首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An interstellar cloud suddenly overrun by a supernova blast wave experiences a very rapid increase in boundary pressure. A shock wave propagates into the cloud. As a preliminary investigation, the propagation of spherical shock waves in an adiabatic medium is studied numerically.  相似文献   

2.
We consider a pressureless plasma in a thin magnetic-flux tube with a twisted magnetic field. We study the effect of twisted magnetic field on the nature of propagating kink waves. To do this, the restoring forces of oscillations in the linear ideal magnetohydrodynamics (MHD) were obtained. In the presence of a twisted magnetic field, the ratio of the magnetic-tension force to the gradient of the magnetic pressure increases for the mode with negative azimuthal wave number, but it decreases for the mode with positive azimuthal wave number. For the kink mode with positive azimuthal mode number, the ratio of the forces is more affected by the twisted magnetic field in dense loops. For the kink mode with negative azimuthal mode number, the perturbed magnetic pressure is negligible under some conditions. The magnetic twist increases (diminishes) the damping of the kink waves with positive (negative) azimuthal mode number due to resonant absorption. Our conclusion is that introducing a twisted magnetic field breaks the symmetry between the nature of the kink waves with positive and negative azimuthal wave number, and the wave can be a purely Alfvénic wave in the entire loop.  相似文献   

3.
The discrepancy between observed and theoretical mode frequencies can be used to examine the reliability of the standard solar model as a faithful representation of solar real situation. With the help of an improved time-dependent convective model that takes into account contribution of the full spatial and temporal turbulent energy spectrum, we study the influence of turbulent pressure on structure and solar p-mode frequencies. For the radial modes we find that the Reynolds stress produces signification modifications in structure and p-mode spectrum. Compared with an adiabatic approximation, the discrepancy is largely removed by the turbulent correction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
We study the fundamental modes of radiation hydrodynamic waves arising from one-dimensional small-amplitude initial fluctuations with wave number k in a radiating and scattering grey medium using the Eddington approximation. The dispersion relation analyzed is the same as that of Paper I (Kaneko et al., 2000), but is solved as a quintic in angular frequency ω while a quadratic in k 2 in Paper I. Numerical results reveal that wave patterns of five solutions are distinguished into three types of the radiation-dominated and type 1 and type 2 matter-dominated cases. The following wave modes appear in our problem: radiation wave, conservative radiation wave, entropy wave, Newtonian-cooling wave, opacity-damped and cooling-damped waves, constant-volume and constant-pressure diffusion modes, adiabatic sound wave, cooling-damped and drag–force-damped isothermal sound waves, isentropic radiation-acoustic wave, and gap mode. The radiation-dominated case is characterized by the gap between the isothermal sound and isentropic radiation-acoustic speeds within which there is not any acoustic wave propagating with real phase speed. One of the differences between type 1 and type 2 matter-dominated cases is the connectivity of the constant-volume diffusion mode, which originates from the radiative mode in the former case, while from the Newtonian-cooling wave in the latter case. Analytic solutions are derived for all wave modes to discuss their physical significance. The criterion, which distinguishes between radiation-dominated and type 1 matter-dominated cases, is given by Γ0 = 9, where Γ0 = C p (tot)/C V (tot) is the ratio of total specific heats at constant pressure and constant volume. Waves in a scattering grey medium are also analyzed, which provides us some hints for the effects of energy and momentum exchange between matter and radiation.  相似文献   

5.
It is well known that under cosmic conditions the various modes of plasma turbulence waves (including MHD waves) are easily excited. In this paper we are trying to show that the turbulent wave also generates a source-term for the magnetic induced equations as does the turbulent fluid with nonzero helicity. By expanding the turbulent field in Fourier series, we have obtained dynamo equation for turbulent wave and a reasonable solution which indicates that the poloidal field may be built-up in the turbulent source region. Perhaps, we may think that the poloidal field of Equation (9) is the analytical form of the magnetic field in a turbulent source region of celestial bodies.  相似文献   

6.
We analyse the non-linear propagation and dissipation of axisymmetric waves in accretion discs using the ZEUS-2D hydrodynamics code. The waves are numerically resolved in the vertical and radial directions. Both vertically isothermal and thermally stratified accretion discs are considered. The waves are generated by means of resonant forcing, and several forms of forcing are considered. Compressional motions are taken to be locally adiabatic  ( γ =5/3)  . Prior to non-linear dissipation, the numerical results are in excellent agreement with the linear theory of wave channelling in predicting the types of modes that are excited, the energy flux by carried by each mode, and the vertical wave energy distribution as a function of radius. In all cases, waves are excited that propagate on both sides of the resonance (inwards and outwards). For vertically isothermal discs, non-linear dissipation occurs primarily through shocks that result from the classical steepening of acoustic waves. For discs that are substantially thermally stratified, wave channelling is the primary mechanism for shock generation. Wave channelling boosts the Mach number of the wave by vertically confining the wave to a small cool region at the base of the disc atmosphere. In general, outwardly propagating waves with Mach numbers near resonance  ℳr≳0.01  undergo shocks within a distance of order the resonance radius.  相似文献   

7.
The nature of magnetoacoustic surface waves at a single magnetic interface, one side of which is field-free, is explored for the case of parallel propagation. The interface may support a slow surface wave or both slow and fast surface waves, depending upon the ordering of the sound speeds in the two media. Phase-speeds and penetration depths of the waves and the associated pressure perturbations and motions are investigated for a variety of field strengths and sound speeds. The fast wave disturbs the interface more than the slow wave. In the magnetic field region the slow wave is mainly longitudinal in nature whilst the fast surface wave is transverse for strong fields, longitudinal for weaker fields. In the field-free region both waves are longitudinal in character. The running penumbral wave phenomenon may provide an example of a magnetoacoustic surface mode, though any direct comparison requires the inclusion of gravitational effects.  相似文献   

8.
It is demonstrated that a turbulent distribution of small amplitude velocity waves gives rise to kinematic dynamo activity on its own in an infinite medium. As the wave speed increases, the intensity of the waves has to increase in order to support dynamo regeneration. The theory given is statisticallyexact, but in view of the complexity of the resulting equations, the answers presented are for the long-wavelength (i.e. large-scale) magnetic field. In view of the fact that most astrophysical objects apparently contain turbulent wave motions, the present calculation is indicative of the extent to which turbulent dynamo activity may be physically importat in such objects.  相似文献   

9.
We study the fundamental modes of radiation hydrodynamic linear waves that arise from one-dimensional small-amplitude initial fluctuations with wave number k in a radiating and scattering grey medium by taking into account the gravitational effects. The equation of radiative acoustics is derived from three hydrodynamic equations, Poisson’s equation, and two moment equations of radiation, by assuming a spherical symmetry for the matter and radiation and by using the Eddington approximation. We solve the dispersion relation as a quintic function of angular frequency ω, the wave number k being a real parameter. Numerical results reveal that wave patterns of five solutions are distinguished into three types: the radiation-dominated, type 1, and type 2 matter-dominated cases. In the case of no gravitaional effects (Kaneko et al., 2005), the following wave modes appear: radiation wave, conservative radiation wave, entropy wave, Newtonian-cooling wave, opacity-damped and cooling-damped waves, constant-volume and constant-pressure diffusions, adiabatic sound wave, cooling-damped and drag-force-damped isothermal sound waves, isentropic radiation-acoustic wave, and gap mode. Meanwhile, the gravitaional effects being taken into account, the growing gravo-diffusion mode newly arises from the constant-pressure diffusion at the point that k agrees with Jeans’ wave number specified by the isothermal sound speed. This mode changes to the growing radiation-acoustic gravity mode near the point that k becomes Jeans’ wave number specified by the isentropic radiation-acoustic speed. In step with a transition between them, the isentropic radiation-acoustic wave splits into the damping radiation-acoustic gravity mode and constant-volume diffusion. The constant-volume diffusion emerges twice if the gravitational effects are taken into account. Since analytic solutions are derived for all wave modes, we discuss their physical significance. The critical conditions are given which distinguish between radiation-dominated and type 1 matter-dominated cases, and between type 1 and type 2 matter-dominated cases. Waves in a self-gravitating scattering grey medium are also analyzed, which provides us some hints for the effects of energy and momentum exchange between matter and radiation.  相似文献   

10.
The Venus Express Radio Science Experiment VeRa retrieves atmospheric profiles in the mesosphere and troposphere of Venus in the approximate altitude range of 40–90 km. A data set of more than 500 profiles was retrieved between the orbit insertion of Venus Express in 2006 and the end of occultation season No. 11 in July 2011. The atmospheric profiles cover a wide range of latitudes and local times, enabling us to study the dependence of vertical small-scale temperature perturbations on local time and latitude.Temperature fluctuations with vertical wavelengths of 4 km or less are extracted from the measured temperature profiles in order to study small-scale gravity waves. Significant wave amplitudes are found in the stable atmosphere above the tropopause at roughly 60 km as compared with the only shallow temperature perturbations in the nearly adiabatic region of the adjacent middle cloud layer, below.Gravity wave activity shows a strong latitudinal dependence with the smallest wave amplitudes located in the low-latitude range, and an increase of wave activity with increasing latitude in both hemispheres; the greatest wave activity is found in the high-northern latitude range in the vicinity of Ishtar Terra, the highest topographical feature on Venus.We find evidence for a local time dependence of gravity wave activity in the low latitude range within ±30° of the equator. Gravity wave amplitudes are at their maximum beginning at noon and continuing into the early afternoon, indicating that convection in the lower atmosphere is a possible wave source.The comparison of the measured vertical wave structures with standard linear-wave theory allows us to derive rough estimates of the wave intrinsic frequency and horizontal wavelengths, assuming that the observed wave structures are the result of pure internal gravity waves. Horizontal wavelengths of the waves at 65 km altitude are on the order of ≈300–450 km with horizontal phase speeds of roughly 5–10 m/s.  相似文献   

11.
The various modes of plasma turbulence waves (including MHD waves) are easily excited under cosmic circumstances. In this paper, if we consider that the celestial bodies rotate, there is a source term generated for the magnetic induced equation by the excited plasma turbulence waves. If we expand the turbulent field in the Fourier series and include rotation velocity, the dynamo equation for turbulent waves is obtained. We have also obtained the solutions of various wave forms corresponding to different rotation velocities and then we significantly discuss the magnetic fields in the Sun, planets, and other celestial bodies.  相似文献   

12.
In several merging clusters of galaxies so-called cluster radio relics have been observed. These are extended radio sources which do not seem to be associated with any radio galaxies. Two competing physical mechanisms to accelerate the radio-emitting electrons have been proposed: (i) diffusive shock acceleration and (ii) adiabatic compression of fossil radio plasma by merger shock waves. Here the second scenario is investigated. We present detailed three-dimensional magneto-hydrodynamical simulations of the passage of a radio plasma cocoon filled with turbulent magnetic fields through a shock wave. Taking into account synchrotron, inverse Compton and adiabatic energy losses and gains, we evolved the relativistic electron population to produce synthetic polarization radio maps. On contact with the shock wave the radio cocoons are first compressed and finally torn into filamentary structures, as is observed in several cluster radio relics. In the synthetic radio maps the electric polarization vectors are mostly perpendicular to the filamentary radio structures. If the magnetic field inside the cocoon is not too strong, the initially spherical radio cocoon is transformed into a torus after the passage of the shock wave. Very recent, high-resolution radio maps of cluster radio relics seem to exhibit such toroidal geometries in some cases. This supports the hypothesis that cluster radio relics are fossil radio cocoons that have been revived by a shock wave. For a late-stage relic the ratio of its global diameter to the filament diameter should correlate with the shock strength. Finally, we argue that the total radio polarization of a radio relic should be well correlated with the three-dimensional orientation of the shock wave that produced the relic.  相似文献   

13.
In the present work, the generation of large-scale zonal flows and magnetic field by short-scale collision-less electron skin depth order drift-Alfven turbulence in the ionosphere is investigated. The self-consistent system of two model nonlinear equations, describing the dynamics of wave structures with characteristic scales till to the skin value, is obtained. Evolution equations for the shear flows and the magnetic field is obtained by means of the averaging of model equations for the fast-high-frequency and small-scale fluctuations. It is shown that the large-scale disturbances of plasma motion and magnetic field are spontaneously generated by small-scale drift-Alfven wave turbulence through the nonlinear action of the stresses of Reynolds and Maxwell. Positive feedback in the system is achieved via modulation of the skin size drift-Alfven waves by the large-scale zonal flow and/or by the excited large-scale magnetic field. As a result, the propagation of small-scale wave packets in the ionospheric medium is accompanied by low-frequency, long-wave disturbances generated by parametric instability. Two regimes of this instability, resonance kinetic and hydrodynamic ones, are studied. The increments of the corresponding instabilities are also found. The conditions for the instability development and possibility of the generation of large-scale structures are determined. The nonlinear increment of this interaction substantially depends on the wave vector of Alfven pumping and on the characteristic scale of the generated zonal structures. This means that the instability pumps the energy of primarily small-scale Alfven waves into that of the large-scale zonal structures which is typical for an inverse turbulent cascade. The increment of energy pumping into the large-scale region noticeably depends also on the width of the pumping wave spectrum and with an increase of the width of the initial wave spectrum the instability can be suppressed. It is assumed that the investigated mechanism can refer directly to the generation of mean flow in the atmosphere of the rotating planets and the magnetized plasma.  相似文献   

14.
Michalek  G.  Ostrowski  M.  Schlickeiser  R. 《Solar physics》1999,184(2):339-352
Energetic particle transport in a finite amplitude magnetosonic and Alfvénic turbulence is considered using the Monte Carlo particle simulations, which involve integration of particle equations of motion. We show that in the low- plasma the cosmic-ray acceleration can be the most important damping process for magnetosonic waves. Assuming such conditions we derive the momentum diffusion coefficient Dp, for relativistic particles in the presence of anisotropic finite-amplitude turbulent wave fields, for flat and Kolmogorov-type turbulence spectra, respectively. We confirm the possibility of larger values of Dp occurring due to transit-time damping resonance interaction in the presence of isotropic fast-mode waves in comparison to the Alfvén waves of the same amplitude (cf. Schlickeiser and Miller, 1997). The importance of quasi-perpendicular fast-mode waves is stressed for the acceleration of high velocity particles.  相似文献   

15.
Non-linear, three-dimensional, time-dependent fluid simulations of whistler wave turbulence are performed to investigate role of whistler waves in solar wind plasma turbulence in which characteristic turbulent fluctuations are characterized typically by the frequency and length-scales that are, respectively, bigger than ion gyrofrequency and smaller than ion gyroradius. The electron inertial length is an intrinsic length-scale in whistler wave turbulence that distinguishably divides the high-frequency solar wind turbulent spectra into scales smaller and bigger than the electron inertial length. Our simulations find that the dispersive whistler modes evolve entirely differently in the two regimes. While the dispersive whistler wave effects are stronger in the large-scale regime, they do not influence the spectral cascades which are describable by a Kolmogorov-like   k −7/3  spectrum. By contrast, the small-scale turbulent fluctuations exhibit a Navier–Stokes-like evolution where characteristic turbulent eddies exhibit a typical   k −5/3  hydrodynamic turbulent spectrum. By virtue of equipartition between the wave velocity and magnetic fields, we quantify the role of whistler waves in the solar wind plasma fluctuations.  相似文献   

16.
It is suggested that localised electrostatic potential wells could be generated in the plasma sheet by large amplitude electrostatic ion cyclotron waves. It is shown from a consideration of a simple one dimensional model that such wells could possess a double structure of oppositely directed fields elongated in longitude. The possibility that the waves could evolve from a turbulent ion wave cascade driven by Earthward streaming protons is discussed and the magnitude of the potentials that could be established in this way is estimated using results for condensed state turbulent equilibria.The projections of these wells along the highly conducting geomagnetic field lines form potential valleys across the field lines in the high latitude auroral plasma. It is shown that these valleys would be of the scale and depth needed to establish electrostatic shocks which would be of sufficient intensity to accelerate electrons to energies comparable to those observed in “inverted-V” events. Potential wells are formed predominantly in the midnight sector of the plasma sheet and propagate Earthwards. This implies a corresponding equatorwards motion of the valley which, typically, would have a velocity of a few hundred m s?1.  相似文献   

17.
The spectrum of propagating waves and instabilities on a current-carrying, zero gas pressure, twisted magnetic flux loop is analysed for several models of the magnetic field structure. A surface wave mode of the fast Alfvén wave is found to exist, with damping of the wave when Alfvén resonance absorption occurs. If the loop is surrounded by a uniform, purely axial magnetic field, then the surface wave is always stable. If the loop is surrounded by a nonuniform field which is continuous with the loop's field, then the surface wave may connect to the unstable external kink mode.  相似文献   

18.
Energetic particle response in electromagnetic fields of ULF HM-waves in the magnetosphere is reviewed. Pc4–5 geomagnetic pulsations observed at the synchronous altitude are classified into three types, in respect to their major magnetic field polarization in different directions, local time dependence, and different characteristics of accompanied flux modulations of energetic particles, i.e., two nearly transverse waves with the azimuthal and the radial polarization, and the compressional stormtime pulsations. Firstly, we formulate the drift kinetic theory of particle flux modulations under the constraint of the magnetic moment conservation. A generalized energy integral of the particle motion interacting with a ULF-wave with the three-dimensional structure propagating to the azimuthal direction is obtained in the L-shell coordinate of a mirror magnetic field. Its linearized form is reduced to the same form as the previously derived energy change, including the bounce-drift resonant interaction. It is shown that the perturbed guiding center distribution function of energetic particles consists of four contributions, the adiabatic mirror effect corresponding to pitch-angle change, the kinetic effects due to energy change and the accompanying L-shell displacement, and the bounceaveraged drift phase bunching. Secondly, the basic HM-wave modes constitutingcoupling ULF oscillations in non-uniform plasmas are discussed in different models of approach for different plasma states. The diamagnetic drift Alfvén wave and the compressional drift wave with a larger azimuthal mode number in a high-beta plasma are candidates for the stormtimes pulsations. The former is intrinsically a guided localized mode, while the latter is a non-localized mode. By making use of the above preparation, we apply the developed drift kinetic theory to interpret the phase relationships between the ion flux modulation and the geomagnetic pulsation in some selected examples of observations, demonstrating a fair agreement in theoretical results with the observations.  相似文献   

19.
This paper provides an analysis of magneto-sonic eigenwaves travelling in magnetic plasma structures based on the Chew-Goldberger-Low approximation, for which the plasma kinetic pressure is different along and across the magnetic field. The anisotropy does not lead to the emergence of new modes. The dependence of phase velocities of the waves, trapped by a single magnetic surface, on the pressure anisotropy is investigated. For a magnetic slab with field-free surroundings, the dispersion relations for the eigenwaves are obtained. The pressure anisotropy may change dispersion relations of such modes significantly. In particular, backward waves are possible in the case of strong anisotropy. The dependences of the thresholds for the mirror and hose instabilities on the system parameters are obtained. In particular, hose and mirror instabilities of such waves are absent for some wave number regions. The results are used to obtain the eigenwave characteristics in coronal loops and chromospheric flux tubes.  相似文献   

20.
The Zakharov-Kuznetsov (ZK) equation is derived for electrostatic wave in a rotating magnetoplasma with anisotropic ion pressure and in the presence of stationary charged dust particles. The anisotropic ion pressure is defined using double adiabatic Chew-Golberger-Low (CGL) theory. The reductive perturbation method is employed to study the dynamics of obliquely propagating low frequency ion acoustic wave with adiabatic ions. It is found that the ion pressure anisotropy, polarity, density of the dust particles and rotational frequency have significant effects on the formation nonlinear structures in rotating magnetized dusty plasmas. The numerical results are also presented for illustration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号