共查询到10条相似文献,搜索用时 0 毫秒
1.
Although poorly understood, the north–south distribution of the natural component of atmospheric CO2 offers information essential to improving our understanding of the exchange of CO2 between the atmosphere, oceans, and biosphere. The natural or unperturbed component is equivalent to that part of the atmospheric CO2 distribution which is controlled by non-anthropogenic CO2 fluxes from the ocean and terrestrial biosphere. Models should be able to reproduce the true north–south gradient in CO2 due to the natural component before they can reliably estimate present-day CO2 sources and sinks and predict future atmospheric CO2. We have estimated the natural latitudinal distribution of atmospheric CO2, relative to the South Pole, using measurements of atmospheric CO2 during 1959–1991 and corresponding estimates of anthropogenic CO2 emissions to the atmosphere. Key features of the natural latitudinal distribution include: (1) CO2 concentrations in the northern hemisphere that are lower than those in the southern hemisphere; (2) CO2 concentration differences that are higher in the tropics (associated with outgassing of the oceans) than those currently measured; and (3) CO2 concentrations over the southern ocean that are relatively uniform. This natural latitudinal distribution and its sensitivity to increasing fossil fuel emissions both indicate that near-surface concentrations of atmospheric CO2 in the northern hemisphere are naturally lower than those in the southern hemisphere. Models that find the contrary will also mismatch present-day CO2 in the northern hemisphere and incorrectly ascribe that region as a large sink of anthropogenic CO2. 相似文献
2.
The dynamic climate in the Northern Hemisphere during the early Holocene could be expected to have impacted on the global carbon cycle. Ice core studies however, show little variability in atmospheric CO2. Resolving any possible centennial to decadal CO2 changes is limited by gas diffusion through the firn layer during bubble enclosure. Here we apply the inverse relationship between stomatal index (measured on sub-fossil leaves) and atmospheric CO2 to complement ice core records between 11,230 and 10,330 cal. yr BP. High-resolution sampling and radiocarbon dating of lake sediments from the Faroe Islands reconstruct a distinct CO2 decrease centred on ca. 11,050 cal. yr BP, a consistent and steady decline between ca. 10,900 and 10,600 cal. yr BP and an increased instability after ca. 10,550 cal. yr BP. The earliest decline lasting ca. 150 yr is probably associated with the Preboreal Oscillation, an abrupt climatic cooling affecting much of the Northern Hemisphere a few hundred years after the end of the Younger Dryas. In the absence of known global climatic instability, the decline to ca. 10,600 cal. yr BP is possibly due to expanding vegetation in the Northern Hemisphere. The increasing instability in CO2 after 10,600 cal. yr BP occurs during a period of increasing cooling of surface waters in the North Atlantic and some increased variability in proxy climate indicators in the region.The reconstructed CO2 changes also show a distinct similarity to indicators of changing solar activity. This may suggest that at least the Northern Hemisphere was particularly sensitive to changes in solar activity during this time and that atmospheric CO2 concentrations fluctuated via rapid responses in climate. 相似文献
3.
David G. Blackburn Kathryn L. Bryson Vincent F. Chevrier Krista F. White 《Planetary and Space Science》2010,58(5):780-791
Dynamic models of the martian polar caps are in abundance, but most rely on the assumption that the rate of sublimation of CO2 ice can be calculated from heat transfer and lack experimental verification. We experimentally measured the sublimation rate of pure CO2 ice under simulated martian conditions as a test of this assumption, developed a model based on our experimental results, and compared our model's predictions with observations from several martian missions (MRO, MGS, Viking). We show that sun irradiance is the primary control for the sublimation of CO2 ice on the martian poles with the amount of radiation penetrating the surface being controlled by variations in the optical depth, ensuring the formation and sublimation of the seasonal cap. Our model confirmed by comparison of MGS-MOC and MRO-HiRISE images, separated by 2-3 martian years, shows that ∼0.4 m are currently being lost from the south perennial cap per martian year. At this rate, the ∼2.4-m-thick south CO2 perennial cap will disappear in about 6-7 martian years, unless a short-scale climatic cycle alters this rate of retreat. 相似文献
4.
Molecular composition of comets, planets and satellites surfaces is known to change radically after suffering impacts. New possibilities concerning the presence of volatile molecules in icy surfaces involving retaining processes are studied in this paper. To fulfill this aim we have carried out desorption experiments under high vacuum conditions based on a quadrupole mass spectrometer and a quartz crystal microbalance. From our results, the presence of certain volatiles in some frozen scenarios could be explained by several retaining mechanisms related to the structure of CO2 even when, after impact, temperatures above their characteristic sublimation ones are reached. 相似文献
5.
John Lee Grenfell Joachim W. Stock Stefanie Gebauer 《Planetary and Space Science》2010,58(10):1252-1257
We propose a mechanism for the oxidation of gaseous CO into CO2 occurring on the surface mineral hematite (Fe2O3(s)) in hot, CO2-rich planetary atmospheres, such as Venus. This mechanism is likely to constitute an important source of tropospheric CO2 on Venus and could at least partly address the CO2 stability problem in Venus’ stratosphere, since our results suggest that atmospheric CO2 is produced from CO oxidation via surface hematite at a rate of 0.4 petagrammes (Pg) CO2 per (Earth) year on Venus which is about 45% of the mass loss of CO2 via photolysis in the Venusian stratosphere. We also investigated CO oxidation via the hematite mechanism for a range of planetary scenarios and found that modern Earth and Mars are probably too cold for the mechanism to be important because the rate-limiting step, involving CO(g) reacting onto the hematite surface, proceeds much slower at lower temperatures. The mechanism may feature on extrasolar planets such as Gliese 581c or CoRoT-7b assuming they can maintain solid surface hematite which, e.g. starts to melt above about 1200 K. The mechanism may also be important for hot Hadean-type environments and for the emerging class of hot Super-Earths with planetary surface temperatures between about 600 and 900 K. 相似文献
6.
Robert M. Haberle Francois Forget James Schaeffer Nora J. Kelly 《Planetary and Space Science》2008,56(2):251-255
The mostly carbon dioxide (CO2) atmosphere of Mars condenses and sublimes in the polar regions, giving rise to the familiar waxing and waning of its polar caps. The signature of this seasonal CO2 cycle has been detected in surface pressure measurements from the Viking and Pathfinder landers. The amount of CO2 that condenses during fall and winter is controlled by the net polar energy loss, which is dominated by emitted infrared radiation from the cap itself. However, models of the CO2 cycle match the surface pressure data only if the emitted radiation is artificially suppressed suggesting that they are missing a heat source. Here we show that the missing heat source is the conducted energy coming from soil that contains water ice very close to the surface. The presence of ice significantly increases the thermal conductivity of the ground such that more of the solar energy absorbed at the surface during summer is conducted downward into the ground where it is stored and released back to the surface during fall and winter thereby retarding the CO2 condensation rate. The reduction in the condensation rate is very sensitive to the depth of the soil/ice interface, which our models suggest is about 8 cm in the Northern Hemisphere and 11 cm in the Southern Hemisphere. This is consistent with the detection of significant amounts of polar ground ice by the Mars Odyssey Gamma Ray Spectrometer and provides an independent means for assessing how close to the surface the ice must be. Our results also provide an accurate determination of the global annual mean size of the atmosphere and cap CO2 reservoirs, which are, respectively, 6.1 and 0.9 hPa. They also indicate that general circulation models will need to account for the effect of ground ice in their simulations of the seasonal CO2 cycle. 相似文献
7.
Cyrille Rathgeber Antoine Nicault Joël Guiot Thierry Keller Frdric Guibal Philip Roche 《Global and Planetary Change》2000,26(4)
Tree ring chronologies provide long-term records of growth in natural environmental conditions and may be used to evaluate impacts of climatic change and CO2 increase on forest productivity. This study focuses on 21 Pinus halepensis forest stands in calcareous Provence (in the south-east of France). A chronology of net primary productivity (NPP) both for the 20th century and for each stand was estimated using tree ring data (width and density). The response of each stand to climate in terms of NPP was statistically modelled using response functions. Anomalies between estimated NPP and NPP reconstructed by response functions were calculated to evaluate the fertilising effect of CO2 increase on tree growth. The changes in anomalies during the 20th century were attributed to the effect of CO2 increase. A multiplying factor (β) linking CO2 concentration and stand productivity was then calculated, on the basis of the trend observed during the 20th century. In this study, the value of the β factor obtained under natural conditions (β=0.50) is consistent with those from controlled CO2 enrichment experiments. Both response functions and the β factor were used to predict NPP changes for a 2×CO2 scenario. The 2×CO2 climate was obtained using predictions from Météo France's ARPEGE atmospheric general circulation model (AGCM) downscaled to Marseilles meteorological station. NPP increased significantly for nine stands solely when the climatic effect was taken into account. The main factors responsible for this enhancement were increased winter and early spring temperatures. When the fertilising effect of the CO2 increase was added, NPP was significantly enhanced for 14 stands (i.e. NPP enhancement ranged from 8% to 55%). Although the effects of global change were slightly detectable during the 20th century, their acceleration is likely to lead to great changes in the future productivity of P. halepensis forests. 相似文献
8.
Joan M. Bernhard Elizabeth Mollo-Christensen Nadine Eisenkolb Victoria R. Starczak 《Global and Planetary Change》2009,65(3-4):107-114
Increases in the partial pressure of carbon dioxide (pCO2) in the atmosphere will significantly affect a wide variety of terrestrial fauna and flora. Because of tight atmospheric–oceanic coupling, shallow-water marine species are also expected to be affected by increases in atmospheric carbon dioxide concentrations. One proposed way to slow increases in atmospheric pCO2 is to sequester CO2 in the deep sea. Thus, over the next few centuries marine species will be exposed to changing seawater chemistry caused by ocean–atmospheric exchange and/or deep-ocean sequestration. This initial case study on one allogromiid foraminiferal species (Allogromia laticollaris) was conducted to begin to ascertain the effect of elevated pCO2 on benthic Foraminifera, which are a major meiofaunal constituent of shallow- and deep-water marine communities. Cultures of this thecate foraminiferan protist were used for 10–14-day experiments. Experimental treatments were executed in an incubator that controlled CO2 (15 000; 30 000; 60 000; 90 000; 200 000 ppm), temperature and humidity; atmospheric controls (i.e., ~ 375 ppm CO2) were executed simultaneously. Although the experimental elevated pCO2 values are far above foreseeable surface water pCO2, they were selected to represent the spectrum of conditions expected for the benthos if deep-sea CO2 sequestration becomes a reality. Survival was assessed in two independent ways: pseudopodial presence/absence and measurement of adenosine triphosphate (ATP), which is an indicator of cellular energy. Substantial proportions of A. laticollaris populations survived 200 000 ppm CO2 although the mean of the median [ATP] of survivors was statistically lower for this treatment than for that of atmospheric control specimens. After individuals that had been incubated in 200 000 ppm CO2 for 12 days were transferred to atmospheric conditions for ~ 24 h, the [ATP] of live specimens (survivors) approximated those of the comparable atmospheric control treatment. Incubation in 200 000 ppm CO2 also resulted in reproduction by some individuals. Results suggest that certain Foraminifera are able to tolerate deep-sea CO2 sequestration and perhaps thrive as a result of elevated pCO2 that is predicted for the next few centuries, in a high-pCO2 world. Thus, allogromiid foraminiferal “blooms” may result from climate change. Furthermore, because allogromiids consume a variety of prey, it is likely that they will be major players in ecosystem dynamics of future coastal sedimentary environments. 相似文献
9.
We present photometric observations of Centaur (60558) 2000 EC98 and trans-neptunian object (55637) 2002 UX25 at different phase angles and with different filters (mainly R but also V and B for some data). Results for 2000 EC98 are: (i) a rotation period of 26.802±0.042 h if a double-peaked lightcurve is assumed, (ii) a lightcurve amplitude of 0.24±0.06 for the R band, (iii) a phase curve with H=9.03±0.01 and G=−0.39±0.08 (R filter) and H=9.55±0.04 and G=−0.50±0.35 (V filter) or a slope of (R filter) and 0.22±0.06 (V filter), (iv) the color indices B-V=0.76±0.15 and V-R=0.51±0.09 (for α=0.1-0.5°) and 0.55±0.08 (for α=1.4-1.5°). The rotation period is amongst the longest ever measured for Centaurs and TNOs. We also show that our photometry was not contaminated by any cometary activity down to magnitude ?27/arcsec2. For 2002 UX25 the results are: (i) a rotation period of 14.382±0.001 h or 16.782±0.003 h (if a double-peaked lightcurve is assumed) (ii) a lightcurve amplitude of 0.21±0.06 for the R band (and the 16.782 h period), (iii) a phase curve with H=3.32±0.01 and G=+0.16±0.18 or a slope of (R filter), (iv) the color indices B-V=1.12±0.26 and V-R=0.61±0.12. The phase curve reveals also a possible very narrow and bright opposition surge. Because such a narrow surge appears only for one point it needs to be confirmed. 相似文献
10.
An improvement to the volcano-scan algorithm for atmospheric correction of CRISM and OMEGA spectral data 总被引:1,自引:0,他引:1
Patrick C. McGuire Janice L. Bishop Adrian J. Brown Giuseppe A. Marzo Scott L. Murchie Mario Parente Ted L. Roush Michael D. Smith Michael J. Wolff 《Planetary and Space Science》2009,57(7):809-815
The observations of Mars by the CRISM and OMEGA hyperspectral imaging spectrometers require correction for photometric, atmospheric and thermal effects prior to the interpretation of possible mineralogical features in the spectra. Here, we report on a simple, yet non-trivial, adaptation to the commonly-used volcano-scan correction technique for atmospheric CO2, which allows for the improved detection of minerals with intrinsic absorption bands at wavelengths between 1.9 and 2.1 μm. This volcano-scan technique removes the absorption bands of CO2 by ensuring that the Lambert albedo is the same at two wavelengths: 1.890 and 2.011 μm, with the first wavelength outside the CO2 gas bands and the second wavelength deep inside the CO2 gas bands. Our adaptation to the volcano-scan technique moves the first wavelength from 1.890 μm to be instead within the gas bands at 1.980 μm, and for CRISM data, our adaptation shifts the second wavelength slightly, to 2.007 μm. We also report on our efforts to account for a slight ∼0.001 μm shift in wavelengths due to thermal effects in the CRISM instrument. 相似文献