首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

2.
Mean transit times (MTTs) can give useful insights into the internal processes of hydrological systems. However, our understanding of how they vary and scale remains unclear. We used MTT estimates obtained from δ18O data from 20, mostly nested, contrasting catchments in North East Scotland, ranging from 1 to 1700 km2. The estimated MTTs ranged between 270 and 1170 days and were used to test a previously developed multiple linear regression (MLR) model for MTT prediction based on metrics of soil cover, landscape organization and climate. We show that the controls on MTT identified by the MLR model hold with the independent data from these 20 sites and that the MLR can be used to predict MTT in ungauged montane catchments. The dominant controls also remain unchanged over four orders of magnitude of catchment size, suggesting no major change of dominant flow paths and mixing processes at larger scales. This is consistent with the fact that only the variance of MTT, rather than MTT, showed a scaling relationship. MTTs appeared to converge with increasing catchment scale, apparently due to the integration of heterogeneous headwater responses in larger downstream catchments. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
    
Watershed mean transit times (MTTs) are used to characterize the hydrology of watersheds. Watershed MTTs could have important implications for water quality, as relatively long MTTs imply lengthier water retention, thereby allowing more time for pollutant transformation and more moderate release of pollutants into streams. Although estimates of MTTs are common for undisturbed watersheds, only a few studies to date have applied MTT models to urbanized watersheds. In the present study, we use δ18O to compare estimates of MTTs for paired suburban‐industrial and agricultural watersheds in Toronto, Canada. Although differences in precipitation δ18O between the two watersheds were negligible, there were significant differences in stream δ18O, suggesting differences in water transport pathways. Less damping between input precipitation δ18O and output stream δ18O in the suburban‐industrial watershed indicated a larger streamflow contribution from quick‐flow transport pathways. We applied three transit time models to quantify MTTs. Considering overall model fit, root mean square error, and uncertainty in model parameters, the exponential model performed the best of the three models. Optimized MTTs using this distribution across the suburban‐industrial subwatersheds ranged from 2.1 to 2.9 months, whereas those in the agricultural subwatersheds ranged from 2.7 to 7.5 months. The relatively small difference between urban and agricultural MTTs coincides with observations elsewhere. Model efficiencies could potentially be improved, and MTTs estimated more reliably, with a higher sampling frequency that captures a greater volume of overall discharge. Overall, this work provides a distinct first glimpse into the separation of MTTs between paired watersheds with such a large contrast in their land use.  相似文献   

4.
    
Isotope data of precipitation and groundwater in parts of the Voltaian Basin in Northern Ghana were used to explain the groundwater recharge regime in the area. Groundwater recharge is an important parameter in the development of a decision support system for the management and efficient utilization of groundwater resources in the area. It is therefore important to establish the processes and sources of groundwater recharge. δ18O and δ2H data for local precipitation suggest enrichment relative to the Global Meteoric Water Line (GMWL) and indicate that precipitation takes place at a relative humidity less than 100%. The groundwater data plot on an evaporation line with a slope of 5, suggesting a high degree of evaporative enrichment of the precipitation in the process of vertical infiltration and percolation through the unsaturated zone into the saturated zone. This finding is consistent with the observation of high evapotranspiration rates in the area and ties in with the fact that significant clay fraction in the unsaturated zone limits vertical percolation and thus exposes the percolating rainwater to the effects of high temperatures and low humidities resulting in high evapotranspiration rates. Groundwater recharge estimates from the chloride mass balance, CMB, method suggest recharge in the range of 1.8–32% of the annual average precipitation in the form of rainfall. The highest rates are associated with areas where open wells encourage significant amount of groundwater recharge from precipitation in the area. In the northern parts of the study area, groundwater recharge is lower than 12%. The recharge so computed through the application of the CMB methodology takes on a spatial distribution akin to the converse of the spatial pattern of both δ18O and δ2H in the area. As such, the locations of the highest recharge are associated with the most depleted values of the two isotopes. This observation is consistent with the assertion that low vertical hydraulic conductivities slow down vertical percolation of precipitation down to the groundwater water. The percolating precipitation water thus gets enriched in the heavier isotopes through high evapotranspiration rates. At the same time, the amount of water that finally reaches the water table is considerably reduced. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
    
To understand the moisture regime at the southern slopes of Mt. Kilimanjaro, we analysed the isotopic variability of oxygen (δ18O) and hydrogen (δD) of rainfall, throughfall, and fog from a total of 2,140 samples collected weekly over 2 years at 9 study sites along an elevation transect ranging from 950 to 3,880 m above sea level. Precipitation in the Kilimanjaro tropical rainforests consists of a combination of rainfall, throughfall, and fog. We defined local meteoric water lines for all 3 precipitation types individually and the overall precipitation, δDprec = 7.45 (±0.05) × δ18Oprec + 13.61 (±0.20), n  = 2,140, R 2 = .91, p  < .001. We investigated the precipitation‐type‐specific stable isotope composition and analysed the effects of amount, altitude, and temperature. Aggregated annual mean values revealed isotope composition of rainfall as most depleted and fog water as most enriched in heavy isotopes at the highest elevation research site. We found an altitude effect of δ18Orain = ?0.11‰ × 100 m?1, which varied according to precipitation type and season. The relatively weak isotope or altitude gradient may reveal 2 different moisture sources in the research area: (a) local moisture recycling and (b) regional moisture sources. Generally, the seasonality of δ18Orain values follows the bimodal rainfall distribution under the influences of south‐ and north‐easterly trade winds. These seasonal patterns of isotopic composition were linked to different regional moisture sources by analysing Hybrid Single Particle Lagrangian Integrated Trajectory backward trajectories. Seasonality of d excess values revealed evidence of enhanced moisture recycling after the onset of the rainy seasons. This comprehensive dataset is essential for further research using stable isotopes as a hydrological tracer of sources of precipitation that contribute to water resources of the Kilimanjaro region.  相似文献   

6.
    
A riparian ecosystem downstream of a small dam in central Texas was instrumented for sap flow, soil moisture content, and stream level from 2001. Stable isotopes in water (D and 18O) were analysed from rainfall, stream, lake, and cored sapwood cellulose from cedar elm (Ulmus crassifolia). The isotope signature of water source to cedar elm was identified by back calculation starting with the water isotopes in cellulose, and accounting for leaf‐water evaporation and biological fractionation during cellulose synthesis. The estimated mean isotope of the source water to cedar elm was enriched above rainfall in similarity to stream water during 2002. Flow paths that may have contributed to estimated variability from regional base flow and recharge water were identified using the variably saturated HYDRUS‐2D model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
    
Deuterium and oxygen‐18 are common environmental tracers in water used to investigate hydrological processes such as evaporation and groundwater recharge, and to trace moisture source. In this study, we collected event precipitation from 01 January 2010 to 28 February 2011 at a site in Changsha, Yangtze River Basin to estimate the influence of moisture source and atmospheric conditions on stable isotope compositions. The local meteoric water line, established as δD = (8.45 ± 0.13) δ18O + (17.7 ± 0.9) (r2 = 0.97, n = 189), had a higher slope and intercept than global meteoric water line. Temperature–δ18O exhibited complex correlations, with positive correlations during Nov.–Apr. superior to during Jun.–Sep., which was attributed to distinctive moisture sources, but vague the overall period; amount effect examined throughout the year. Linear regressions between δ18O and δD value in different precipitation event size classes revealed progressively decreasing slope and intercept values with decreasing precipitation amount and increasing vapour pressure deficit, indicating that small rainfall events (0–5 mm) were subject to secondary evaporation effects during rainwater descent. In contrast, snowfall and heavy precipitation events exhibited high slope and intercepts for the regression equation between δ18O and δD. High concentrations of heavy isotopes were associated with precipitation events sourced from remote westerly air masses, degenerated tropical marine air masses from the Bay of Bengal (BoB), and inland moisture in the pre‐monsoon period, as determined from backward trajectories assessed in the HYSPLIT model. Meanwhile, low concentrations of heavy isotopes were found to correspond with remote maritime moisture from BoB, the South China Sea, and the west Pacific at three different air pressures in summer monsoon and post‐monsoon using HYSPLIT and records of typhoon paths. These findings suggest that stable isotope compositions in precipitation events are closely associated with the meteorological conditions and respond sensitively to moisture source in subtropical monsoon climates. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
    
Soil water is very important in hilly areas with thin soil layers and deep groundwater tables, such as the karst peak‐cluster region of Southwest China. An investigation into soil water movement can provide insights into management of shallow water resources and soil nutrients, as well as prevention of groundwater pollution. In this study, 18O and 2H tracers were used to trace soil water movement in planar soil mass type microhabitats in the middle part of a steep hillslope covered by grasses in a karst peak‐cluster region of China. From May 2008 to July 2009, samples of precipitation and two types of soil water, which had different integrated degrees of mobility and were of different depth intervals or depths, were collected. The hydrogeochemical characteristics were compared between precipitation and soil water, and these data were applied in convolution‐based lumped parameter models. Our results indicated that vertical piston flow, rather than lateral flow along the soil–bedrock interface, played an important role in soil water percolation at least in the upper soil layer approximately 7 cm over the permeable bedrock. The mixing effect and preferential flow might also play a role in soil water percolation. In general, the evaporation effect on soil water was weak except for the uppermost 10 cm soil matrix water during winter. The lower limits of mean transit time of soil matrix flow passing through 5, 15, 25, 35, and 41.5 cm depths were 4.81, 7.70, 16.19, 21.85, and 27.44 days, respectively. Our study demonstrated the crucial functions of the soil reservoir in regulating the water cycle and could provide guidance on conservation of soil water and hydrological studies. The applied method was proved to be a suitable approach for investigating soil water movement on a monthly scale.  相似文献   

9.
10.
    
Measurements of 18O concentrations in precipitation, soil solution, spring and runoff are used to determine water transit time in the small granitic Strengbach catchment (0·8 km2; 883–1146 m above sea level) located in the Vosges Mountains of northeastern France. Water transit times were calculated by applying the exponential, exponential piston and dispersion models of the FlowPC program to isotopic input (rainfall) and output (spring and stream water) data sets during the period 1989–95. The input function of the model was modified compared with the former version of the model and estimated by a deterministic approach based on a simplified hydrological balance. The fit between observed and calculated output data showed marked improvements compared with results obtained using the initial version of the model. An exponential piston version of the model applied to spring water indicates a 38·5 month mean transit time, which suggests that the volume in the aquifer, expressed in water depth, is 2·4 m. A considerable thickness (>45 m) of fractured bedrock may be involved for such a volume of water to be stored in the aquifer. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

11.
    
Snowmelt‐fed springs and small (0.5 km2) upland catchments in alpine areas of the western United States contribute significantly to the quantity and inorganic chemistry of water delivered to downstream basins but have not been studied extensively. Mineral weathering, transit time, and hydrologic mixing control the solute chemistry of waters that drain the upland zone of Niwot Ridge, Colorado Front Range, and adjacent areas in the granitic core of the Southern Rocky Mountains. Water in 37 springs sampled in this study flows in generally short steep paths (~0.3 km) through shallow regolith with mean transit times (MTT) of weeks to months, producing solutions dominated by Si, Ca2+, Na+, and HCO3?, locally SO42?. Rock type is a significant control on spring, surface, and shallow groundwater chemistry, and plagioclase (oligoclase) is the major source of dissolved Na+ and Si. Concentrations of Ca2+ exceed stoichiometric predictions of oligoclase weathering by ~3.5×; excess Ca2+ likely represents weathering of aeolian material, vein calcite, or trace minerals. Concentrations of base cations and Si increase slowly with estimated MTT of 0.2 years for Niwot Ridge spring waters, and several years for shallow groundwater sampled by wells. Chemical weathering of silicate minerals is slow with estimated rates of ~2.0 and 0.2 pmol·m?2·s?1 for oligoclase and microcline, respectively; the most mineralized spring waters are saturated only with respect to kaolinite and montmorillonite. More than 50% of the dissolved base cations + Si measured in Boulder Creek at Orodell (~25 km downstream) accumulate before water emerges from alpine springs on Niwot Ridge. Warming global temperatures are shifting more high‐elevation precipitation to rain, potentially changing run‐off patterns, transit time, and solute loads. Acquisition of solutes by alpine waters thus has implications far beyond small upland catchments.  相似文献   

12.
    
  相似文献   

13.
Sierra Nevada forests transpire a significant amount of California's water resources, sparking interest in applying forest management to improve California's water supply. Determining the source water of evapotranspiration enables forest managers to make informed decisions. To this end, a significant interest in critical zone science is to develop new methods to work across time scales to predict subsurface water storage and use. In this study, forest vegetation accessed young water and switched sources depending on availability, suggesting that forest drought vulnerability may depend on the range of water sources available (rain, snowmelt and deeply stored water). This finding also suggests that changes in transpiration rates may have immediate effects on water sources in close proximity to vegetation, and delayed effects on storage and runoff. New δ18O, δ2H and 3H data were used to track precipitation, runoff, evapotranspiration and storage through the critical zone seasonally, including seasons where evapotranspiration and snowmelt were in phase (winter snowmelt) and out of phase (seasonally dry summer). The main source of this headwater catchment's runoff is derived from its meadow saturated zone water, which was dominated by snowmelt. Water that originated as snowmelt contributed to transpiration, unless other sources, such as recent rain, became available. In cases where xylem δ18O and δ2H signatures matched those of deeper saturated zone water, 3H data showed that xylem water was distinctly younger than the deep saturated zone water. During 2016, which experienced relatively normal snowpack in winter and seasonally dry summer conditions, mean summer saturated zone water and vegetation water were similar in δ18O, −12.4 ± 0.04 ‰ and − 12.5 ± 0.3 ‰, respectively, but were distinctly different in 3H, 5.5 ± 0.2 pCi/L and 13.7 ± 1.1 pCi/L, respectively. While δ18O shows that vegetation and meadow saturated zone water have similar origins, 3H shows they have dissimilar ages.  相似文献   

14.
    
The stable isotopic (2H/1H and 18O/16O) composition of precipitation has been used for a variety of hydrological and paleoclimate studies, a starting point for which is the behaviour of stable isotopes in modern precipitation. To this end, daily precipitation samples were collected over a 7‐year period (2008–2014) at a semi‐arid site located at the Macquarie Marshes, New South Wales (Australia). The samples were analysed for stable isotope composition, and factors affecting the isotopic variability were investigated. The best correlation between δ 18O of precipitation was with local surface relative humidity. The reduced major axis precipitation weighted local meteoric water line was δ 2H = 7.20 δ 18O + 9.1. The lower slope and intercept (when compared with the Global Meteoric Water Line) are typical for a warm dry climate, where subcloud evaporation of raindrops is experienced. A previously published model to estimate the degree of subcloud evaporation and the subsequent isotopic modification of raindrops was enhanced to include the vertical temperature and humidity profile. The modelled results for raindrops of 1.0 mm radius showed that on average, the measured D‐excess (=δ 2H ? 8 δ 18O) was 19.8‰ lower than that at the base of the cloud, and 18% of the moisture was evaporated before ground level (smaller effects were modelled for larger raindrops). After estimating the isotopic signature at the base of the cloud, a number of data points still plotted below the global meteoric water line, suggesting that some of the moisture was sourced from previously evaporated water. Back trajectory analysis estimated that 38% of the moisture was sourced over land. Precipitation samples for which a larger proportion of the moisture was sourced over land were 18O and 2H‐enriched in comparison to samples for which the majority of the moisture was sourced over the ocean. The most common weather systems resulting in precipitation were inland trough systems; however, only East Coast Lows contributed to a significant difference in the isotopic values. Copyright © 2016 Australian Nuclear Science and Technology Organisation. Hydrological Processes. © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
    
The hydrological effect of forest recovery is receiving renewed interest globally because information on forest carbon–water relationship is critically needed to support carbon management through reforestation and sustainable water management. In Northeastern China, summer (June to August) streamflow accounts for about 50% of total annual streamflow and is vital to water supply and management in the region. Understanding how forest recovery may affect streamflow is important to both reforestation campaign and long‐term water sustainability. In this study, we analysed 33 years of summer hydrologic data (1970–2002) from two comparable small‐scale watersheds located in the Xiaoxing'anling, Northeastern China. Time series analysis and two graphic methods (double mass curve and flow duration curve) with statistical testing as well as long‐term data on forest cover changes and climate were used. Our results show that the significant streamflow reduction as a result of reforestation occurred when forest cover reached 70% or 10 years after planting. After forest cover reached 85%, water reduction became stabilized. The accumulative streamflow reduction in 2002 reached 8·61% of the total accumulative streamflow. Among those water reduced, high flows (from 5 to 25 percentiles) were mostly affected, demonstrating that northeastern forests have an important role in reducing high flows. Implications of these results are discussed in the context of climate change, reforestation and water resource management. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

Much of the prairie region in North America is characterized by relatively flat terrain with many depressions on the landscape. The hydrological response (runoff) is a combination of the conventional runoff from the contributing areas and the occasional overflow from the non-contributing areas (depressions). In this study, we promote the use of a hybrid modelling structure to predict runoff generation from prairie landscapes. More specifically, the Soil and Water Assessment Tool (SWAT) is fused with artificial neural networks (ANNs), so that SWAT and the ANN module deal with the contributing and non-contributing areas, respectively. A detailed experimental study is performed to select the best set of inputs, training algorithms and hidden neurons. The results obtained in this study suggest that the fusion of process-based and data-driven models can provide improved modelling capabilities for representing the highly nonlinear nature of the hydrological processes in prairie landscapes.
Editor D. Koutsoyiannis; Associate editor L. See  相似文献   

17.
    
The record length and quality of instantaneous peak flows (IPFs) have a great influence on flood design, but these high resolution flow data are not always available. The primary aim of this study is to compare different strategies to derive frequency distributions of IPFs using the Hydrologiska Byråns Vattenbalansavdelning (HBV) hydrologic model. The model is operated on a daily and an hourly time step for 18 catchments in the Aller‐Leine basin, Germany. Subsequently, general extreme value (GEV) distributions are fitted to the simulated annual series of daily and hourly extreme flows. The resulting maximum mean daily flow (MDF) quantiles from daily simulations are transferred into IPF quantiles using a multiple regression model, which enables a direct comparison with the simulated hourly quantiles. As long climate records with a high temporal resolution are not available, the hourly simulations require a disaggregation of the daily rainfall. Additionally, two calibrations strategies are applied: (1) a calibration on flow statistics; (2) a calibration on hydrographs. The results show that: (1) the multiple regression model is capable of predicting IPFs with the simulated MDFs; (2) both daily simulations with post‐correction of flows and hourly simulations with pre‐processing of precipitation enable a reasonable estimation of IPFs; (3) the best results are achieved using disaggregated rainfall for hourly modelling with calibration on flow statistics; and (4) if the IPF observations are not sufficient for model calibration on flow statistics, the transfer of MDFs via multiple regressions is a good alternative for estimating IPFs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
    
Recession of high‐mountain glaciers in response to climatic change frequently results in the development of moraine‐dammed glacial lakes. Moraine dam failure is often accompanied by the release of large volumes of water and sediment, termed a Glacial Lake Outburst Flood (GLOF). Chukhung Glacier is a small (~3 km2) receding valley glacier in Mt. Everest (Sagarmatha) National Park, Nepal. Unlike many Himalayan glaciers, which possess a thick mantle of supraglacial debris, its surface is relatively clean. The glacier terminus has receded 1.3 km from its maximum Holocene position, and in doing so provided the space for an ice‐contact moraine‐dammed lake to develop. The lake had a maximum volume of 5.5 × 105 m3 and drained as a result of breaching of the terminal moraine. An estimated 1.3 × 105 m3 of material was removed from the terminal moraine during breach development. Numerical dam‐breach modelling, implemented within a Generalised Likelihood Uncertainty Estimation (GLUE) framework, was used to investigate a range of moraine‐dam failure scenarios. Reconstructed outflow peak discharges, including failure via overtopping and piping mechanisms, are in the range 146–2200 m3 s‐1. Results from two‐dimensional hydrodynamic GLOF modelling indicate that maximum local flow depths may have exceeded 9 m, with maximum flow velocities exceeding 20 m s‐1 within 700 m of the breach. The floodwaters mobilised a significant amount of material, sourced mostly from the expanding breach, forming a 300 m long and 100 m wide debris fan originating at the breach exit. moraine‐dam. These results also suggest that inundation of the entire floodplain may have been achieved within ten minutes of initial breach development, suggesting that debris fan development was rapid. We discuss the key glaciological and geomorphological factors that have determined the evolution of a hazardous moraine‐dammed lake complex and the subsequent generation of a GLOF and its geomorphological impact. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

19.
The isotope hydrology of a set of nested sub-catchments in the north-east of Scotland has been studied to examine the mixing processes and residence times of water in the catchments. The measured δ18O in stream waters was found to be exceptionally uniform both temporally and spatially. Hydrochemical mixing analyses showed that groundwater contributes between 62 and 90% of the stream flow in all sub-catchments. Model analysis indicated that the δ18O in stream water is indicative of a highly mixed system in which near surface runoff appears to be mixed with groundwater, within the soil profile, before being released from the catchment. Small fluctuations in the stream water δ18O response are generated by a small proportion (<10%) of less-well mixed water in infiltration excess runoff during storm events. A comparative application of the model to a nearby catchment, which has a lower proportion of groundwater runoff, demonstrated contrasting behaviour, with significantly less mixing of waters occurring and a more distinct difference in the age of runoff generated by different flow paths. This highlighted that standard methods for characterization of mixing mechanisms are often insufficient and may not discriminate between systems that have retained quite distinct flow paths throughout catchment transit, and those which have been mixed at some stage. Model sensitivity analysis also indicated that the simulated mean residence time of water varies most strongly in response to different parameters compared with the δ18O response. This has implications for estimating water residence times from isotope data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
    
The relationship between stream water mean transit time (MTT), catchment geology, and landscape structure is still poorly characterized. Here, we present a new simple index that builds on the Jackson, Bitew, and Du (2014) index that focuses specifically on permeability contrasts at the soil–bedrock interface and digital elevation model-based physical flow path measurements to identify broad landscape trends of moisture redistribution in the subsurface of steep wet headwater catchments. We use this index to explore the relationship between geology, landscape structure, and water transit time through the lens of landscape anisotropy. We hypothesize that catchments with a greater tendency to shed water laterally will correlate with younger stream water MTT and catchments with a greater tendency to infiltrate water vertically will correlate with older stream water MTT. We tested the new index at eight geologically diverse Pacific Rim catchments in Oregon, Japan, and New Zealand. The new index explained 77% of the variability in measured stream water MTT across these varied sites. These findings suggest that critical zone anisotropy and catchment form are first-order controls on the time scales over which catchments store and release their water and that a simple index may usefully capture this relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号