共查询到20条相似文献,搜索用时 15 毫秒
1.
The extent and variability of water storage and residence times throughout the open water season in beaded arctic streams are poorly understood. Data collected in Imnavait Creek, a beaded stream located north of the Brooks Range in Alaska, were used to better understand the effects of in‐pool and riparian storage on heat and mass movement through beaded streams. Temperature data of high spatial resolution within the pools and surrounding sediments were used with volumetric discharge and electrical conductivity to identify storage areas within the pools, banks, and other marshy areas within the riparian zone, including subsurface flow paths that connect the pools. These subsurface flows were found to alter water conductivity and the character of dissolved organic matter (DOM) in short reaches (10 s of m) while influencing the chemistry of downstream pools. During low flow periods, persistent stratification occurred within the pools due to absorption of solar radiation by DOM coupled with permafrost below and low wind stress at the pool surface. Additionally, one of the shallow pools (<0.5 m depth) remained stratified during higher flow periods and lower radiation inputs due to dense subsurface flows entering the bottom of the pools. This consistent separation of surface and bottom water masses in each pool will increase the travel times through this and similar arctic watersheds, and therefore will affect the evolution of water chemistry and material export. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
2.
Estimating the effects of climate change on the intensification of monsoonal‐driven stream discharge in a Himalayan watershed 下载免费PDF全文
Understanding potential hydrologic influences to continued climate change in Himalayan watersheds is important for management of transnational water resources. This study estimates the climate change impacts on hydrologic processes of the Kali Gandaki watershed from central Himalayan region using the Soil and Water Assessment Tool. Daily predicted stream discharge of the basin for 1981–95 following calibration was accurate with Nash Sutcliffe Efficiency value >0.75. Sensitivity analysis of the hydrologic parameters showed the precipitation and temperature lapse rates as the most sensitive parameters to the stream discharge. To assess the influence of continued climate change on hydrologic processes, we modified the weather inputs for the model using average, minimum and maximum temperature, and precipitation changes for the Special Report on Emission Scenarios B1, A1B and A2 derived from 16 General Circulation Models for 2080s. Mean annual stream discharge was approximately 39% higher than current values for the maximum temperature and precipitation changes of the A2 scenario and 22% less for minimum changes of the same scenario. Stream discharge was projected to be changed by +9% during monsoon season and by ?6% during pre‐monsoon season. Snowfall and snow melt were projected to be 30% and 29%, respectively, less than the current average for the maximum temperature and precipitation changes of the A2 scenario. Future simulations showed potential increase in monsoonal stream discharge associated with projected higher precipitation which when coupled with enhanced summer glacier melt might influence the downstream water availability of the basin. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
D. Labat C. T. Hoang J. Masbou A. Mangin I. Tchiguirinskaia S. Lovejoy D. Schertzer 《水文研究》2013,27(25):3708-3717
Karstic watersheds are highly complex hydrogeological systems that are characterized by a multiscale behaviour corresponding to the different pathways of water in these systems. The main issue of karstic spring discharge fluctuations consists in the presence and the identification of characteristic time scales in the discharge time series. To identify and characterize these dynamics, we acquired, for many years at the outlet of two karstic watersheds in South of France, discharge data at 3‐mn, 30‐mn and daily sampling rate. These hydrological records constitute to our knowledge the longest uninterrupted discharge time series available at these sampling rates. The analysis of the hydrological records at different levels of detail leads to a natural scale analysis of these time series in a multifractal framework. From a universal class of multifractal models based on cascade multiplicative processes, the time series first highlights two cut‐off scales around 1 and 16 h that correspond to distinct responses of the aquifer drainage system. Then we provide estimates of the multifractal parameters α and C1 and the moment of divergence qD corresponding to the behaviour of karstic systems. These results constitute the first estimates of the multifractal characteristics of karstic spingflows based on 10 years of high‐resolution discharge time series and should lead to several improvements in rainfall‐karstic springflow simulation models. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
4.
Samuel Teissier Sabine Sauvage Philippe Vervier Frédéric Garabétian José‐Miguel Sánchez‐Pérez 《水文研究》2008,22(3):420-428
A mass‐balance approach was used to estimate in‐stream processes related to inorganic nitrogen species (NH4+, NO2? and NO3?) in a large river characterized by highly variable hydrological conditions, the Garonne River (south‐west France). Studies were conducted in two consecutive reaches of 30 km located downstream of the Toulouse agglomeration (population 760 000, seventh order), impacted by modification of discharge regime and high nitrogen concentrations. The mass‐balance was calculated by two methods: the first is based on a variable residence time (VRT) simulated by a one‐dimensional (1‐D) hydraulic model; the second is a based on a calculation using constant residence time (CRT) evaluated according to hydrographic peaks. In the context of the study, removal of dissolved inorganic nitrogen (DIN) for a reach of 30 km is underestimated by 11% with the CRT method. In sub‐reaches, the discrepancy between the two methods led to a 50% overestimation of DIN removal in the upper reach (13 km) and a 43% underestimation in the lower reach (17 km) using the CRT method. The study highlights the importance of residence time determination when using modelling approaches in the assessment of whole stream processes in short‐duration mass‐balance for a large river under variable hydrological conditions. Copyright © 2007 John Wiley & Sons, Ltd. 相似文献
5.
Air‐stream temperature correlation in forested and urban headwater streams in the Southern Appalachians 下载免费PDF全文
Air temperature can be an effective predictor of stream temperature. However, little work has been done in studying urban impacts on air‐stream relationships in groundwater‐fed headwater streams in mountainous watersheds. We applied wavelet coherence analysis to two 13‐month continuous (1 hr interval) stream and air temperature datasets collected at Boone Creek, an urban stream, and Winkler Creek, a forest stream, in northwestern North Carolina. The main advantage of a wavelet coherence analysis approach is the ability to analyse non‐stationary dynamics for the temporal covariance between air and stream temperature over time and at multiple temporal scales (e.g. hours, days, weeks and months). The coherence is both time and scale‐dependent. Our research indicated that air temperature generally co‐varied with stream temperature at time scales greater than 0.5 day. The correlation was poor during the winter at the scales of 1 to 64 days and summer at the scales of 1.5 to 4 days, respectively. The empirical models that relate air temperature to stream temperature failed at these scales and during these periods. Finally, urbanization altered the air‐stream temperature correlation at intermediate time scales ranging from 2 to 12 days. The correlation at the urban creek increased at the 12‐day scale, whereas it decreased at scales of 2 to 7 days as compared with the forested stream, which is probably due to heated surface runoff during summer thunderstorms or leaking stormwater or wastewater collection systems. Our results provide insights into air‐stream temperature relationships over both time and scale domains. Identifying controls over time and scales are needed to predict water temperature to understand the future impacts that interacting climate and land use changes will have on aquatic ecosystem in river networks. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
6.
Hannah M. Clilverd Yin‐Phan Tsang Dana M. Infante Abigail J. Lynch Ayron M. Strauch 《水文研究》2019,33(5):699-719
Climate change has fundamentally altered the water cycle in tropical islands, which is a critical driver of freshwater ecosystems. To examine how changes in streamflow regime have impacted habitat quality for native migratory aquatic species, we present a 50‐year (1967–2016) analysis of hydrologic records in 23 unregulated streams across the five largest Hawaiian Islands. For each stream, flow was separated into direct run‐off and baseflow and high‐ and low‐flow statistics (i.e., Q10 and Q90) with ecologically important hydrologic indices (e.g., frequency of flooding and low flow duration) derived. Using Mann–Kendall tests with a running trend analysis, we determined the persistence of streamflow trends through time. We analysed native stream fauna from ~400 sites, sampled from 1992 to 2007, to assess species richness among islands and streams. Declines in streamflow metrics indicated a general drying across the islands. In particular, significant declines in low flow conditions (baseflows), were experienced in 57% of streams, compared with a significant decline in storm flow conditions for 22% of streams. The running trend analysis indicated that many of the significant downward trends were not persistent through time but were only significant if recent decades (1987–2016) were included, with an average decline in baseflow and run‐off of 10.90% and 8.28% per decade, respectively. Streams that supported higher native species diversity were associated with moderate discharge and baseflow index, short duration of low flows, and negligible downward trends in flow. A significant decline in dry season flows (May–October) has led to an increase in the number of no‐flow days in drier areas, indicating that more streams may become intermittent, which has important implications for mauka to makai (mountain to ocean) hydrological connectivity and management of Hawai'i's native migratory freshwater fauna. 相似文献
7.
Estimation of large wood budgets in a watershed and river corridor at interdecadal to interannual scales in a cold‐temperate fluvial system 下载免费PDF全文
Large wood (LW) is a ubiquitous feature in rivers of forested watersheds worldwide, and its importance for river diversity has been recognized for several decades. Although the role of LW in fluvial dynamics has been extensively documented, there is a need to better quantify the most significant components of LW budgets at the river scale. The purpose of our study was to quantify each component (input, accumulation, and output) of a LW budget at the reach and watershed scales for different time periods (i.e. a 50‐year period, decadal cycle, and interannual cycle). The LW budget was quantified by measuring the volumes of LW inputs, accumulations, and outputs within river sections that were finally evacuated from the watershed. The study site included three unusually large but natural wood rafts in the delta of the Saint‐Jean River (SJR; Québec, Canada) that have accumulated all LW exported from the watershed for the last 50 years. We observed an increase in fluvial dynamics since 2004, which led to larger LW recruitment and a greater LW volume trapped in the river corridor, suggesting that the system is not in equilibrium in terms of the wood budget but is rather recovering from previous human pressures as well as adjusting to hydroclimatic changes. The results reveal the large variability in the LW budget dynamics during the 50‐year period and allow us to examine the eco‐hydromorphological trajectory that highlights key variables (discharge, erosion rates, bar surface area, sinuosity, wood mobility, and wood retention). Knowledge on the dynamics of these variables improves our understanding of the historical and future trajectories of LW dynamics and fluvial dynamics in gravel‐bed rivers. Extreme events (flood and ice‐melt) significantly contribute to LW dynamics in the SJR river system. Copyright © 2017 John Wiley & Sons, Ltd. 相似文献
8.
Colin P. Brennan Parna Parsapour‐Moghaddam Colin D. Rennie Ousmane Seidou 《水文研究》2018,32(8):1104-1119
The response of the semi‐alluvial clay‐bed Watts Creek is assessed subject to climate change. Climate impacts are expected to have regional variability, and few studies have assessed the impacts of future climate in a small urban watershed. The 21‐km2 watershed located in Ottawa, Ontario, Canada, is highly urbanized (68%) and agricultural (20%) with limited forest cover (12%). Continuous simulations were performed using the SWMHYMO lumped hydrologic modelling platform for the open water year, excluding spring freshet (April 1 to October 31). A shear stress exceedance and stream power erosion routine was added to the platform to calculate erosion potential. To account for uncertainty in the collected data, 9 different field datasets were used to calibrate the model, each leading to a distinct set of calibrated parameter values. The difference between the datasets lies in the choice of the rating curves and calibration period. The 2041–2080 precipitation outputs of the 4th version of the Canadian Regional Climate Model (CanRCM4) ran under representative concentration pathways (RCPs) 4.5 and 8.5 at the MacDonald Cartier International Airport were downscaled using quantile matching and then used as input to the continuous hydrologic model. For each set of calibrated parameters, a cumulative effective work index based on the reach‐averaged shear stress was calculated for Watts Creek using both the historic (1967–2007) and projected future (2041–2080) flows, using a bed material critical shear stress for entrainment of 3.7 Pa. These results suggest an increase of 75% (respectively 139%) under RCP4.5 (respectively RCP8.5) in cumulative effective work index compared with historic conditions for the average measured bed strength. The work index increase is driven by an increased occurrence of above‐threshold events and, more importantly, by the increased frequency of large events. The predicted flow regime under climate change would significantly alter the erosion potential and stability of Watts Creek. 相似文献
9.
Richard Hodgkins 《水文研究》2001,15(3):441-460
In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time‐series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time‐scales. The recorded discharge time‐series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non‐seasonal, moving‐average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non‐seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid‐latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store. Copyright © 2001 John Wiley & Sons, Ltd. 相似文献
10.
Kathryn L. Hofmeister Lucas E. Nave Paul Drevnick Timothy Veverica Renee Knudstrup Katherine A. Heckman Susan J. Riha Rebecca L. Schneider M. Todd Walter 《水文研究》2019,33(10):1476-1491
Headwater streams are critical components of drainage systems, directly connecting terrestrial and downstream aquatic ecosystems. The amount of water in a stream can alter hydrologic connectivity between the stream and surrounding landscape and is ultimately an important driver of what constituents headwater streams transport. There is a shortage of studies that explore concentration–discharge (C‐Q) relationships in headwater systems, especially forested watersheds, where the hydrological and ecological processes that control the processing and export of solutes can be directly investigated. We sought to identify the temporal dynamics and spatial patterns of stream chemistry at three points along a forested headwater stream in Northern Michigan and utilize C‐Q relationships to explore transport dynamics and potential sources of solutes in the stream. Along the stream, surface flow was seasonal in the main stem, and perennial flow was spatially discontinuous for all but the lowest reaches. Spring snowmelt was the dominant hydrological event in the year with peak flows an order of magnitude larger at the mouth and upper reaches than annual mean discharge. All three C‐Q shapes (positive, negative, and flat) were observed at all locations along the stream, with a higher proportion of the analytes showing significant relationships at the mouth than at the mid or upper flumes. At the mouth, positive (flushing) C‐Q shapes were observed for dissolved organic carbon and total suspended solids, whereas negative (dilution) C‐Q shapes were observed for most cations (Na+, Mg2+, Ca2+) and biologically cycled anions (NO3?, PO43?, SO42?). Most analytes displayed significant C‐Q relationships at the mouth, indicating that discharge is a significant driving factor controlling stream chemistry. However, the importance of discharge appeared to decrease moving upstream to the headwaters where more localized or temporally dynamic factors may become more important controls on stream solute patterns. 相似文献
11.
Li?ka Jesenica is a sinking river situated in the Dinaric karst environment of the Lika region of Croatia. The two main karst springs, Veliko Vrelo and Malo Vrelo, provide the majority of Li?ka Jesenica's water. Because of the quality and abundance of the water they contain, these springs are strategically important to the public water supply. Previous knowledge regarding the springs` karst system has been negligible. Therefore, a bulk hydrogeological research program was conducted with the purposes of establishing protection zones and assessing the springs' water‐supply potential. The research work comprised the following methods: hydrogeological mapping, setting up of monitoring stations for evaluating discharge and water quality, time series analyses (hydrograph–chemograph), hydrochemical analyses, and geophysical surveys. The main results and conclusions of the research include the following: (i) confirmation that both springs drain a common aquifer; (ii) determination of the highly vulnerable nature of the karst systems; (iii) identification of the Veliko Vrelo Spring's more direct connection to the aquifer‐drainage system in comparison to the Malo Vrelo; (iv) estimation of the positions and depths of the springs` main feeding conduits; (v) confirmation of the extent of the geologically presumed catchment area; and (vi) finally, establishment of sanitary protection zones. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
12.
Five years of hydrogeological monitoring and field activities performed in the complex hydrogeological system of the Acque Albule basin (AAB) were conducted to define the hydrogeological setting, the relationship between deep and shallow aquifers and a conceptual groundwater flow model of this exploited area using conventional quantitative techniques. The basin, which is located close to Rome (Italy) on the west side of the Apennine chain and just north of the Colli Albani volcano, subsided after development of a north–south fault system (about 115 000 y bp). The AAB experiences intense hydrothermal activity, which has produced a large travertine deposit (80‐m thick). The travertine deposit constitutes a fractured aquifer that is the final destination of more than 5 m3 s‐1 of water and is strongly dewatered by quarry activities. The complex hydrogeology of this basin was investigated, revealing two main hydraulically connected aquifers, one thermalised and partly confined into the limestone bedrock and one unconfined in the travertine. The two aquifers are separated by a non‐continuous clayey aquiclude. The hydrogeological survey and geological characterisation contributed to the development of the groundwater flow conceptual model. Analysis and comparison of the monitored levels highlighted the pattern of flow between the deep and shallow parts of the flow system. Copyright © 2012 John Wiley & Sons, Ltd. 相似文献
13.
In this study, we investigated rainfall, run‐off, and sediment transport dynamics (414 run‐off events and 231 events with sediment information) of a humid mountain badland area—the Araguás catchment (Central Pyrenees, Spain)—from October 2005 to September 2016. Use of this long‐term database allows characterization of the hydrological response, which consist of low‐magnitude/high‐frequency events and high‐magnitude/low‐frequency events, and identification of seasonal dynamics and rainfall‐run‐off thresholds. Our results indicate that the Araguás catchment, similarly to other humid badlands, had high hydrological responsiveness (mean annual run‐off coefficient: 0.52), a non‐linear relationship of rainfall with run‐off (common in Mediterranean environments), and seasonal hydrological and sedimentological dynamics. We created and validated a multivariate regression model to characterize the hydrological variables (stormflow and peak discharge) and sedimentological variables (mean and maximum suspended sediment concentrations and total suspended sediment load). In summer and at the beginning of autumn, the response was mainly related to rainfall intensity, suggesting a predomination of Hortonian flows. In contrast, in spring and winter, the responses were mainly related to the antecedent conditions (previous rainfall and baseflow), suggesting the occurrence of saturated excess flow processes, and the contribution of neighbouring vegetated areas. The multivariate analysis also showed that total sediment load is better predicted by a multivariate regression model that integrates pre‐event, rainfall, and run‐off variables. In general, our models provided more accurate predictions of small‐magnitude/high‐frequency events than high‐magnitude/low‐frequency events. This study highlights the high inter‐ and intra‐annual variability response in humid badland areas and that long‐term records are needed to reduce the uncertainty of hydrological and sedimentological responses in Mediterranean badland areas. 相似文献
14.
The behaviour of a discrete sub‐bank‐full flow event in a small desert stream in western NSW, Australia, is analysed from direct observation and sediment sampling during the flow event and from later channel surveys. The flow event, the result of an isolated afternoon thunderstorm, had a peak discharge of 9 m3/s at an upstream station. Transmission loss totally consumed the flow over the following 7·6 km. Suspended sediment concentration was highest at the flow front (not the discharge peak) and declined linearly with the log of time since passage of the flow front, regardless of discharge variation. The transmission loss responsible for the waning and eventual cessation of flow occurred at a mean rate of 13.2% per km. This is quite rapid, and is more than twice the corresponding figure for bank‐full flows estimated by Dunkerley (1992) on the same stream system. It is proposed that transmission losses in ephemeral streams of the kind studied may be minimized in flows near bank‐full stage, and be higher in both sub‐bank‐full and overbank flows. Factors contributing to enhanced flow loss in the sub‐bank‐full flow studied included abstractions of flow to pools, scour holes and other low points along the channel, and overflow abstractions into channel filaments that did not rejoin the main flow. On the other hand, losses were curtailed by the shallow depth of banks wetted and by extensive mud drapes that were set down over sand bars and other porous channel materials during the flow. Thus, in contrast with the relatively regular pattern of transmission loss inferred from large floods, losses from low flows exhibit marked spatial variability and depend to a considerable extent on streamwise variations in channel geometry, in addition to the depth and porosity of channel perimeter sediments. Copyright © 1999 John Wiley & Sons, Ltd. 相似文献
15.
Jan Deutscher Petr Kupec Peter Dundek Ladislav Holík Martin Machala Josef Urban 《水文研究》2016,30(13):2042-2049
Diurnal variations in streamflow are becoming acknowledged as a way of analysing how changing climatic conditions and land use affects watersheds but also as a way to understand watersheds as a whole. Yet not many studies from uplands below 900 mm mean annual precipitation zone are available from European countries. During the 2012 growing season, a sampling campaign took place in an upland forested micro‐watershed, Czech Republic (65 ha). Tree sap flow, rainfall and temperature were measured continuously, while streamflow at the discharge point and soil moisture were estimated from short‐term measurements. Short precipitation‐free periods lasting several days were identified for evaluation of trends in diurnal dynamics of both sap flow and streamflow. The results demonstrated that during these periods, the main factor altering streamflow was almost exclusively tree sap flow. A decrease in streamflow was observed during the day and an increase at night. The decline in sap flow after sunset was accompanied by a continuous increase in streamflow throughout the night up to its initial maximum in the morning. The amplitude in diurnal variations reached 18%. The observed time lag between the diurnal variations of sap flow and streamflow was approximately 2 h. Relatively low changes in diurnal dynamics of streamflow pointed out a strong regulatory role of the forest in buffering water discharge from the catchment. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
16.
Stephan Schulz Gerrit H. de Rooij Nils Michelsen Randolf Rausch Christian Siebert Christoph Schüth Mohammed Al‐Saud Ralf Merz 《水文研究》2016,30(5):771-782
Groundwater is the principal water resource in semi‐arid and arid environments. Therefore, quantitative estimates of its replenishment rate are important for managing groundwater systems. In dry regions, karst outcrops often show enhanced recharge rates compared with other surface and sub‐surface conditions. Areas with exposed karst features like sinkholes or open shafts allow point recharge, even from single rainfall events. Using the example of the As Sulb plateau in Saudi Arabia, this study introduces a cost‐effective and robust method for recharge monitoring and modelling in karst outcrops. The measurement of discharge of a representative small catchment (4.0 · 104 m2) into a sinkhole, and hence the direct recharge into the aquifer, was carried out with a time‐lapse camera. During the monitoring period of two rainy seasons (autumn 2012 to spring 2014), four recharge events were recorded. Afterwards, recharge data as well as proxy data about the drying of the sediment cover are used to set up a conceptual water balance model. The model was run for 17 years (1971 to 1986 and 2012 to 2014). Simulation results show highly variable seasonal recharge–precipitation ratios between 0 and 0.27. In addition to the amount of seasonal precipitation, this ratio is influenced by the interannual distribution of rainfall events. Overall, an average annual groundwater recharge for the doline (sinkhole) catchment on As Sulb plateau of 5.1 mm has estimated for the simulation period. Copyright © 2015 John Wiley & Sons, Ltd. 相似文献
17.
Application of the WEPP model to determine sources of run‐off and sediment in a forested watershed 下载免费PDF全文
This study investigates critical run‐off and sediment production sources in a forested Kasilian watershed located in northern Iran. The Water Erosion Prediction Project (WEPP) watershed model was set up to simulate the run‐off and sediment yields. WEPP was calibrated and validated against measured rainfall–run‐off–sediment data. Results showed that simulated run‐off and sediment yields of the watershed were in agreement with the measured data for the calibration and validation periods. While low and medium values of run‐off and sediment yields were adequately simulated by the WEPP model, high run‐off and sediment yield values were underestimated. Performance of the model was evaluated as very good and satisfactory during the calibration and validation stages, respectively. Total soil erosion and sediment load of the study watershed during the study period were determined to be 10 108 t yr?1 and 8735 t yr?1, respectively. The northern areas of the watershed with dry farming were identified as the critical erosion prone zones. To prioritize the subwatersheds based on their contribution to the run‐off and sediment production at the watershed's main outlet, unit response approach (URA) was applied. In this regard, subwatersheds close to the main outlet were found to have the highest contribution to sediment yield of the whole watershed. Results indicated that depending on the objective of land and water conservation practices, particularly, for controlling sediment yield at the main outlet, critical areas for implementing the best management practices may be identified through conjunctive application of WEPP and URA. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
18.
Spatial and temporal variability of groundwater dynamics in a sub‐Mediterranean mountain catchment 下载免费PDF全文
The temporal and spatial dynamics of groundwater was investigated in a small catchment in the Spanish Pyrenees, which was extensively used for agriculture in the past. Analysis of the water table fluctuations at five locations over a 6‐year period demonstrated that the groundwater dynamics had a marked seasonal cycle involving a wetting‐up period that commenced with the first autumn rainfall events, a saturation period during winter and spring and a drying‐down period from the end of spring until the end of the summer. The length of the saturation period showed great interannual variability, which was mainly influenced by the rainfall and evapotranspiration characteristics. There was marked spatial variability in the water table, especially during the wetting‐up period, which could be related to differences in slope and drainage area, geomorphology, soil properties and local topography. Areas contributing to runoff generation were identified within the catchment by field mapping of moisture conditions. Areas contributing to infiltration excess runoff were correlated with former cultivated fields affected by severe sheetwash erosion. Areas contributing to saturation excess runoff were characterized by a marked spatial dynamics associated with catchment wetness conditions. The saturation spatial pattern, which was partially related to the topographic index, was very patchy throughout the catchment, suggesting the influence of other factors associated with past agricultural activities, including changes in local topography and soil properties. The relationship between water table levels and stream flow was weak, especially during the wetting‐up period, suggesting little connection between ground water and the hydrological response, at least at some locations. The results suggest that in drier and human‐disturbed environments, such as sub‐Mediterranean mountains, saturation patterns cannot be represented only by the general topography of the catchment. They also suggest that groundwater storage and runoff is not a succession of steady‐state flow conditions, as assumed in most hydrological models. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
19.
Unsteady bedload transport was measured in two c. 5 m wide anabranches of a gravel‐bed braided stream draining the Haut Glacier d'Arolla, Switzerland, during the 1998 and 1999 melt seasons. Bedload was directly sampled using 152 mm square Helley–Smith type samplers deployed from a portable measuring bridge, and independent transport rate estimates for the coarser size fractions were obtained from the dispersion of magnetically tagged tracer pebbles. Bedload transport time series show pulsing behaviour under both marginal (1998) and partial (1999) transport regimes. There are generally weak correlations between transport rates and shear stresses determined from velocity data recorded at the measuring bridge. Characteristic parameters of the bedload grain‐size distributions (D50, D84) are weakly correlated with transport rates. Analysis of full bedload grain‐size distributions reveals greater structure, with a tendency for transport to become less size selective at higher transport rates. The bedload time series show autoregressive behaviour but are dif?cult to distinguish by this method. State–space plots, and associated measures of time‐series separation, reveal the structure of the time series more clearly. The measured pulses have distinctly different time‐series characteristics from those modelled using a one‐dimensional sediment routing model in which bed shear stress and grain size are varied randomly. These results suggest a mechanism of pulse generation based on irregular low‐amplitude bedforms, that may be generated in‐channel or may represent the advection of material supplied by bank erosion events. Copyright © 2003 John Wiley & Sons, Ltd. 相似文献
20.
The role of channel morphology on the mobility and dispersion of bed sediment in a small gravel‐bed stream 下载免费PDF全文
This study uses a unique 10‐year tracer dataset from a small gravel‐bed stream to examine bed mobility and sediment dispersion over long timescales and at a range of spatial scales. Seasonal tracer data that captured multiple mobilizing events was examined, while the effects of morphology on bed mobility and sediment dispersion were captured at three spatial scales: within morphological units (unit scale), between morphological units (reach scale) and between reaches with different channel morphologies (channel scale). This was achieved by analyzing both reach‐average mobility and travel distance data, as well as the development of ‘mobility maps’ that capture the spatial variability in tracer mobility within the channel. The tracer data suggest that sediment transport in East Creek remains near critical the majority of the time, with only rare large events resulting in high mobility rates and grain travel distances large enough to move sediment past dominant bedforms. While a variable capturing both the magnitude and frequency of flow events within a season yielded a better predictor to sediment mobility and dispersion than peak discharge alone, the distribution of events of different magnitude within the season played a large role in determining tracer mobility rates and travel distances. The effects of morphology differed depending on the analysis scale, demonstrating the importance of scale, and therefore study design, when examining the effect of morphology on sediment transport. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献