, the fBm and fLm models have not been systematically evaluated when building the K field for a low-permeability site. In this study, both the fBm and fLm are used to simulate the low-K field at NingCheGu (NCG), Tianjin, China. Groundwater flow and solute transport are then computed using MODFLOW and MT3DMS, respectively, and the influence of the fBm/fLm models for K on groundwater flow and solute transport is discussed. Results show that the fLm fits better the statistics of the low-K medium than fBm, and the random logarithmic K (LnK) field generated by fLm is more stable because the resultant LnK field captures more of the measured properties at the field site than that generated by fBm. In contrast, the LnK generated by fBm is more likely to form both high-K channels and low-K barriers. The fBm therefore predicts more extreme behaviours in flow and transport, including the preferential flow, low-concentration blocks and solute retention. The overall groundwater renewal period and solute travel time for the fLm simulation are slightly shorter than those for fBm. The impacts of the fLm and fBm models on the statistics of the resultant LnK fields and the dynamics of groundwater flow and solute transport revealed by this study shed light on the selection and evaluation of the fractional probability distribution models in capturing the K fields for low-K media.  相似文献   

8.
We describe a novel inexpensive method, utilizing particle image velocimetry (PIV) and refractive index‐matching (RIM) for visualizing and quantifying the flow field within bio‐amended porous media. To date, this technique has been limited to idealized particles, whose refractive index does not match that of fresh water and thus requires specialized and often toxic or hazardous fluids. Here, we use irregularly shaped grains made of hydrogel as the solid matrix and water as the fluid. The advantage of using water is that it provides, for the first time, the opportunity to study both hydraulic and biological processes, which typically occur in soils and streambeds. By using RIM coupled with PIV (RIM‐PIV), we measured the interstitial flow field within a cell packed with granular material consisting of hydrogel grains in a size range of 1–8 mm, both in the presence and in the absence of Sinorhizobium meliloti bacteria (strain Rm8530). We also performed experiments with fluorescent tracer (fluorescein) and fluorescent microbes (Shewanella GPF MR‐1) to test the capability of visualizing solute transport and microbial movements. Results showed that the RIM‐PIV can measure the flow field for both biofilm‐free and biofilm‐covered hydrogel grains. The fluorescent tracer injection showed the ability to visualize both physical (concave surfaces and eddies) and biological (biofilms) transient storage zones, whereas the fluorescent microbe treatment showed the ability to track microbial movements within fluids. We conclude that the proposed methodology is a promising tool to visualize and quantify biofilm attachment, growth, and detachment in a system closer to natural conditions than a 2D flow cell experiment.  相似文献   

9.
10.
To enhance the understanding of solute dynamics within the stream‐to‐riparian continuum during flood event‐driven water fluctuation (i.e., flood wave), a variable saturated groundwater flow and solute transport model were developed and calibrated against in situ measurements of the Inbuk stream, Korea, where seasonal flooding prevails. The solute dynamics were further investigated for flood waves (varying by amplitude [A], duration [T], roundness [r], and skewness [tp]) that were parameterised by real‐time stream stage fluctuations. We found that the solute transferred faster and farther in the riparian zone, especially within the phreatic zone, above which in the variable saturated zone the concentration required a significantly longer time, particularly at higher altitudes, to return to the initial state. By comparison, solute transferred shallowly in the streambed where the solute plume exhibited an exponential growth trend from the centre to the bank. The dynamic changes of solute flux and mass along the stream–aquifer interface and stream concentration were linked to the shape of flood wave. As the flood wave became higher (A↗), wider (T↗), rounder (r↘), and less skewed (tp↗), the maximum solute storage in aquifer increased. Maximum stream concentration (Cstr?max) not only presented a positive linear relationship with A or tp but also showed a negative logarithmic trend with increasing T or r. The sensitivity of Cstr_max to A was approximately two times that of tp, and between these values, the r was slightly more sensitive than T. Cstr?max linearly increased as hydraulic conductivity increased and logarithmically increased as longitudinal dispersivity increased. The former relationship was more sensitive than the latter.  相似文献   

11.
This study examined if riparian land use (forested vs agricultural) affects hydraulic transport in headwater streams located in an agriculturally fragmented watershed. We identified paired 50‐m reaches (one reach in agricultural land use and the other in forested land use) along three headwater streams in the Upper Sugar Creek Watershed in northeast Ohio, USA (40° 51′42″N, 81° 50′29″W). Using breakthrough curves obtained by Rhodamine WT slug injections and the one‐dimensional transport with inflow and storage model (OTIS), hydraulic transport parameters were obtained for each reach on six different occasions (n = 36). Relative transient storage (AS:A) was similar between both reach types (As: A = 0·3 ± 0·1 for both agricultural and forested reaches). Comparing values of Fmed200 to those in the literature indicates that the effect of transient storage was moderately high in the study streams in the Upper Sugar Creek Watershed. Examining travel times revealed that overall residence time (HRT) and residence time in transient storage (TSTO) were both longer in forested reaches (forested HRT = 19·1 ± 11·5 min and TSTO = 4·0 ± 3·8 min; agricultural HRT = 9·3 ± 5·3 min and TSTO = 1·7 ± 1·4 min). We concluded that the effect of transient storage on solute transport was similar between the forested and agricultural reaches but the forested reaches had a greater potential to retain solutes as a result of longer travel times. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Liwen Zhao  Wenzhi Zhao 《水文研究》2015,29(13):2983-2993
With a maize seed planting area of about 67 000 hm2, Zhangye city supplies the seeds for more than 40% of the maize planting area in China. Irrigation water is often overused to ensure the quality of the maize seeds, leading to serious water shortage problems in recent years. An accurate and convenient estimate of canopy transpiration is of particular importance to ease the problem. In this paper, leaf transpiration and sap flow in a maize field were measured in 2012 using a portable photosynthesis system and a heat balance sap flow system. Based on a large amount of meteorological data and relevant maize plant‐growing parameters, canopy transpiration was up‐scaled from both leaf transpiration (Tl) and sap flow (Tf), and also calculated by the FAO‐56 dual crop coefficient method (T). Comparing these three types of transpiration, Tf was proved to be more reliable than Tl. Taking Tf as a benchmark, the basal crop coefficient (Kcb, the key parameter of FAO‐56 dual crop coefficient method) was further adjusted and verified for the maize plants in this region. In addition, the errors when using up‐scaling methods and FAO‐56 dual crop coefficient method are summarized. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
The heterogeneous hydraulic conductivity (K) in water‐bearing formations controls subsurface flow and solute transport processes. Geostatistical techniques are often employed to characterize the K distribution in space based on the correlation between K measurements. However, at the basin scale, there are often insufficient measurements for inferring the spatial correlation. This is a widespread problem that we address in this study using the example of the Betts Creek Beds (BCB) in the Galilee Basin, Australia. To address the lack of data, we use a 1D stochastic fluvial process‐based model (SFPM) to quantify the total sediment thickness, Z( x ), and the sandstone proportion over the total thickness, Ps( x ), in the BCB. The semivariograms of Z( x ) and Ps( x ) are then extracted and used in sequential Gaussian simulation to construct the 2D spatial distribution of Z( x ) and Ps( x ). Ps( x ) can be converted to a K distribution based on classical averaging methods. The results demonstrate that the combination of SFPM and geostatistical simulation allows for the evaluation of upscaled K distribution with a limited number of K measurements. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Concentration‐discharge (c‐Q) plots are routinely used as an integrated signal of watershed response to infer solute sources and travel pathways. However, the interpretation of c‐Q data can be difficult unless these data are fitted using statistical models. Such models are frequently applied for geogenic solutes, but it is unclear to what extent they might aid in the investigation of nutrient export patterns, particularly for total dissolved phosphorus (TDP) which is a critical driver of downstream eutrophication problems. The goal of the present study was therefore to statistically model c‐Q relations (where c is TDP concentrations) in a set of contrasting watersheds in the Northern Great Plains—ranging in size from 0.2 to 1000+ km2—to assess the controls of landscape properties on TDP transport dynamics. Six statistical models were fitted to c‐Q data, notably (a) one linear model, (b) one model assuming that c‐Q relations are driven by the mixing of end‐member waters from different landscape locations (i.e., hydrograph separation), (c) one model relying on a biogeochemical stationarity hypothesis (i.e., power law), (d) one model hypothesizing that c‐Q relations change as a function of the solute subsurface contact time (i.e., hyperbolic model), and (e) two models assuming that solute fluxes are mostly dependent on reaction rates (i.e., chemical models). Model performance ranged from mediocre (R2 < 0.2) to very good (R2 > 0.9), but the hydrograph separation model seemed most universal. No watershed was found to exhibit chemostatic behaviour, but many showed signs of dilution or enrichment behaviour. A tendency toward a multi‐model fit and better model performance was observed for watersheds with moderate slope and higher effective drainage area. The relatively poor model performance obtained outside these conditions illustrates the likely importance of controls on TDP concentrations in the region that are independent of flow dynamics.  相似文献   

15.
Hyporheic exchange increases the potential for solute retention in streams by slowing downstream transport and increasing solute contact with the substrate. Hyporheic exchange may be a major mechanism to remove nutrients in semi‐arid watersheds, where livestock have damaged stream riparian zones and contributed nutrients to stream channels. Debris dams, such as beaver dams and anthropogenic log dams, may increase hyporheic interactions by slowing stream water velocity, increasing flow complexity and diverting water to the subsurface. Here, we report the results of chloride tracer injection experiments done to evaluate hyporheic interaction along a 320 m reach of Red Canyon Creek, a second order stream in the semi‐arid Wind River Range of Wyoming. The study site is part of a rangeland watershed managed by The Nature Conservancy of Wyoming, and used as a hydrologic field site by the University of Missouri Branson Geologic Field Station. The creek reach we investigated has debris dams and tight meanders that hypothetically should enhance hyporheic interaction. Breakthrough curves of chloride measured during the field experiment were modelled with OTIS‐P, a one‐dimensional, surface‐water, solute‐transport model from which we extracted the storage exchange rate α and cross‐sectional area of the storage zone As for hyporheic exchange. Along gaining reaches of the stream reach, short‐term hyporheic interactions associated with debris dams were comparable to those associated with severe meanders. In contrast, along the non‐gaining reach, stream water was diverted to the subsurface by debris dams and captured by large‐scale near‐stream flow paths. Overall, hyporheic exchange rates along Red Canyon Creek during snowmelt recession equal or exceed exchange rates observed during baseflow at other streams. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
In a series of experiments at 0.5–1.3 GPa and 1050–1200°C we have monitored the transport, via crack propagation, of CO2 into well-annealed olivine and quartz aggregates. The objectives were to determine (1) the extent and rate of fluid penetration; (2) the effect of varying both P-T conditions and microstructure; and (3) the fluid penetration pathways. Experiments on CO2 penetration into dunite annealed in the absence of MgO indicate rapid and pervasive fluid transport on a grain-dimension scale, but a limited penetration distance ( 1 mm). Additional experiments on dunite annealed in the presence of MgO (either dispersed or present at both ends), however, resulted in CO2 penetration that was both pervasive on the scale of individual grains and almost always completely through the 5 mm long samples. The abundance of fine (10 μm) grains in the MgO-free dunite, in contrast to the much larger grain sizes of the samples annealed with MgO present, suggests the difference in fluid penetration behavior may arise because the strength variation in dunite scales with the grain size. Effects arising from changes in olivine point defect chemistry, however, are an additional possibility. The response of synthetic quartzite to CO2 overpressure is distinct from that of dunite: Quartzite experiences rapid and complete penetration of CO2, via a macroscopically visible system of transgranular fractures, over the range of P-T conditions investigated.The small amount of porosity ( 2–3%) present in most rock samples fabricated for this study, lacks three-dimensional connectivity, thus precluding any enhanced fluid penetration via porous flow. Pores could possibly enhance fluid penetration as the result of a small reduction in resistance to fracture, but the probable abundance of strength-controlling flaws in natural rocks is likely to produce similar behavior.The results of our experiments on olivine and olivine + MgO suggest that the transport of pressurized CO2 in very olivine-rich mantle environments will be pervasive on the scale of individual grains and its extent may be dependent on rock microstructure and/or crystal chemical effects. Such pervasive fluid transport, perhaps associated with magma decarbonation, may have interesting implications for both magma transport and local LREE enrichment of adjacent mantle wall-rock. The ease with which quartzite is penetrated by CO2 at the conditions of our experiments underscores the possible role of decarbonation reactions in crustal permeability-enhancement processes.  相似文献   

17.
Although the bulk moduli (KT0) of silicate melts have a relatively narrow range of values, the pressure derivatives of the isothermal bulk modulus (KT0) can assume a broad range of values and have an important influence on the compositional dependence of the melt compressibility at high pressure. Based on the melt density data from sink/float experiments at high pressures in the literature, we calculate KT0 using an isothermal equation of state (EOS) (e.g., Birch–Murnaghan EOS and Vinet EOS) with the previously determined values of room-pressure density (ρ0) and room-pressure bulk modulus (KT0). The results show that best estimates of KT0 vary considerably from ~ 3 to ~ 7 for different compositions. KT0 is nearly independent of Mg # (molar Mg/(Mg + Fe)), but decreases with SiO2 content. Hydrous melts have anomalously small KT0 leading to a high degree of compression at high pressures. For anhydrous melts, KT0 is ~ 7 for peridotitic melts, ~ 6 for picritic melts, ~ 5 for komatiitic melts, and ~ 4 for basaltic melts.  相似文献   

18.
Abstract

A numerical technique is presented whereby aquifer hydraulic diffusivities (D) and macrodispersivities (α) are calculated by linear equations rewritten from flow and solute transport differential equations. The approach requires a GIS to calculate spatial and temporal hydraulic head (h) and solute concentration gradients. The model is tested in Portugal, in a semi-confined aquifer periodically monitored for h and chloride/sulphate concentrations. Average D (0.46 m2/s) and α (1975 m) compare favourably with literature results. The relationship between α and scale (L) is also investigated. In this context, two aquifer groups could be identified: the first group is heterogeneous at the “macroscopic” scale (solute travelled distances <1 km), but homogeneous at the “megascopic” scale. The overall scale dependency in this case is given by an equation of logarithmic type. The second group is heterogeneous at the macroscopic and megascopic scales, with a scale dependency of linear type.

Citation Pacheco, F.A.L., 2013. Hydraulic diffusivity and macrodispersivity calculations embedded in a geographic information system. Hydrological Sciences Journal, 58 (4), 930–944.  相似文献   

19.
There are many field techniques used to quantify rates of hyporheic exchange, which can vary in magnitude and direction spatially over distances of only a few metres, both within and between morphological features. We used in‐stream mini‐piezometers and heat transport modelling of stream and streambed temperatures to quantify the rates and directions of water flux across the streambed interface upstream and downstream of three types of in‐stream geomorphic features: a permanent dam, a beaver dam remnant and a stream meander. We derived hyporheic flux estimates at three different depths at six different sites for a month and then paired those flux rates with measurements of gradient to derive hydraulic conductivity (K) of the streambed sediments. Heat transport modelling provided consistent daily flux estimates that were in agreement directionally with hydraulic gradient measurements and also identified vertical heterogeneities in hydraulic conductivity that led to variable hyporheic exchange. Streambed K varied over an order of magnitude (1·9 × 10?6 to 5·7 × 10?5 m/s). Average rates of hyporheic flux ranged from static (q < ±0·02 m/day) to 0·42 m/day. Heat transport modelling results suggest three kinds of flow around the dams and the meander. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Wave‐induced fluid flow plays an important role in affecting the seismic dispersion and attenuation of fractured porous rocks. While numerous theoretical models have been proposed for the seismic dispersion and attenuation in fractured porous rocks, most of them neglect the wave‐induced fluid flow resulting from the background anisotropy (e.g. the interlayer fluid flow between different layers) that can be normal in real reservoirs. Here, according to the theories of poroelasticity, we present an approach to study the frequency‐dependent seismic properties of more realistic and complicated rocks, i.e. horizontally and periodically layered porous rock with horizontal and randomly orienting fractures, respectively, distributed in one of the two periodical layers. The approach accounts for the dual effects of the wave‐induced fluid flow between the fractures and the background pores and between different layers (the interlayer fluid flow). Because C33 (i.e., the modulus of the normally incident P‐wave) is directly related to the P‐wave velocity widely measured in the seismic exploration, and its comprehensive dispersion and attenuation are found to be most significant, we study mainly the effects of fracture properties and the stiffness contrast between the different layers on the seismic dispersion and attenuation of C33. The results show that the increasing stiffness contrast enhances the interlayer fluid flow of the layered porous rocks with both horizontal and randomly orienting fractures and weakens the wave‐induced fluid flow between the fractures and the background pores, especially for the layered porous rock with horizontal fractures. The modelling results also demonstrate that for the considered rock construction, the increasing fracture density reduces the interlayer fluid flow while improves the dispersion and attenuation in the fracture‐relevant frequency band. Increasing fracture aspect ratio is found to reduce the dispersion and attenuation in the fracture‐relevant frequency band only, especially for the layered porous rock with horizontal fractures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号