首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxygen isotope fractionation between rutile and water   总被引:1,自引:0,他引:1  
Synthetic rutile-water fractionations (1000 ln α) at 775, 675, and 575° C were found to be ?2.8, ?3.5, and ?4.8, respectively. Partial exchange experiments with natural rutile at 575° C and with synthetic rutile at 475° C failed to yield reliable fractionations. Isotopic fractionation within the range 575–775° C may be expressed as follows: 1 $$1000\ln \alpha ({\rm T}i{\rm O}_{2 } - H_2 O) = - 4.1 \frac{{10^6 }}{{T_{k^2 } }} + 0.96$$ . Combined with previously determined quartz-water fractionations, the above data permit calibration of the quartz-rutile geothermometer: 1 $$1000\ln \alpha ({\text{S}}i{\rm O}_{2 } - Ti{\rm O}_{2 } ) = 6.6 \frac{{10^6 }}{{T_{k^2 } }} - 2.9$$ . When applied to B-type eclogites from Europe, as an example, the latter equation yields a mean equilibration temperature of 565° C.  相似文献   

2.
Astronomy Reports - We present the detection and characterization of the ultrahot Jupiter WASP-121b ( $${{R}_{p}} \simeq 1.865{\kern 1pt} {{R}_{J}}$$ , $${{M}_{p}} \simeq 1.184{\kern 1pt}...  相似文献   

3.
The linear thermal expansions of åkermanite (Ca2MgSi2O7) and hardystonite (Ca2ZnSi2O7) have been measured across the normal-incommensurate phase transition for both materials. Least-squares fitting of the high temperature (normal phase) data yields expressions linear in T for the coefficients of instantaneous linear thermal expansion, $$\alpha _1 = \frac{1}{l}\frac{{dl}}{{dT}}$$ for åkermanite: $$\begin{gathered} \alpha _{[100]} = 6.901(2) \times 10^{ - 6} + 1.834(2) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 2.856(1) \times 10^{ - 6} + 11.280(1) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ for hardystonite: $$\begin{gathered} \alpha _{[100]} = 15.562(5) \times 10^{ - 6} - 1.478(3) \times 10^{ - 8} T \hfill \\ \alpha _{[100]} = - 11.115(5) \times 10^{ - 6} + 11.326(3) \times 10^{ - 8} T \hfill \\ \end{gathered} $$ Although there is considerable strain for temperatures within 10° C of the phase transition, suggestive of a high-order phase transition, there appears to be a finite ΔV of transition, and the phase transition is classed as “weakly first order”.  相似文献   

4.
We present results of the analysis of photometric and spectroscopic observations of the young stellar complexes in the late giant spiral galaxy UGC 11973. Photometric analysis in the $$UBVRI$$ bands have been carried out for the 13 largest complexes. For one of them, metallicity of the surrounding gas $$Z = 0.013 \pm 0.005$$ , the mass $$M = (4.6 \pm 1.6) \times {{10}^{6}}{\kern 1pt} {{M}_{ \odot }}$$ , and the age of the stellar complex $$t = (2.0 \pm 1.1) \times {{10}^{6}}$$ yr were evaluated, using spectroscopic data. It is shown that all complexes are massive ( $$M \geqslant 1.7 \times {{10}^{5}}{\kern 1pt} {{M}_{ \odot }}$$ ) stellar groups younger than $$3 \times {{10}^{8}}$$ yr.  相似文献   

5.
This paper presents a design approach for strip footings upon glacier ice. Safety against ultimate limit state is proved by the geotechnical slip-line field solution by Prandtl. Glacier ice at 0°C can be modelled as purely cohesive material. Statistical evaluation of uniaxial compression tests with high strain rate revealed a mean value of the cohesion of 600 kPa and a characteristic value c k = 355 kPa (5% fractile). With a coefficient of variation V c = 0.3, the partial safety factor turns out to be γ c = 1.9. An approximate solution for estimating the creep settlement rate is presented to check the serviceability limit state: with the width b of the strip foundation, p the foundation pressure and for ice at 0°C. Experiences on Stubai glacier with grate shaped footings showed that creep settlements occurring per year due to maximum foundation pressures 250 kPa did not influence the operation and the maintenance of the cable cars.  相似文献   

6.
Equations of state of Plagioclase Feldspars   总被引:2,自引:1,他引:1  
The volume variation with pressure of seven intermediate plagioclase feldspars has been determined by high-pressure single-crystal X-ray diffraction. The bulk moduli of plagioclases for a 3rd-order Birch-Murnaghan EoS can be described by the following pair of equations:
with for plagioclase with X An <20 and for X An >35. These parameters can also be used in a Murnaghan EoS to describe the volume variation of plagioclase feldspars up to pressures of 3 GPa. For a Murnaghan EoS with , the values of the bulk moduli can be described by a single equation, , with a small loss in the accuracy of the predicted volumes up to pressures of 3 GPa.Editorial responsibility: T.L. GroveAn erratum to this article can be found at  相似文献   

7.
The standard enthalpies of formation of FeS (troilite), FeS2 (pyrite), Co0.9342S, Co3S4 (linnaeite), Co9S8 (cobalt pentlandite), CoS2 (cattierite), CuS (covellite), and Cu2S (chalcocite) have been determined by high temperature direct reaction calorimetry at temperatures between 700 K and 1021 K. The following results are reported: $$\Delta {\rm H}_{f,FeS}^{tr} = - 102.59 \pm 0.20kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,FeS}^{py} = - 171.64 \pm 0.93kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_{0.934} S} = - 99.42 \pm 1.52kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_9 S_8 }^{ptl} = - 885.66 \pm 16.83kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Co_3 S_4 }^{In} = - 347.47 \pm 7.27kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,CoS_2 }^{ct} = - 150.94 \pm 4.85kJ mol^{ - 1} ,$$ $$\Delta {\rm H}_{f,Cu_2 S}^{cc} = - 80.21 \pm 1.51kJ mol^{ - 1} ,$$ and $$\Delta {\rm H}_{f,CuS}^{cv} = - 53.14 \pm 2.28kJ mol^{ - 1} ,$$ The enthalpy of formation of CuFeS2 (chalcopyrite) from (CuS+FeS) and from (Cu+FeS2) was determined by solution calorimetry in a liquid Ni0.60S0.40 melt at 1100 K. The results of these measurements were combined with the standard enthalpies of formation of CuS, FeS, and FeS2, to calculate the standard enthalpy of formation of CuFeS2. We found \(\Delta {\rm H}_{f,CuFeS_2 }^{ccp} = - 194.93 \pm 4.84kJ mol^{ - 1}\) . Our results are compared with earlier data given in the literature; generally the agreement is good and our values agree with previous estimates within the uncertainties present in both.  相似文献   

8.
The thermodynamic stability constants for the hydrolysis and formation of mercury (Hg2+) chloride complexes
have been used to calculate the activity coefficients for Hg(OH) n (2–n)+ and HgCl n (2–n)+ complexes using the Pitzer specific interaction model. These values have been used to determine the Pitzer parameters for the hydroxide and chloro complexes and C ML). The values of and have been determined for the neutral complexes (Hg(OH)2 and HgCl2). The resultant parameters yield calculated values for the measured values of log to  ±0.01 from I  =  0.1 to 3 m at 25°C. Since the activity coefficients of and are in reasonable agreement with the values for Pb(II), we have estimated the effect of temperature on the chloride constants for Hg(II) from 0 to 300°C and I = 0–6 m using the Pitzer parameters for complexes. The resulting parameters can be used to examine the speciation of Hg(II) with Cl in natural waters over a wide range of conditions.  相似文献   

9.
Geochemical potential field is defined as the scope within the earth’s space where a given component in a certain phase of a certain material system is acted upon by a diffusion force, depending on its spatial coordinatesX, Y andZ. The three coordinates follow the relations: $$NF_{ix} = - \frac{{\partial \mu }}{{\partial x}}, NF_{iy} = - \frac{{\partial \mu }}{{\partial y}}, NF_{iz} = - \frac{{\partial \mu }}{{\partial z}}$$ The characteristics of such a field can be summarized as: (1) The summation of geochemical potentials related to the coordinatesX, Y, Z, or pseudo-velocity head, pseudo-pressure head and pseudo-potential head of a certain component in the earth is a constant as given by $$\mu _x + \mu _y + \mu _z = c$$ or $$\mu _{x2} + \mu _{y2} + \mu _{z2} = \mu _{x1} + \mu _{y1} + \mu _{z1} $$ Derived from these relations is the principle of geochemical potential conservation. The following relations have the same physical significance: $$\mu _k + \mu _u + \mu _p = c$$ or $$\mu _{k2} + \mu _{u2} + \mu _{p2} = \mu _{k1} + \mu _{u1} + \mu _{p1} $$ (2) Geochemical potential field is a vector field quantified by geochemical field intensity which is defined as the diffusion force applied to one molecular volume (or one atomic volume) of a certain component moving from its higher concentration phase to lower concentration phase. The geochemical potential field intensity is given by $$\begin{gathered} E = - grad\mu \hfill \\ E = \frac{{RT}}{x}i + \frac{{RT}}{y}j + \frac{{RT}}{z}K \hfill \\ \end{gathered} $$ The present theory has been inferred to interpret the mechanism of formation of some tungsten ore deposits in China.  相似文献   

10.
The search for compact components of strong ($${{S}_{{{\text{int}}}}} \geqslant 5$$ Jy at 102.5 MHz) discrete radio sources from the Pushchino catalogue was carried out using the method of interplanetary scintillation. A total of 3620 sources were examined, and 812 of them were found to harbor compact (scintillating) components. Estimates of fluctuations of the flux density of these compact components were derived from the scintillation index ($${{m}_{{\max}}}$$) corresponding to an elongation of 25°. The angular size and compactness of 178 sources with compact components were estimated. Scintillation indices of sources corresponding to the compact component ($${{m}_{0}}$$) and flux densities of compact components were determined. It was demonstrated that slow variations of the spatial distribution of interplanetary plasma, which are related to the 11-year cycle of solar activity, may exert a systematic influence on the estimates of angular sizes of sources. Coefficients compensating the deviation from the spherical symmetry of solar wind in the estimates of angular sizes were found using the coefficient of asymmetry of the statistical distribution of intensity fluctuations. The study of correlations between the parameters of sources in the sample revealed that the maximum value of the scintillation index decreases as the integrated flux increases, while the angular size has no marked dependence on the integrated flux.  相似文献   

11.
The data of Reed (1983) are analysed to produce the following empirical equations for the amplitude p 0 (overall fluctuation) in Pascals of the air pressure wave associated with a volcanic eruption of volume V km3 or a nuclear explosion of strength M Mt: Here s is the distance from the source in km. $$\begin{gathered} \log _{10} p_0 = 4.44 + \log _{10} V - 0.84\log _{10} s \hfill \\ {\text{ }} = 3.44 + \log _{10} M - 0.84\log _{10} s. \hfill \\ \end{gathered} $$ Garrett's (1970) theory is examined on the generation of water level fluctuations by an air pressure wave crossing a water depth discontinuity such as a continental shelf. The total amplitude of the ocean wave is determined to be where c 2 1 = gh 1, c 2 2 = gh 2, g is acceleration of gravity, h 1 and h 2 are the water depths on the ocean and shore side of the depth discontinuity, c is the speed of propagation of the air pressure wave, and ? is the water density. $$B = \left[ {\frac{{c_2^2 }}{{c^2 - c_2^2 }} + \frac{{c^2 (c_1 - c_2 )}}{{(c - c_1 )(c^2 - c_2^2 )}}} \right]\frac{{p_0 }}{{g\varrho }}$$ It is calculated that a 10 km3 eruption at Mount St. Augustine would cause a 460 Pa air pressure wave and a discernible water level fluctuation at Vancouver Island of several cm amplitude.  相似文献   

12.
Solubility experiments were conducted for the dissolution reaction of brucite, Mg(OH)2 (cr): Experiments were conducted from undersaturation in deionized (DI) water and 0.010–4.4 m NaCl solutions at 22.5°C. In addition, brucite solubility was measured from supersaturation in an experiment in which brucite was precipitated via dropwise addition of 0.10 m NaOH into a 0.10 m MgCl2 solution also at 22.5°C. The attainment of the reversal in equilibrium was demonstrated in this study. The solubility constant at 22.5°C at infinite dilution calculated from the experimental results from the direction of supersaturation by using the specific interaction theory (SIT) is: with a corresponding value of 17.0 ± 0.2 (2σ) when extrapolated to 25°C. The dimensionless standard chemical potential (μ°/RT) of brucite derived from the solubility data in 0.010 m to 4.4 m NaCl solutions from undersaturation extrapolated to 25°C is −335.76 ± 0.45 (2σ), with the corresponding Gibbs free energy of formation of brucite, , being −832.3 ± 1.1 (2σ) kJ mol−1. In combination with the auxiliary thermodynamic data, the is calculated to be 17.1 ± 0.2 (2σ), based on the above Gibbs free energy of formation for brucite. This study recommends an average value of 17.05 ± 0.2 in logarithmic unit as solubility constant of brucite at 25°C, according to the values from both supersaturation and undersaturation. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.  相似文献   

13.
Opening and resetting temperatures in heating geochronological systems   总被引:2,自引:0,他引:2  
We present a theoretical model for diffusive daughter isotope loss in radiochronological systems with increasing temperature. It complements previous thermochronological models, which focused on cooling, and allows for testing opening and resetting of radiochronometers during heating. The opening and resetting temperatures are, respectively,
where R is the gas constant, E and D 0 are the activation energy and the pre-exponential factor of the Arrhenius law for diffusion of the daughter isotope, a the half-size of the system (radius for sphere and cylinder and half-thickness for plane sheet) and τ the heating time constant, related to the heating rate by
For opening and resetting thresholds corresponding to 1 and 99% loss of daughter isotope, respectively, the retention parameters for sphere, cylinder and plane sheet geometries are A op = 1.14 × 105, 5.07 × 104 and 1.27 × 104 and A rs = 2.40, 1.37 and 0.561. According to this model, the opening and resetting temperatures are significantly different for most radiochronometers and are, respectively, lower and higher than the closure temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
We present the first high accuracy UBVRI(RI)c CCD light curves of the newly discovered eclipsing system PS UMa = GSC 4375 1733 ($$P = 9_{·}^{d}27$$, $$V = 12_{·}^{m}42$$). The photometric solutions are found, the physical parameters of the components are derived. The eccentricity of the orbit was found to be negligible e = 0.074, which made it difficult to measure the rate of the apsidal rotation. High accuracy of our observations allowed us to find the reliable parameters of the system. Components (Sp = F7 + G1) have advanced significantly in their evolution, the age of the system is 2.4 billion years. The mass and the radius of G1 component is larger and it is ahead of the F7 component in its evolution. The model of the system best suits the theory in the absence of the overshooting in the core. Obtained from our observations photometrical parallax π = 0$$_{.}^{\prime\prime }$$00102(2) coincides with GAIA DR2 value $$\pi =0_{·}^{\prime\prime }00106(3)$$ within their errors. The new EW type variable with period $$ \approx {\kern 1pt} 0_{·}^{d}40$$ was found in the field of PS UMa.  相似文献   

15.
The role of municipal solid waste (MSW) landfill leachate on the genesis of minor amounts of pyrite associated with gypsum in an otherwise predominantly evaporitic sequence was studied in geological and geochemical terms. The potential association between landfill leachate and the conditions required for bacterial reduction of sulfate and fixation of H2S as pyrite were examined. The lithological column was generally found to contain little or no Fe. The δ34S values for sulfates were consistent with previously reported data; however, the measured δ18O values were slightly higher. Sulfides disseminated in the marl/lutite exhibited higher δ34S values (≈−8‰) than gypsum-coating pyrite crystals (δ34S < −30‰). Dissolution of gypsum to sulfate and the supply of metabolizable organic matter and Fe required for H2S fixation as sulfides may have originated from landfill leachate. Intermittent availability of leachate, a result of the precipitation regime, can facilitate sulfur disproportionation and lead to fractionations as high as   相似文献   

16.
The density ρ of Caspian Sea waters was measured as a function of temperature (273.15–343.15) K at conductivity salinities of 7.8 and 11.3 using the Anton-Paar Densitometer. Measurements were also made on one of the samples (S = 11.38) diluted with water as a function of temperature (T = 273.15–338.15 K) and salinity (2.5–11.3). These latter results have been used to develop an equation of state for the Caspian Sea (σ = ±0.007 kg m−3)
where ρ0 is the density of water and the parameters A, B and C are given by
Measurements of the density of artificial Caspian Sea water at 298.15 K agree to ± 0.012 kg m−3 with the real samples. These results indicate that the composition of Caspian Sea waters must be close to earlier measurements of the major components. Model calculations based on this composition yield densities that agree with the measured values to ± 0.012 kg m−3. The new density measurements are higher than earlier measurements. This may be related to a higher concentration of dissolved organic carbon found in the present samples (500 μM) which is much higher than the values in ocean waters (~65 μM).  相似文献   

17.
Uranium mineralization in the El Erediya area, Egyptian Eastern Desert, has been affected by both high temperature and low temperature fluids. Mineralization is structurally controlled and is associated with jasperoid veins that are hosted by a granitic pluton. This granite exhibits extensive alteration, including silicification, argillization, sericitization, chloritization, carbonatization, and hematization. The primary uranium mineral is pitchblende, whereas uranpyrochlore, uranophane, kasolite, and an unidentified hydrated uranium niobate mineral are the most abundant secondary uranium minerals. Uranpyrochlore and the unidentified hydrated uranium niobate mineral are interpreted as alteration products of petscheckite. The chemical formula of the uranpyrochlore based upon the Electron Probe Micro Analyzer (EPMA) is . It is characterized by a relatively high Zr content (average ZrO2 = 6.6 wt%). The average composition of the unidentified hydrated uranium niobate mineral is , where U and Nb represent the dominant cations in the U and Nb site, respectively. Uranophane is the dominant U6+ silicate phase in oxidized zones of the jasperoid veins. Kasolite is less abundant than uranophane and contains major U, Pb, and Si but only minor Ca, Fe, P, and Zr. A two-stage metallogenetic model is proposed for the alteration processes and uranium mineralization at El Erediya. The primary uranium minerals were formed during the first stage of the hydrothermal activity that formed jasperoid veins in El Eradiya granite (130–160 Ma). This stage is related to the Late Jurassic–Early Cretaceous phase of the final Pan-African tectono-thermal event in Egypt. After initial formation of El Erediya jasperoid veins, a late stage of hydrothermal alteration includes argillization, dissolution of iron-bearing sulfide minerals, formation of iron-oxy hydroxides, and corrosion of primary uranium minerals, resulting in enrichment of U, Ca, Pb, Zr, and Si. During this stage, petscheckite was altered to uranpyrochlore and oxy-petscheckite. Uranium was likely transported as uranyl carbonate and uranyl fluoride complexes. With change of temperature and pH, these complexes became unstable and combined with silica, calcium, and lead to form uranophane and kasolite. Finally, at a later stage of low-temperature supergene alteration, oxy-petscheckite was altered to an unidentified hydrated uranium niobate mineral by removal of Fe.  相似文献   

18.
Demianski  M.  Doroshkevich  A.  Larchenkova  T.  Pilipenko  S. 《Astronomy Reports》2020,64(11):883-893
Astronomy Reports - A comparison of the virial parameters of galaxies and galaxy clusters (radius, density, and entropy function) in a wide range of masses, $${{10}^{6}} \leqslant...  相似文献   

19.
Mechanisms of hydrogen incorporation and diffusion in iron-bearing olivine   总被引:1,自引:1,他引:0  
The incorporation and diffusion of hydrogen in San Carlos olivine (Fo90) single crystals were studied by performing experiments under hydrothermal conditions. The experiments were carried out either at 1.5 GPa, 1,000°C for 1.5 h in a piston cylinder apparatus or at 0.2 GPa, 900°C for 1 or 20 h in a cold-seal vessel. The oxygen fugacity was buffered using Ni–NiO, and the silica activity was buffered by adding San Carlos orthopyroxene powders. Polarized Fourier transform infrared (FTIR) spectroscopy was utilized to quantify the hydroxyl distributions in the samples after the experiments. The resulting infrared spectra reproduce the features of FTIR spectra that are observed in olivine from common mantle peridotite xenoliths. The hydrogen concentration at the edges of the hydrogenated olivine crystals corresponds to concentration levels calculated from published water solubility laws. Hydrogen diffusivities were determined for the three crystallographic axes from profiles of water content as a function of position. The chemical diffusion coefficients are comparable to those previously reported for natural iron-bearing olivine. At high temperature, hydrogenation is dominated by coupled diffusion of protons and octahedrally coordinated metal vacancies where the vacancy diffusion rate limits the process. From the experimental data, we determined the following diffusion laws (diffusivity in m2 s−1, activation energies in kJ mol−1): for diffusion along [100] and [010]; for diffusion along [001]. These diffusion rates are fast enough to modify significantly water contents within olivine grains in xenoliths ascending from the mantle.  相似文献   

20.
Fractionation of yttrium (Y) and the rare earth elements (REEs) begins in riverine systems and continues in estuaries and the ocean. Models of yttrium and rare earth (YREE) distributions in seawater must therefore consider the fractionation of these elements in both marine and riverine systems. In this work we develop a coupled riverine/marine fractionation model for dissolved rare earths and yttrium, and apply this model to calculations of marine YREE fractionation for a simple two-box (riverine/marine) geochemical system. Shale-normalized YREE concentrations in seawater can be expressed in terms of fractionation factors ( ij ) appropriate to riverine environments ( ) and seawater ( ):
where and are input-normalized total metal concentrations in seawater and is the ratio of total dissolved Y in riverwater before and after commencement of riverine metal scavenging processes. The fractionation factors ( ij ) are calculated relative to the reference element, yttrium, and reflect a balance between solution and surface complexation of the rare earths and yttrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号