首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The organic geochemical methods of hydrocarbon prospecting involve the characterization of sedimentary organic matter in terms of its abundance, source and thermal maturity, which are essential prerequisites for a hydrocarbon source rock. In the present study, evaluation of organic matter in the outcrop shale samples from the Semri and Kaimur Groups of Vindhyan basin was carried out using Rock Eval pyrolysis. Also, the adsorbed low molecular weight hydrocarbons, methane, ethane, propane and butane, were investigated in the near surface soils to infer the generation of hydrocarbons in the Vindhyan basin. The Total Organic Carbon (TOC) content in shales ranges between 0.04% and 1.43%. The S1 (thermally liberated free hydrocarbons) values range between 0.01–0.09 mgHC/gRock (milligram hydrocarbon per gram of rock sample), whereas the S2 (hydrocarbons from cracking of kerogen) show the values between 0.01 and 0.14 mgHC/gRock. Based on the Tmax (temperature at highest yield of S2) and the hydrogen index (HI) correlations, the organic matter is characterized by Type III kerogen. The adsorbed soil gas, CH4 (C1), C2H6 (C2), C3H8 (C3) and nC4H10, (nC4), concentrations measured in the soil samples from the eastern part of Vindhyan basin (Son Valley) vary from 0 to 186 ppb, 0 to 4 ppb, 0 to 5 ppb, and 0 to 1 ppb, respectively. The stable carbon isotope values for the desorbed methane (δ13C1) and ethane (δ13C2) range between −45.7‰ to −25.2‰ and −35.3‰ to −20.19‰ (VPDB), respectively suggesting a thermogenic source for these hydrocarbons. High concentrations of thermogenic hydrocarbons are characteristic of areas around Sagar, Narsinghpur, Katni and Satna in the Son Valley. The light hydrocarbon concentrations (C1–C4) in near surface soils of the western Vindhyan basin around Chambal Valley have been reported to vary between 1–2547 ppb, 1–558 ppb, 1–181 ppb, 1–37 ppb and 1–32 ppb, respectively with high concentrations around Baran-Jhalawar-Bhanpur-Garot regions (Kumar et al., 2006). The light gaseous hydrocarbon anomalies are coincident with the wrench faults (Kota – Dholpur, Ratlam – Shivpuri, Kannod – Damoh, Son Banspur – Rewa wrench) in the Vindhyan basin, which may provide conducive pathways for the migration of the hydrocarbons towards the near surface soils.  相似文献   

2.
As a result of over-erosion of soils, the fine particles, which contain the majority of nutrients, are easily washed away from soils, which become deficient in a host of components, accumulating in lakes. On one hand, the accumulation of nutrients-rich sediments are a problem, as they affect the quality of the overlying water and decrease the water storage capacity of the system; on the other hand, sediments may constitute an important resource, as they are often extremely rich in organic and inorganic nutrients in readily available forms. In the framework of an extensive work on the use of rock related materials to enhance the fertility of impoverish soils, this study aimed to evaluate the role on the nutrients cycle, of particles recycling processes from the watershed to the bottom of a large dam reservoir, at a wet tropical region under high weathering conditions. The study focus on the mineralogical transformations that clay particles undergo from the soils of the drainage basin to their final deposition within the reservoir and their influence in terms of the geochemical characteristics of sediments. We studied the bottom sediments that accumulate in two distinct seasonal periods in Tucuruí reservoir, located in the Amazonian Basin, Brazil, and soils from its drainage basin. The surface layers of sediments in twenty sampling points with variable depths, are representative of the different morphological sections of the reservoir. Nineteen soil samples, representing the main soil classes, were collected near the margins of the reservoir. Sediments and soils were subjected to the same array of physical, mineralogical and geochemical analyses: (1) texture, (2) characterization and semi-quantification of the clay fraction mineralogy and (3) geochemical analysis of the total concentration of major elements, organic compounds (organic C and nitrogen), soluble fractions of nutrients (P and K), exchangeable fractions (cation exchange capacity, exchangeable bases and acidity) and pH(H2O).There is a remarkable homogeneity in the sedimentary distribution along the reservoir in terms of the texture and mineralogy of the clay fraction and of the chemistry of the total, soluble and exchangeable phases. These observations contrast with the physical, morphological and chemical heterogeneity of the soils and the setting lithology. Most of the sediments has a higher contribution of fine-grained material and the mineralogy of the clay fraction is dominated by kaolinite in soils and kaolinite and illite in sediments, followed by lesser amounts of gibbsite, goethite, and metahaloisite and by small/vestigial contents of chlorite and smectite. The sediments are mainly inherited from the watershed but there exist marked differences between the accumulated sediments and their parent materials. These differences mainly come from the selective erosion of fine-grained particles and the extreme climatic conditions which enhance complex transformations of mineralogical and chemical nature. Compared with the parental soils, the reservoir sediments show the following differences: (1) enrichment in fine-grained and less dense inorganic particles, (2) aggradative mineralogical transformations, including enrichment in clay minerals with higher cationic adsorption and exchange capacity, (3) degradation of the crystalline structure of Fe- and Al-oxides (goethite, gibbsite), (4) increase in easily leached elements (Mg, Ca, P, K, Na) and decrease in chemically less mobile elements (Si, Fe) and (5) higher contents of organic carbon, nitrogen, and soluble forms of P and K, mainly concentrated in the clay fraction. These transformations are extremely important in the nutrients cycle, denoting that sediments represent an efficient sink for nutrients from the over-erosion of soils. Mineral and organic compounds can permanently or temporarily sequester these nutrients, recycling them and enhancing their availability through the slow release of components from relatively loose crystal structures. These processes can easily explain the enrichment in soluble and exchangeable forms of elements such as P, K, Ca or Mg. This study conclude that the particles recycling in a large tropical dam reservoir which receives high fluxes of allochthonous nutrients, has an important role in the good quality of sediments for agricultural use and in the profitable use of this technology to recover depleted soils in remediation projects in regions near large hydroelectric plants.  相似文献   

3.
A study was carried out to test the usefulness of surface geochemical methods as regional evaluation tools in petroliferous region of the Mehsana block, North Cambay Basin. A suite of 135 soil samples collected from the depth of 2.5 m, were analyzed for adsorbed light gaseous hydrocarbons and carbon isotopes (δ13Cmethane and δ13Cethane). The light gaseous hydrocarbon analysis show that the concentration ranges 402 ppb, 135 ppb, 70 ppb, 9 ppb and 18 ppb of C1, C2, C3, iC4 and nC4, respectively. The value of carbon isotopic ranges of methane −29.5 to −43.0‰ (PDB) and ethane −19.1 to −20.9‰ (PDB). This data, when mapped, indicates patterns coinciding with major known oil and/or gas field of Sobhasan/Linch in this study area. The existence of un-altered petroliferous microseeps of catagenetic origin is observed in the study area. A regional study, such as the one described here, can provide important exploration facts concerning the regional hydrocarbon potential in a block. This method has been confirmed and can be applied successfully in frontier basins.  相似文献   

4.
Speculations on the nature and cause of mantle heterogeneity   总被引:8,自引:0,他引:8  
Hotspots and hotspot tracks are on, or start on, preexisting lithospheric features such as fracture zones, transform faults, continental sutures, ridges and former plate boundaries. Volcanism is often associated with these features and with regions of lithospheric extension, thinning, and preexisting thin spots. The lithosphere clearly controls the location of volcanism. The nature of the volcanism and the presence of ‘melting anomalies’ or ‘hotspots’, however, reflect the intrinsic chemical and lithologic heterogeneity of the upper mantle. Melting anomalies—shallow regions of ridges, volcanic chains, flood basalts, radial dike swarms—and continental breakup are frequently attributed to the impingement of deep mantle thermal plumes on the base of the lithosphere. The heat required for volcanism in the plume hypothesis is from the core. Alternatively, mantle fertility and melting point, ponding and focusing, and edge effects, i.e., plate tectonic and near-surface phenomena, may control the volumes and rates of magmatism. The heat required is from the mantle, mainly from internal heating and conduction into recycled fragments. The magnitude of magmatism appears to reflect the fertility, not the absolute temperature, of the asthenosphere. I attribute the chemical heterogeneity of the upper mantle to subduction of young plates, aseismic ridges and seamount chains, and to delamination of the lower continental crust. These heterogeneities eventually warm up past the melting point of eclogite and become buoyant low-velocity diapirs that undergo further adiabatic decompression melting as they encounter thin or spreading regions of the lithosphere. The heat required for the melting of cold subducted and delaminated material is extracted from the essentially infinite heat reservoir of the mantle, not the core. Melting in the upper mantle does not requires the instability of a deep thermal boundary layer or high absolute temperatures. Melts from recycled oceanic crust, and seamounts—and possibly even plateaus—pond beneath the lithosphere, particularly beneath basins and suture zones, with locally thin, weak or young lithosphere. The characteristic scale lengths—150 to 600 km—of variations in bathymetry and magma chemistry, and the variable productivity of volcanic chains, may reflect compositional heterogeneity of the asthenosphere, not the scales of mantle convection or the spacing of hot plumes. High-frequency seismic waves, scattering, coda studies and deep reflection profiles are needed to detect the kind of chemical heterogeneity and small-scale layering predicted from the recycling hypothesis.  相似文献   

5.
The vertical distribution of reduced sulfur species (RSS including H2S/HS, S0, electroactive FeS) and dissolved Fe(II) was studied in the anoxic water column of meromictic Lake Pavin. Sulfide concentrations were determined by two different analytical techniques, i.e. spectophotometry (methylene blue technique) and voltammetry (HMDE electrode). Total sulfide concentrations determined with methylene blue method (∑H2SMBRS) were in the range from 0.6 µM to 16.7 µM and were substantially higher than total reduced sulfur species (RSSV) concentrations determined by voltammetry, which ranged from 0.1 to 5.6 μM. The observed difference in the sulfide concentrations between the two methods can be assigned to the presence of FeS colloidal species.Dissolved Fe was high (> 1000 µM), whereas dissolved Mn was only 25 µM, in the anoxic water column. This indicates that Fe is the dominant metal involved in sulfur redox cycling and precipitation. Consequently, in the anoxic deep layer of Lake Pavin, “free” sulfide, H2S/HS, was low; and about 80% of total sulfide detected was in the electroactive FeS colloidal form. IAP calculations showed that the Lake Pavin water column is saturated with respect to FeSam phase. The upper part of monimolimnion layer is characterized by higher concentrations of S(0) (up to 3.4 µM) in comparison to the bottom of the lake. This behavior is probably influenced by sulfide oxidation with Fe(III) oxyhydroxide species.  相似文献   

6.
The reduction of sulfate by sulfate reducing bacteria in the anoxic zone is an extremely important process during early diagenesis of marine sediments. Our data from Great Bay, NH reinforce the proposal that the rate of sulfate reduction is directly proportional to the reactivity of the organic matter or the amount of readily metabolizable organic matter present in the sediment and, hence, the source of the organic material in the anoxic zone. It appears that organic matter rich in marine organic remains is more easily degraded in the anoxic zone and that sulfate reduction rates can vary considerably in an estuarine system where many types of organic material may be deposited.  相似文献   

7.
8.
9.
Geographic variations of leachable Fe, Mn, Cu, Zn, Co, and Ni in San Francisco Bay sediments indicate that Fe, Mn, Co, and Ni are all predominantly supplied to bay sediments from the San Joaquin-Sacramento River system, with little evidence for direct contributions from municipal and industrial sources. In contrast, both Cu and Zn have significant sources within the Bay system, probably municipal and industrial discharges. Precipitation and coagulation of Fe oxides in the low-salinity region of the estuary results in significantly greater concentrations of that element in the most landward portion of the estuary. Co and Ni appear to be actively coprecipitating with Fe but their distributions are also influenced by other factors. Mn is not a major geochemical agent in this system. Its pattern is different from the other elements and it does not account for any of the other elemental variance. The behavior of Cu and Zn is affected not only by the presence of nonriverine sources but also through surface-active processes and organic complexing, coupled with the transportation of fine-grained sediment.  相似文献   

10.
Two independent analytical methods (sequential extraction and kinetic extraction methods) were applied in order to understand the distribution and speciation of La in the coastal and estuarine sediments from the central east coast of India. Sequential extraction study revealed that La was primarily present as inert complexes (~ 50–60% of the total La) in all the sediments. Amounts of ~ 20–30% of the total La in all the sediments were found to associate with the total organic carbon (TOC) in the sediments. The dissociation rate constants of La–sediment complexes obtained from kinetic extraction studies revealed that the concentration of thermodynamically weak complexes of La gradually increased with the increasing La/TOC ratio in the sediments.  相似文献   

11.
Groundwater and sediment samples (∼ 1 m depth) at sites representative of different groundwater pathways were collected to determine the aqueous speciation of sulfur and the fractionation of sulfur isotopes in aqueous and solid phases. In addition, selected sediment samples at 5 depths (from oxic to anoxic layers) were collected to investigate the processes controlling sulfur biogeochemistry in sedimentary layers. Pyrite was the dominant sulfur-bearing phase in the capillary fringe and groundwater zones where anoxic conditions are found. Low concentrations of pyrite (< 5.9 g kg− 1) coupled with high concentrations of dissolved sulfide (4.81 to 134.7 mg L− 1) and low concentrations of dissolved Fe (generally < 1 mg L− 1) and reducible solid-phase Fe indicate that availability of reactive Fe limits pyrite formation. The relative uniformity of down-core isotopic trends for sulfur-bearing mineral phases in the sedimentary layers suggests that sulfate reduction does not result in significant sulfate depletion in the sediment. Sulfate availability in the deeper sediments may be enhanced by convective vertical mixing between upper and lower sedimentary layers due to evaporative concentration. The large isotope fractionation between dissolved sulfate and sedimentary sulfides at Owens Lake provides evidence for initial fractionation from bacterial sulfate reduction and additional fractionation generated by sulfide oxidation followed by disproportionation of intermediate oxidation state sulfur compounds. The high salinity in the Owens Lake brines may be a factor controlling sulfate reduction and disproportionation in hypersaline conditions and results in relatively constant values for isotope fractionation between dissolved sulfate and total reduced sulfur.  相似文献   

12.
The carbonates, clays and major chemical compositions of lacustrine sediments in Nam Co (Lake) were examined by X-ray diffraction, scanning electron microscopy and chemical analysis. Carbonates include monohydrocalcite (MHC, first report from China and in a high-altitude lake), low-Mg calcite and traces of dolomite. MHC in Nam Co is developed in water (1.8 g/L) with high Mg/Ca molar ratios (10.03–15.03), high pH (8.04–9.72) and the presence of bacteria, algae, diatom and ostracoda. Illite and Mg-chlorite provide a strong evidence for physical weathering in the Holocene. Most Ca and Sr in sediments originate from carbonates as the molar ratios of Ca and CO32− are all less than 1 and the curve of Sr is very similar to that of Ca. However, most of the Mg, Fe and Rb are from clays. The lake water shifted from a fresh water environment to an evaporative, alkaline environment by 2.06 cal. ka BP. There was a depositional event that the depositional rate changed from 0.134 to 1.639 mm/a at about 2 cal. ka BP.  相似文献   

13.
赵云  杨永强  柯君君 《岩石学报》2016,32(7):2086-2098
新疆黄山-镜儿泉一带是天山东段重要岩浆铜镍硫化物成矿带,但对其中含铜镍岩浆起源和硫饱和机制尚存较大争议。黄山南岩体是近年来在该成矿带中发现的另一个含矿性较好的重要岩体。岩体可分为超镁铁质岩相和镁铁质岩相,超镁铁质岩相为主要含铜镍矿岩相,而镁铁质岩相并未发生明显的矿化。超镁铁质岩相岩石类型包括二辉橄榄岩、斜辉橄榄岩、橄榄二辉岩、二辉岩、角闪二辉岩及少量粗粒辉长岩,其中二辉橄榄岩和二辉岩是主要含矿岩石类型。镁铁质岩相由苏长岩、辉长岩、角闪辉长岩、闪长岩及石英闪长岩组成。黄山南岩体的(~(87)Sr/~(86)Sr)i(0.7036~0.7057)、ε_(Nd)(t)(-1.2~+7.4)、(~(206)Pb/~(204)Pb)i(17.152~18.088)、(~(207)Pb/~(204)Pb)i(15.385~15.571)和(~(208)Pb/~(204)Pb)i(37.127~38.252)变化范围均较大,显示了母岩浆遭受了较明显的壳源物质混染。岩浆源区在板片俯冲过程中壳源物质加入明显,而原始岩浆上升过程中壳源物质的混染有限。Sr-Nd-Pb同位素组成指示黄山南含矿岩体的形成与塔里木大火成岩省并无直接联系。虽然黄山南岩浆铜镍硫化物矿石δ~(34)S值介于-1.54‰~2.03‰之间,落在幔源硫的范围内,但是Se(×10~6)/S比值表明壳源硫的加入对成矿母岩浆硫饱和起到重要作用。  相似文献   

14.
Fine characterization of pore systems and heterogeneity of shale reservoirs are significant contents of shale gas reservoir physical property research.The research on micro-control factors of low productivity in the Qiongzhusi Formation(Fm.)is still controversial.The lower Cambrian Qiongzhusi Fm.in the Qujing,Yunnan was taken as the object to investigate the influence of mineral compositions on the phys-ical properties of the reservoir and the heterogeneity of shale,using the algorithm to improve the char-acterization ability of Atomic Force Microscopy(AFM).The results showed that:(1)The pores are mainly wedge-shaped pores and V-shaped pores.The pore diameter of the main pore segment ranges from 5 to 10 nm.Mesopores are mainly developed in the Qiongzhusi Fm.shale in Well QD1,with the average pore diameter of 6.08 nm.(2)Microscopic pore structure and shale surface properties show strong hetero-geneity,which complicates the micro-migration of shale gas and increases the difficulty of identifying high-quality reservoirs.(3)The increase of clay mineral content intensifies the compaction and then destroys the pores.Conversely,brittle minerals can protect pores.The support and protection of brittle minerals to pores space depend on their content,mechanical properties and diagenesis.(4)Compression damage to pores,large microscopic roughness and surface fluctuations and strong pore structure heterogeneity are the reasons for the poor gas storage capacity of the Qiongzhusi Fm.,which will lead to poor productivity in the Qiongzhusi Fm.  相似文献   

15.

毕机沟层状岩体是扬子地块北缘汉南杂岩中最重要的镁铁-超镁铁质侵入体之一, 主要由下部带超镁铁质岩、中部带辉长岩和上部带闪长岩组成。本文对该岩体下部带橄长岩、橄榄辉长岩和橄榄辉长苏长岩以及中部带粗粒辉长岩、磁铁辉长岩和角闪辉长岩进行全岩主微量元素及亲铜元素分析, 全岩(La/Sm)N(0.43~2.89)和(Tb/Yb)N (1.08~1.52)比值以及La/Yb-Sm/Yb图解均表明毕机沟层状岩体源区属于尖晶石二辉橄榄岩。Ni/Cu-Pd/Ir图解显示毕机沟层状岩体母岩浆主要为高镁玄武岩, 模拟计算及高的S/Se比值显示其母岩浆经历了~5%的地壳混染并引进了外界硫, 导致毕机沟母岩浆在深部发生早期硫化物熔离, 造成其极高的Cu/Pd比值(5.21×103~1.67×106)和低的PGE含量。毕机沟母岩浆侵位到浅部岩浆房后, 下部带极少量的硫化物熔离进一步导致残余岩浆亏损PGE, 但S和Cu含量相对升高; 中部带从下部带残余岩浆中结晶分异, 具有更低的PGE含量和相对较高的S以及Cu含量。根据毕机沟层状岩体岩浆演化及硫化物熔离过程, 推测岩体深部及附近具有寻找Cu-Ni-PGE矿床的潜力, 查明其岩浆通道系统及岩浆运移方向对找矿勘查具有重要意义。

  相似文献   

16.
采用多元统计的方法对刘家峡水库表层沉积物中25种微量元素的含量、相关性、来源及控制因素进行了分析。结果显示:研究区表层沉积物中Sr、Zn、Zr和Ba的含量平均值超过了170 μg/g,Cd、Mo和Tl的含量平均值都在1 μg/g以下,其它元素含量平均值则在2.01~104.34 μg/g。元素Cu、V、Co、Cr、Ni、Rb、Li、Cd、Be、Pb、Sc、As、Ga、Nb、Sn、Cs、Tl、Th和Al2O3等存在较为明显的相关性,且它们分布规律基本相似。因子分析表明,水库中微量元素分为3个主要来源,第一组分的元素分布受控于矿物岩石的自然风化剥蚀,其贡献率为63.20%;第二组分的Zr和Ba主要受河流沉积物中元素的迁移和转化的影响,其贡献率为12.51%;第三组分的Sr则主要受控于生物成因,其贡献率为9.76%。另外,研究区重金属元素中,Zn和As含量远超过了全球页岩平均值,值得进一步的深入研究。  相似文献   

17.
Four cores of anoxic sediments were collected from the Seine estuary to assess the early diagenesis pathways leading to the formation of previously reactive phase. Pore waters were analyzed for dissolved iron (Fe) and manganese (Mn) and different ligands (e.g., sulfate, chloride, total inorganic carbon). The anoxic zone is present up to the first centimeter depth, in these conditions the reduction of Mn and Fe oxides and SO4 2− was verified. The sulfate reduction was well established with a subsequent carbon mineralization in the NORMAI94 core. The chemical speciation of Mn and Fe in the dissolved and solid phases was determined. For the dissolved phase, thermodynamic calculations were used to characterize and illustrate the importance of carbonate and phosphate phases as sinks for Fe and Mn. The ion activity product (IAP) of Fe and Mn species was compared to the solubility products (Ks) of these species. In the solid phase, the presence of higher concentration of calcium carbonate in the Seine sediments is an important factor controlling Mn cycle. The carbonate-bound Mn can reach more than 75% of the total concentration. This result is confirmed by the use of electron spin resonance (ESR) spectroscopy. The reduction of Fe is closely coupled to the sulfate reduction by the formation of new solid phases such as FeS and FeS2, which can be regarded as temporal sinks for sulfides. These forms were quantified in all cores as acid volatile sulfide (AVS: FeS+ free sulfide) and chromium reducible sulfide (CRS: FeS2+elemental sulfur S0).  相似文献   

18.
The speciation of Fe, Mn, Zn, Cu, Co, Ni, Cr, Pb, and Cd was studied in 52 samples of bottom sediments collected during Cruise 49 of the R/V Dmitrii Mendeleev in estuaries of the Ob and Yenisei rivers in the southwestern Kara Sea. Immediately after sampling, the samples were subjected to on-board consecutive extraction to separate metal species according to their modes of occurrence in the sediments: (1) adsorbed, (2) amorphous Fe-Mn hydroxides and related metals, (3) organic + sulfide, and (4) residual, or lithogenic. The atomic absorption spectroscopy of the extracts was carried out at a stationary laboratory. The distribution of Fe, Zn, Cu, Co, Ni, Cr, Pb, and Cd species is characterized by the predominance of lithogenic or geochemically inert modes (70–95% of the bulk content), in which the metals are bound in terrigenous and clastic mineral particles and organic detritus. About half of the total Mn amount and 15–30% Zn and Cu is contained in geochemically mobile modes. The spatiotemporal variations in the proportions of metal species in the surface layer of sediments along the nearly meridional sections and through the vertical sections of bottom sediments cores testify that Mn and, to a lesser extent, Cu are the most sensitive to changes in the sedimentation environment. The role of their geochemically mobile species notably increases under reducing conditions.  相似文献   

19.
储层非均质性是影响油气藏中油、气、水渗流及油气采收率的主要内因。进行储层非均质研究,对查明油藏剩余油分布、采取合理注采措施、提高采收率显得十分必要。以吉林油田大208区黑帝庙油层三角洲前缘亚相储层为例,采用隔夹层识别对比、沉积微相分析、地质统计学系数和劳伦兹系数方法分析了层间、层内和平面非均质性。研究表明:黑帝庙油层发育3套稳定隔层,据此可划分为3套开发层系;夹层在各单砂体中比较发育,应将夹层分割的注采井归为不同注采井网;非均质性受沉积微相影响明显,水下分流河道和河口坝微相的非均质性最强;地质统计学参数和劳伦兹系数研究表明,黑帝庙油层10个单砂体均为极强的非均质性,统计学参数往往偏离强非均质标准甚远,而劳伦兹参数值分布于0~1间,更能直观定量的表现出储层宏观非均质性强弱。  相似文献   

20.
《Applied Geochemistry》1999,14(1):41-52
Concentrations of S, organic C and Fe were investigated in profiles of sediments from two estuarine systems in the SW of Western Australia. In marine-affected sediments, inorganic S dominates total S and concentrations of total S correlate with Fe and not with organic C. In freshwater sediments, organic S dominates total S and concentrations of total S correlate with organic C and not with Fe. Molar Fe/S ratios in the estuarine sediments decrease with increasing salinity and approach unity for marine conditions. Net accumulation rates of S in sediments were estimated with a numerical computer model, calibrated with published data on profiles of marine sediments for diffusion of SO2−4, sedimentation rates and distributions of S. Measured depth-integrated reduction rates of SO2−4 in the marine-affected estuarine sediments approach those obtained for Fe-limited marine conditions at similar rates of sedimentation. Measured concentrations of inorganic S in anoxic freshwater sediments fit a numerically calculated relationship between inorganic S and sedimentation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号