首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 556 毫秒
1.
The response time (lag time) between rainfall input and run‐off output in headwater catchments is a key parameter for flood prediction. Lag times are expected to be controlled by run‐off processes, both on hillslopes and in channels. To demonstrate these effects on peak lag times within a 4.5‐km2 catchment, we measured stream water levels at up to 16 channel locations at 1‐min intervals and compared the lag times with topographic indices describing the length and gradient of the hillslope and channel flow path. We captured storm events with a total precipitation of 38–198 mm and maximum hourly precipitation intensity of 9–90 mm/hr. There were positive relationships between lag time and flow path length as well as the ratio of the flow path length and the square root of the gradient of channels for the most intense storms, demonstrating that channel flow paths generally defined the variation in lag times. Topographic analysis showed that hillslope flow path lengths were similar among locations, whereas channel flow path length increased almost one order of magnitude with a 100‐fold increase in catchment area. Thus, the relative importance of hillslope flow path decreased with increasing catchment area. Our results indicate that the variation in lag times is small when hillslopes are sufficiently wet; thus, catchment‐scale variation in lag times can be explained almost entirely by channel processes. Detailed topographic channel information can improve prediction of flood peak timing, whereas hillslopes can be treated as homogeneous during large flood events.  相似文献   

2.
High resolution radar rainfall fields and a distributed hydrologic model are used to evaluate the sensitivity of flood and flash flood simulations to spatial aggregation of rainfall and soil properties at catchment scales ranging from 75 to 983 km2. Hydrologic modeling is based on a Hortonian infiltration model and a network-based representation of hillslope and channel flow. The investigation focuses on three extreme flood and flash flood events occurred on the Sesia river basin, North Western Italy, which are analysed by using four aggregation lengths ranging from 1 to 16 km. The influence of rainfall spatial aggregation is examined by using the flow distance as a spatial coordinate, hence emphasising the role of river network in the averaging of space–time rainfall. The effects of reduced and distorted rainfall spatial variability on peak discharge have been found particularly severe for the flash flood events, with peak errors up to 35% for rainfall aggregation of 16 km and at 983 km2 catchment size. Effects are particularly remarkable when significant structured rainfall variability combines with relatively important infiltration volumes due to dry initial conditions, as this emphasises the non-linear character of the rainfall–runoff relationship. In general, these results confirm that the correct estimate of rainfall volume is not enough for the accurate reproduction of flash flood events characterised by large and structured rainfall spatial variability, even at catchment scales around 250 km2. However, accurate rainfall volume estimation may suffice for less spatially variable flood events. Increasing the soil properties aggregation length exerts similar effects on peak discharge errors as increasing the rainfall aggregation length, for the cases considered here and after rescaling to preserve the rainfall volume. Moreover, peak discharge errors are roughly proportional to runoff volume errors, which indicates that the shape of the flood wave is influenced in a limited way by modifying the detail of the soil property spatial representation. Conversely, rainfall aggregation may exert a pronounced influence on the discharge peak by reshaping the spatial organisation of the runoff volumes and without a comparable impact on the runoff volumes.  相似文献   

3.
Knowledge about flood generating processes can be beneficial for numerous applications. Especially in the context of climate change impact assessment, daily patterns of meteorological and catchment state conditions leading to flood events (i.e., storylines) may be of value. Here, we propose an approach to identify storylines of flood generation using daily weather and snow cover observations. The approach is tested for and applied to a typical pre‐Alpine catchment in the period between 1961 and 2014. Five precipitation parameters were determined that describe temporal and spatial characteristics of the flood associated precipitation events. The catchment's snow coverage was derived using statistical relationships between a satellite‐derived snow cover climatology and station snow measurements. Moreover, (pre‐) event snow melt sums were estimated using a temperature‐index model. Based on the precipitation and catchment state parameters, 5 storylines were identified with a cluster analysis: These are (a) long duration, low intensity precipitation events with high precipitation depths, (b) long duration precipitation events with high precipitation depths and episodes of high intensities, (c) shorter duration events with high or (d) low precipitation intensity, respectively, and (e) rain‐on‐snow events. The event groups have distinct hydrological characteristics that can largely be explained by the storylines' respective properties. The long duration, high intensity storyline leads to the most adverse hydrological response, namely, a combination of high peak magnitudes, high volumes, and long durations of threshold exceedance. The results show that flood generating processes in mesoscale catchments can be distinguished on the basis of daily meteorological and catchment state parameters and that these process types can explain the hydrological flood properties in a qualitative way. Hydrological simulations of daily resolution can thus be analysed with respect to flood generating processes.  相似文献   

4.
This study evaluates two (of the many) modelling approaches to flood forecasting for an upland catchment (the River South Tyne at Haydon Bridge, England). The first modelling approach utilizes ‘traditional’ hydrological models. It consists of a rainfall–runoff model (the probability distributed model, or PDM) for flow simulation in the upper catchment. Those flows are then routed to the lower catchment using two kinematic wave (KW) routing models. When run in forecast‐mode, the PDM and KW models utilize model updating procedures. The second modelling approach uses neural network models, which use a ‘pattern‐matching’ process to produce model forecasts.Following calibration, the models are evaluated in terms of their fit to continuous stage data and flood event magnitudes and timings within a validation period. Forecast times of 1 h, 2 h and 4 h are selected (the catchment has a response time of approximately 4 h). The ‘traditional’ models generally perform adequately at all three forecast times. The neural networks produce reasonable forecasts of small‐ to medium‐sized flood events but have difficulty in forecasting the magnitude of the larger flood events in the validation period. Possible modifications to the latter approach are discussed. © Crown copyright 2002. Reproduced with the permission of Her Majesty's stationery office. Published by John Wiley & Sons, Ltd.  相似文献   

5.
6.
Information on the spatial and temporal origin of runoff entering the channel during a storm event would be valuable in understanding the physical dynamics of catchment hydrology; this knowledge could be used to help design flood defences and diffuse pollution mitigation strategies. The majority of distributed hydrological models give information on the amount of flow leaving a catchment and the pattern of fluxes within the catchment. However, these models do not give any precise information on the origin of runoff within the catchment. The spatial and temporal distribution of runoff sources is particularly intricate in semi‐arid catchments, where there are complex interactions between runoff generation, transmission and re‐infiltration over short temporal scales. Agents are software components that are capable of moving through and responding to their local environment. In this application, the agents trace the path taken by water through the catchment. They have information on their local environment and on the basis of this information make decisions on where to move. Within a given model iteration, the agents are able to stay in the current cell, infiltrate into the soil or flow into a neighbouring cell. The information on the current state of the hydrological environment is provided by the environment generator. In this application, the Connectivity of Runoff Model (CRUM) has been used to generate the environment. CRUM is a physically based, distributed, dynamic hydrology model, which considers the hydrological processes relevant for a semi‐arid environment at the temporal scale of a single storm event. During the storm event, agents are introduced into the model across the catchment; they trace the flows of water and store information on the flow pathways. Therefore, this modelling approach is capable of giving a novel picture of the temporal and spatial dynamics of flow generation and transmission during a storm event. This is possible by extracting the pathways taken by the agents at different time slices during the storm. The agent based modelling approach has been applied to two small catchments in South East Spain. The modelling approach showed that the two catchments responded differently to the same rainfall event due to the differences in the runoff generation and overland flow connectivity between the two catchments. The model also showed that the time of travel to the nearest flow concentration is extremely important for determining the connectivity of a point in the landscape with the catchment outflow. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

7.
The Loess Plateau has been experiencing large‐scale land use and cover changes (LUCCs) over the past 50 years. It is well known about the significant decreasing trend of annual streamflow and sediment load in the catchments in this area. However, how surface run‐off and sediment load behaved in response to LUCC at flood events remained a research question. We investigated 371 flood events from 1963 to 2011 in a typical medium‐sized catchment within the Plateau in order to understand how LUCC affected the surface run‐off generation and sediment load and their behaviours based on the analysis of return periods. The results showed that the mean annual surface run‐off and sediment load from flood events accounted for 49.6% and 91.8% of their mean annual totals. The reduction of surface run‐off and associated sediment yield in floods explained about 85.0% and 89.2% of declines in the total annual streamflow and sediment load, respectively. The occurrences of flood events and peak sediment concentrations greater than 500 kg/m3 showed a significantly downward trend, yet the counterclockwise loop events still dominated the flood event processes in the catchment. The results suggest that LUCC over the past 50 years resulted in significant changes in the water balance components and associated soil erosion and sediment transportation in the catchment. This was achieved mainly by reducing surface run‐off and sediment yield during floods with return period of less than 5 years. Run‐off–sediment load behaviour during the extreme events with greater than 10‐year return periods has not changed. Outcomes from this study are useful in understanding the eco‐hydrological processes and assisting the sustainable catchment management and land use planning on the Loess Plateau, and the methodologies are general and applicable to similar areas worldwide.  相似文献   

8.
Nature‐based approaches to flood risk management are increasing in popularity. Evidence for the effectiveness at the catchment scale of such spatially distributed upstream measures is inconclusive. However, it also remains an open question whether, under certain conditions, the individual impacts of a collection of flood mitigation interventions could combine to produce a detrimental effect on runoff response. A modelling framework is presented for evaluation of the impacts of hillslope and in‐channel natural flood management interventions. It couples an existing semidistributed hydrological model with a new, spatially explicit, hydraulic channel network routing model. The model is applied to assess a potential flood mitigation scheme in an agricultural catchment in North Yorkshire, United Kingdom, comprising various configurations of a single variety of in‐channel feature. The hydrological model is used to generate subsurface and surface fluxes for a flood event in 2012. The network routing model is then applied to evaluate the response to the addition of up to 59 features. Additional channel and floodplain storage of approximately 70,000 m3 is seen with a reduction of around 11% in peak discharge. Although this might be sufficient to reduce flooding in moderate events, it is inadequate to prevent flooding in the double‐peaked storm of the magnitude that caused damage within the catchment in 2012. Some strategies using features specific to this catchment are suggested in order to improve the attenuation that could be achieved by applying a nature‐based approach.  相似文献   

9.
In-situ sensors for riverine water quality monitoring are a powerful tool to describe temporal variations when efficient and informative analyses are applied to the large quantities of data collected. Concentration-discharge hysteresis patterns observed during storm events give insights into headwater catchment processes. However, the applicability of this approach to larger catchments is less well known. Here, we evaluate the potential for high-frequency turbidity-discharge (Q) hysteresis patterns to give insights into processes operating in a meso-scale (722 km2) northern mixed land use catchment. As existing event identification methods did not work, we developed a new, objective method based on hydrograph characteristics and identified 76 events for further analysis. Qualitative event analysis identified three recurring patterns. Events with low mean Q (≤ 2 m3/s) often showed short-term, quasi-periodic turbidity variation, to a large extent disconnected from Q variation. High max Q events (≥15 m3/s) were often associated with spring flood or snowmelt, and showed a disconnection between turbidity and Q. Intermediate Q events (mean Q: 2–11 m3/s) were the most informative when applying hysteresis indexes, since changes in turbidity and Q were actually connected. Hysteresis indexes could be calculated on a subset of 60 events, which showed heterogeneous responses: 38% had a clockwise response, 12% anticlockwise, 12% figure eight (clockwise–anticlockwise), 10% reverse figure eight (anticlockwise–clockwise) and 28% showed a complex response. Clockwise hysteresis responses were associated with the wetter winter and spring seasons. Generally, changes in Q and turbidity were small during anticlockwise hysteresis events. Precipitation often influenced figure-eight patterns, while complex patterns often occurred during summer low flows. Analysis of intermediate Q events can improve process understanding of meso-scale catchments and possibly aid in choosing appropriate management actions for targeting a specific observed pattern.  相似文献   

10.
Shallow upland drains, grips, have been hypothesized as responsible for increased downstream flow magnitudes. Observations provide counterfactual evidence, often relating to the difficulty of inferring conclusions from statistical correlation and paired catchment comparisons, and the complexity of designing field experiments to test grip impacts at the catchment scale. Drainage should provide drier antecedent moisture conditions, providing more storage at the start of an event; however, grips have higher flow velocities than overland flow, thus potentially delivering flow more rapidly to the drainage network. We develop and apply a model for assessing the impacts of grips on flow hydrographs. The model was calibrated on the gripped case, and then the gripped case was compared with the intact case by removing all grips. This comparison showed that even given parameter uncertainty, the intact case had significantly higher flood peaks and lower baseflows, mirroring field observations of the hydrological response of intact peat. The simulations suggest that this is because delivery effects may not translate into catchment‐scale impacts for three reasons. First, in our case, the proportions of flow path lengths that were hillslope were not changed significantly by gripping. Second, the structure of the grip network as compared with the structure of the drainage basin mitigated against grip‐related increases in the concentration of runoff in the drainage network, although it did marginally reduce the mean timing of that concentration at the catchment outlet. Third, the effect of the latter upon downstream flow magnitudes can only be assessed by reference to the peak timing of other tributary basins, emphasizing that drain effects are both relative and scale dependent. However, given the importance of hillslope flow paths, we show that if upland drainage causes significant changes in surface roughness on hillslopes, then critical and important feedbacks may impact upon the speed of hydrological response. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The term connectivity has emerged as a powerful concept in hydrology and geomorphology and is emerging as an innovative component of catchment erosion modeling studies. However, considerable confusion remains regarding its definition and quantification, especially as it relates to fluvial systems. This confusion is exacerbated by a lack of detailed case studies and by the tendency to treat water and sediment separately. Extreme flood events provide a useful framework to assess variability in connectivity, particularly the connection between channels and floodplains. The catastrophic flood of January 2011 in the Lockyer valley, southeast Queensland, Australia provides an opportunity to examine this dimension in some detail and to determine how these dynamics operate under high flow regimes. High resolution aerial photographs and multi‐temporal LiDAR digital elevation models (DEMs), coupled with hydrological modeling, are used to assess both the nature of hydrologic and sedimentological connectivity and their dominant controls. Longitudinal variations in flood inundation extent led to the identification of nine reaches which displayed varying channel–floodplain connectivity. The major control on connectivity was significant non‐linear changes in channel capacity due to the presence of notable macrochannels which contained a > 3000 average recurrence interval (ARI) event at mid‐catchment locations. The spatial pattern of hydrological connectivity was not straight‐forward in spite of bankfull discharges for selected reaches exceeding 5600 m3 s–1. Data indicate that the main channel boundary was the dominant source of sediment while the floodplains, where inundated, were the dominant sinks. Spatial variability in channel–floodplain hydrological connectivity leads to dis‐connectivity in the downstream transfer of sediments between reaches and affected sediment storage on adjacent floodplains. Consideration of such variability for even the most extreme flood events, highlights the need to carefully consider non‐linear changes in key variables such as channel capacity and flood conveyance in the development of a quantitative ‘connectivity index’. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
The temporal and spatial dynamics of groundwater was investigated in a small catchment in the Spanish Pyrenees, which was extensively used for agriculture in the past. Analysis of the water table fluctuations at five locations over a 6‐year period demonstrated that the groundwater dynamics had a marked seasonal cycle involving a wetting‐up period that commenced with the first autumn rainfall events, a saturation period during winter and spring and a drying‐down period from the end of spring until the end of the summer. The length of the saturation period showed great interannual variability, which was mainly influenced by the rainfall and evapotranspiration characteristics. There was marked spatial variability in the water table, especially during the wetting‐up period, which could be related to differences in slope and drainage area, geomorphology, soil properties and local topography. Areas contributing to runoff generation were identified within the catchment by field mapping of moisture conditions. Areas contributing to infiltration excess runoff were correlated with former cultivated fields affected by severe sheetwash erosion. Areas contributing to saturation excess runoff were characterized by a marked spatial dynamics associated with catchment wetness conditions. The saturation spatial pattern, which was partially related to the topographic index, was very patchy throughout the catchment, suggesting the influence of other factors associated with past agricultural activities, including changes in local topography and soil properties. The relationship between water table levels and stream flow was weak, especially during the wetting‐up period, suggesting little connection between ground water and the hydrological response, at least at some locations. The results suggest that in drier and human‐disturbed environments, such as sub‐Mediterranean mountains, saturation patterns cannot be represented only by the general topography of the catchment. They also suggest that groundwater storage and runoff is not a succession of steady‐state flow conditions, as assumed in most hydrological models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
This paper presents preliminary results from the application of a transfer‐function rainfall–runoff model to ephemeral streams in Mediterranean Spain. Flow simulations have been conducted for two small catchments (Carraixet and Poyo basins), located in close proximity to one another yet with significantly different geological characteristics. Analysis of flow simulations for a number of high‐flow events has revealed the dominant influence of the rainfall on the catchment response, particularly for high‐rainfall events. Particular success has been attained modelling the highest magnitude events in both catchments and for all events in the faster responding (Poyo) catchment. In order to investigate the viability of the model for forecasting floods in ungauged catchments, additional investigations have been conducted by calibrating the model for one catchment (donor catchment) and then applying it to another (receptor catchment). The results indicate that this can be successful when either the donor catchment is a fast response catchment or when the model is calibrated using a high‐magnitude event in the donor catchment, providing that the modelled receptor catchment event is of a lower magnitude. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
15.
基于组件式GIS的太湖流域洪涝灾害评估系统   总被引:4,自引:0,他引:4  
太源流域洪涝灾害评估系统是太湖流域防汛决策支持系统的一个重要组成部分,对准、及时地预测预报和评估太湖流域洪涝灾情,为防汛抗洪、抢险救灾提供科学依据具有重要的意义,本文从GIS应用开发的角度,系统介绍了GIS软件的技术体系,系统的技术框架,空间数据库的特点和作用以及系统的主要功能。  相似文献   

16.
A rising exposure to flood risk is a predicted consequence of increased development in vulnerable areas and an increase in the frequency of extreme weather events due to climate change. In the face of this challenge, a continued reliance on engineered at‐a‐point flood defences is seen as both unrealistic and undesirable. The contribution of ‘soft engineering’ solutions (e.g. riparian forests, wood in rivers) to integrated, catchment scale flood risk management has been demonstrated at small scales but not larger ones. In this study we use reduced complexity hydrological modelling to analyse the effects of land use and channel changes resulting from river restoration upon flood flows at the catchment scale. Results show short sections of river‐floodplain restoration using engineered logjams, typical of many current restoration schemes, have highly variable impacts on catchment‐scale flood peak magnitude and so need to be used with caution as a flood management solution. Forested floodplains have a more general impact upon flood hydrology, with areas in the middle and upper catchment tending to show reductions in peak magnitude at the catchment outflow. The most promising restoration scenarios for flood risk management are for riparian forest restoration at the sub‐catchment scale, representing 20–40% of the total catchment area, where reductions in peak magnitude of up to 19% are observed through de‐synchronization of the timings of sub‐catchment flood waves. Sub‐catchment floodplain forest restoration over 10–15% of total catchment area can lead to reductions in peak magnitude of 6% at 25 years post‐restoration. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Upland agricultural land management activities such as grazing, vegetation burning, and bare ground restoration impact hydrological elements of headwater catchments, many of which may be important for downstream flood peaks (e.g., overland flow and soil water storage). However, there is poor understanding of how these management practices affect river flow peaks during high magnitude rainfall events. Using the distributed TOPMODEL, spatial configurations of land management were modelled to predict flood response in an upland catchment, which contains different regions operating subsidized agricultural stewardship schemes. Heavy grazing leading to soil compaction and loss of vegetation cover in stewardship regions covering 79.8% of the catchment gave a 42‐min earlier flow peak, which was 82.2% higher (under a 1‐hr 15‐mm storm) than the current simulated hydrograph. Light grazing over the same regions of the catchment had much less influence on river flow peaks (18 min earlier and 32.9% increase). Rotational burning (covering 8.8% of the catchment), most of which is located in the headwater areas, increased the peak by 3.2% in the same rainfall event. Vegetation restoration with either Eriophorum or Sphagnum (higher density) in bare areas (5.8%) of the catchment provided a reduction of flood peak (3.9% and 5.2% in the 15‐mm storm event), whereas the same total area revegetated with Sphagnum in riparian regions delivered a much larger decrease (15.0%) in river flow peaks. We show that changes of vegetation cover in highly sensitive areas (e.g., near‐stream zones) generate large impacts on flood peaks. Thus, it is possible to design spatially distributed management systems for upland catchments, which reduce flood peaks while at the same time ensuring economic viability for upland farmers.  相似文献   

19.
A geochemical and end‐member mixing analysis (EMMA) is undertaken in Devil Canyon catchment, located in southern California, to further understanding of watershed behaviour and source water contributions after an acute and extensive wildfire. Physical and chemical transformations in post‐fire watersheds are known to increase overland flow and decrease infiltration, mainly due to formation of a hydrophobic layer at, or near, the soil surface. However, less is known about subsurface flow response in burned watersheds. The current study incorporates EMMA to evaluate and quantify source water contributions before, and after, a catchment affected by wildfires in southern California during the fall of 2003. Pre‐ and post‐fire stream water data were available at several sampling sites within the catchment, allowing the identification of contributing water sources at varying spatial scales. Proposed end‐member observations (groundwater, overland flow, shallow subsurface flow) were also collected to constrain and develop the catchment mixing model. Post‐fire source water changes are more evident in the smaller and faster responding sub‐basin (interior sampling point). Early post‐fire storm events are dominated by overland flow with no significant soil water or groundwater flow contribution. Inter‐storm streamwater in this smaller basin shows an increase in groundwater and a decrease in soil water. In the larger, baseflow‐dominated system, source water components appear less affected by fire. A slight increase in lateral flow is observed with only a slight decrease in baseflow. Changes in the post‐fire flow regimes affect nutrient loading and chemical response of the basin. Relatively rapid recovery of the chaparral ecosystem is evidenced, with active re‐growth and evapotranspiration evidenced by the fourth post‐fire rainy season. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The composition and amount of colloidal and suspended participate matter transported during a small flood event in Magela Creek in tropical northern Australia was investigated. The flood studied constituted approximately 3 % of the total annual flow, most (90%) of which occurred between mid-January and mid-February of the study year. Three fractions were separated from water samples using a sequential method involving a continuous flow centrifuge to separate suspended particulate matter (SPM; nominally > 1 μm) followed by hollow fibre filtration, first using a 0.1 μm filter to separate course colloidal matter (CCM; nominal size 1–0.1 μm) and then a 0–015 μm filter to separate fine colloidal matter (FCM; nominal size 0.1–0.015 μm). The SPM was predominantly inorganic (organic matter 21 %), whereas the colloidal fractions were dominantly organic matter (CCM 60%; FCM 83%). Analysis of individual particles using electron microprobe and automated image analysis indicated that the mineral fractions in both the SPM and CCM were dominated by iron-enriched aluminosilicates (including kaolinite) (72–82%) and quartz (9–10%), indicative of a highly weathered and extensively laterized catchment. Surprisingly there was very little difference in the composition of the SPM or CCM fractions during the flood event studied, which may indicate either that sediment availability was restricted following the major run-off events in January and February, or that all the sediment sources within the catchment are geochemically similar. Approximately the same amounts of particulate (20 tonne), colloidal (21 tonne) and dissolved material (17 tonne) were transported during the 25 hour period of the main flood peak; over 90% of the colloidal matter was 0.1–1.0 μm in size. These data suggest that previous estimates of the amounts of particulate (and colloidal) matter transported by Magela Creek, which were based on suspended solids measurements, may have underestimated the particulate matter load by as much as 50%. It is possible that the relatively high proportion of colloidal matter is unique to Magela Creek because coagulation and aggregation of colloidal matter to particulate matter is slow due to the very low concentations of calcium and magnesium in these waters. However, if the result is more widespread, there are important implications for the global estimates of fluvially transported particulate and dissolved materials as many of the previous studies may have underestimated the particulate load and overestimated the dissolved load.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号