首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper the process of magnetic convection is studied. It is shown that outside of a radius of about 2 × 105 km, magnetic fields in the Sun may be buoyant. Outside this limit strong field regions tend to rise at the expense of weak field regions which tend to sink. Magnetic convection may be important in magnetic stars and even in the solar interior. A recent calculation of the angular velocity of the Sun provides a period of rotation for the solar core of from 0.5 to 5 days. This calculation requires that the magnetic field extract angular momentum from the solar interior. Magnetic convection thus seems to be required, if this calculation is correct. Furthermore, magnetic convection may transfer heat and thereby possibly change the internal temperature structure of the Sun from what would be expected solely by radiation transfer.  相似文献   

2.
Magnetars are the neutron stars with the highest magnetic fields up to 1015–1016 G. It has been proposed that they are also responsible for a variety of extra-galactic phenomena, ranging from giant flares in nearby galaxies to fast radio bursts. Utilizing a relativistic mean field model and a variable magnetic field configuration, we investigate the effects of strong magnetic fields on the equation of state and anisotropy of pressure of magnetars. It is found that the mass and radius of low-mass magnetars are weakly enhanced under the action of the strong magnetic field, and the anisotropy of pressure can be ignored. Unlike other previous investigations, the magnetic field is unable to violate the mass limit of the neutron stars.  相似文献   

3.
Here I present a survey of planetary, stellar and clumpy interstellar magnetic fields, with an emphasis on discoveries made in the last decade. Ground-based and Earth–satellite observations of magnetic fields in astronomical objects are cataloged, as obtained at all multiple electromagnetic wavelengths.For each type of object, the basic observational properties are summarized, and the best theoretical scenario which accounts for the large body of observations is discussed. There is no single unifying magnetic model for all objects (although dynamo theory comes close for many compact objects, and helical theory for many extended objects).The strength of the observed magnetic fields reaches exagauss values (1018 G) in compact objects such as magnetars, and decreases to microgauss values (10?6 G) in the clumpy interstellar medium.  相似文献   

4.
Strong (B?109 G) and superstrong (B?1014 G) magnetic fields profoundly affect many thermodynamic and kinetic characteristics of dense plasmas in neutron star envelopes. In particular, they produce strongly anisotropic thermal conductivity in the neutron star crust and modify the equation of state and radiative opacities in the atmosphere, which are major ingredients of the cooling theory and spectral atmosphere models. As a result, both the radiation spectrum and the thermal luminosity of a neutron star can be affected by the magnetic field. We briefly review these effects and demonstrate the influence of magnetic field strength on the thermal structure of an isolated neutron star, putting emphasis on the differences brought about by the superstrong fields and high temperatures of magnetars. For the latter objects, it is important to take proper account of a combined effect of the magnetic field on thermal conduction and neutrino emission at densities ρ?1010 g?cm?3. We show that the neutrino emission puts a B-dependent upper limit on the effective surface temperature of a cooling neutron star.  相似文献   

5.
Zheleznyakov  V. V.  Zlotnik  E. Ya. 《Solar physics》1989,121(1-2):449-456
It was shown by Zheleznyakov and Zlotnik (1980a, b) that in complex configurations of solar magnetic fields (in hot loops above the active centres, in neutral current sheets in the preflare phase, in hot X-ray kernels in the initial flare phase) a system of cyclotron lines in the spectrum of microwave radiation is likely to be formed. Such a line was obtained by Willson (1985) in the VLA observations at harmonics of the electron gyrofrequency. This communication interprets these observations on the basis of an active region model in which thermal cyclotron radiation is produced by hot plasma filling the magnetic tube in the corona above a group of spots. In this model the frequency of the recorded 1658 MHz line corresponds to the third harmonic of electron gyrofrequency, which yields the magnetic field (196 ± 4) G along the magnetic tube axis. The linewidth f/f 0.1 is determined by the 10% inhomogeneity of the magnetic field over the cross-section of the tube; the line profile indicates the kinetic temperature distribution of electrons over the tube cross-section with the maximum value 4 × 106 K. Analysis shows that study of cyclotron lines can serve as an efficient tool for diagnostics of magnetic fields and plasma in the solar active regions and flares.  相似文献   

6.
Coherent electromagnetic erenkov radiation is produced by cosmic ray air showers passing through the atmosphere. This radiation is detected by radio telescopes. We demonstrate here that the effect of random spatial fluctuations in the refractive index of air, about a mean exceeding unity, causes the airshower to emit not only the spontaneous coherent radio emission described elsewhere by Kahn and Lerche, but also an induced radiation field which can exceed the spontaneous field in certain frequency bands. Further the conditions for emission of the coherent radio erenkov radiation are altered by the presence of the refractive index fluctuations. And the Earth's magnetic field gives rise to the dominant term in the far-field radiation, be it spontaneous or induced, since it causes a systematic separation of electrons and positrons in the shower which, for parameters currently acceptable for air showers, is the major factor in determining the far-field radiation pattern. Also we suggest that the coherent 500 Mc/sec radiation seen from occasional showers is probably a reflection of an atmospheric correlation length of order 15 cm at the time the shower passes through the atmosphere.  相似文献   

7.
A numerical solution is presented for the problem of continuum radiative transfer in a magnetoactive medium. The continuum opacities are calculated in the presence of a strong magnetic field (H=107 G) typical of magnetic white dwarfs. The L.T.E. pure absorption model is assumed for calculating the polarized radiation field emitted by a realistic model atmosphere in the plane parallel approximation. The wavelength dependence of the linear and circular polarizations are calculated for both uniform and dipole field configurations.  相似文献   

8.
Wave conversion mechanisms causing large-frequency shifts are considered for an electron-positron plasma in a strong magnetic field. In particular, we discuss the effects of the nonlinear erenkov as well as the cyclotron resonances in order to associate pulsar radio-emissions with our present model for nonlinear conversion of high-frequency radiation into the low-frequency region.  相似文献   

9.
强磁场对非零温中子星壳层电子俘获反应的影响   总被引:6,自引:0,他引:6  
罗志全  彭秋和 《天文学报》1996,37(4):430-436
本文讨论了强磁场作用下非零温电子气体的化学势,分析了磁场作用下电子气体屏蔽势的变化;以核素33S为例,讨论了不同温度下,磁场对电子俘获率的影响,结果表明:在足够低的温度和密度下,足够强的磁场使电子俘获率显著降低,而就中子星表面存在的磁场强度(109-1013G)而言,磁场对其电子俘获率几乎没有影响.  相似文献   

10.
The mechanism of formation of an annihilation line 0.5 MeV in gamma-ray bursts due to electron-positron pair production in strong magnetic fields of neutron stars is discussed. Bremsstrahlung from a hot polar spot is supposed to be a source of gamma-quanta which produce the pairs. It is shown that a great part of radiation with the energyE>2mc 2 per quantum (except for directions along or close to the magnetic field) is consumed by pair production and does not excape from the gamma-burster. This indicates a possible strong gap in continuum radiation at energies higher than 1 MeV. At the same time effective creation of pairs enables one to give a simple estimate of the expected annihilation line intensity in gamma-ray burst spectra. This estimate coincides with the available observational data.  相似文献   

11.
We consider the electron—positron plasma generation processes in the magnetospheres of magnetars—neutron stars with strong surface magnetic fields, B ? 1014–1015 G. We show that the photon splitting in a magnetic field, which is effective at large field strengths, does not lead to the suppression of plasma multiplication, but manifests itself in a high polarization of γ-ray photons. A high magnetic field strength does not give rise to the second generation of particles produced by synchrotron photons. However, the density of the first-generation particles produced by curvature photons in the magnetospheres of magnetars can exceed the density of the same particles in the magnetospheres of ordinary radio pulsars. The plasma generation inefficiency can be attributed only to slow magnetar rotation, which causes the energy range of the produced particles to narrow. We have found a boundary in the \(P - \dot P\) diagram that defines the plasma generation threshold in a magnetar magnetosphere.  相似文献   

12.
It is generally assumed that the magnetic fields of millisecond pulsars (MSPs) are ~108 G. We argue that this may not be true and the fields may be appreciably greater. We present six evidences for this: (1) The ~108G field estimate is based on magnetic dipole emission losses which is shown to be questionable; (2) The MSPs in low mass X-ray binaries (LMXBs) are claimed to have <1011 G on the basis of a Rayleygh-Taylor instability accretion argument. We show that the accretion argument is questionable and the upper limit 1011 G may be much higher; (3) Low magnetic field neutron stars have difficulty being produced in LMXBs; (4) MSPs may still be accreting indicating a much higher magnetic field; (5) The data that predict ~108 G for MSPs also predict ages on the order of, and greater than, ten billion years, which is much greater than normal pulsars. If the predicted ages are wrong, most likely the predicted ~108 G fields of MSPs are wrong; (6) When magnetic fields are measured directly with cyclotron lines in X-ray binaries, fields ?108 G are indicated. Other scenarios should be investigated. One such scenario is the following. Over 85% of MSPs are confirmed members of a binary. It is possible that all MSPs are in large separation binaries having magnetic fields >108 G with their magnetic dipole emission being balanced by low level accretion from their companions.  相似文献   

13.
The theory of large scale dynamos is reviewed with particular emphasis on the magnetic helicity constraint in the presence of closed and open boundaries. In the presence of closed or periodic boundaries, helical dynamos respond to the helicity constraint by developing small scale separation in the kinematic regime, and by showing long time scales in the nonlinear regime where the scale separation has grown to the maximum possible value. A resistively limited evolution towards saturation is also found at intermediate scales before the largest scale of the system is reached. Larger aspect ratios can give rise to different structures of the mean field which are obtained at early times, but the final saturation field strength is still decreasing with decreasing resistivity. In the presence of shear, cyclic magnetic fields are found whose period is increasing with decreasing resistivity, but the saturation energy of the mean field is in strong super‐equipartition with the turbulent energy. It is shown that artificially induced losses of small scale field of opposite sign of magnetic helicity as the large scale field can, at least in principle, accelerate the production of large scale (poloidal) field. Based on mean field models with an outer potential field boundary condition in spherical geometry, we verify that the sign of the magnetic helicity flux from the large scale field agrees with the sign of α. For solar parameters, typical magnetic helicity fluxes lie around 1047 Mx2 per cycle.  相似文献   

14.
In the presence of a strong magnetic field (such as those believed to be characteristic of neutron stars:B-1012 Gauss) positronium may annihilate through the emission of a single photon, the magnetic field providing the photon momentum. We report on calculations of the one-photon and two-photon annihilation rates for the ground state of positronium, for magnetic fields in the range (1–44)×1012 Gauss, and give, in the two-photon case, the minimum energy half-width of the emission line due to the momentum contributions from the magnetic field. We find that unless neutron stars have magnetic fields in excess of 1013 Gauss, it is unlikely that the one-photon process will be observable.Research supported in part by the National Research Council of Canada.  相似文献   

15.
Many compact radio sources like quasars, blazars, radio galaxies, and micro-quasars emit circular polarisation (CP) with surprising temporal persistent handedness. We propose that the CP is caused by Faraday conversion (FC) of linear polarisation (LP) synchrotron light which propagates along a line-of-sight (LOS) through helical magnetic fields. Jet outflows from radio galaxies should have the required magnetic helicity in the emission region due to the magnetic torque of the accretion disc. Also advection dominated accretion flow (ADAF)should contain magnetic fields with the same helicity. However, a jetregion seems to be the more plausible origin of CP. The proposed scenario requires Faraday rotation (FR) to be insignificant in the emission region. The proposed mechanism works in electron-positron(e±) as well as electron-proton (e/p) plasma. In the latter case, the emission region should consist of individual flux tubes with independent polarities in order to suppress too strong FR– as it was already proposed for FR based CP generation models. The predominant CP is expected to mostly counter-rotate (rotation is measured here in sky-projection) with respect to the central engine in all cases (jet or ADAF, e± or e/p plasma) and therefore allows to measure the sense of rotation of quasar engines. The engine of SgrA* is expected – in this scenario – to rotate clockwise and therefore counter-Galactic, as do the young hot stars in its vicinity, which are thought to feed SgrA* by their winds. Generally, sources with Stokes-V<0 (V>0) are expected to rotate clockwise(counter-clockwise).  相似文献   

16.
Viscous resistance to differential rotation causes a current whose magnetic field is proportional to the vorticity of the medium. The magnetic fields of stars and galaxies could arise in this manner, provided that the time scale for development of the field is reasonable. The latter condition (assuming Ohmic rather than synchroton dissipation) requires that the scale length for a galactic field be less than 3×1013 cm. It is suggested that there may be continual generation of field within the core of a vortex of this dimension in the galactic nucleus, the field lines then being carried outwards by expanding plasma. The main observational evidence in connection with solar, stellar and galactic magnetic fields is appraised in the context of the above theory.  相似文献   

17.
We demonstrate that the detection of steady kV X-ray emission from the vicinity of a white dwarf star possessing a magnetic field of the order of 107 G will provide strong evidence that the white dwarf is rotating with a period of about one minute. We also show that detection of pulsed radiation at about 1 mm wavelength would confirm this. Also some of the interesting dynamical consequences for the interstellar medium due to such white dwarfs are outlined.  相似文献   

18.
Based on the synchrotron radiation mechanism with self-absorption, we estimate the magnetic fields of compact (~0 . 001) structures of radio galaxies. Using a model radial dependence of the magnetic field, we estimate the field strength near the event horizon of a supermassive black hole. The latter turns out to be higher than that followed from the popular Blandford-Znajek mechanism. The magnetic fields are determined by taking into account evolution, which allows the redshift dependence of the magnetic field of the plasma surrounding a supermassive black hole to be derived. We show that various cosmological models can be tested in principle using magnetic field measurements of compact radio sources. We estimate the magnetic field of the farthest radio-loud quasar SDSS J0836+0054.  相似文献   

19.
The motion and radiation of relativistic particles with radiation reaction in a strong magnetic field has been considered. The kinetic equation determining the relaxation of the distribution function with radiation reaction has been investigated. The universal one-dimensional distribution function is found to which any isotropic ultrarelativistic distribution in a strong magnetic field is relaxed. It is of power type –3 for ultrarelativistic energies mc 2. Estimations are made which indicate that under the pulsar conditions the one-dimensional electron distribution function is likely formed due to radiation losses while for ions the one-dimensionalization is associated with the conservation of the adiabatic invariant.  相似文献   

20.
In this paper, we consider the effect of Landau levels on the decay of superhigh magnetic fields of magnetars. Applying 3 P 2 anisotropic neutron superfluid theory yield a second-order differential equation for a superhigh magnetic field B and its evolutionary timescale t. The superhigh magnetic fields may evolve on timescales ∼(106–107) yrs for common magnetars. According to our model, the activity of a magnetar may originate from instability caused by the high electron Fermi energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号