首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Astronomy Reports - We performed a three-dimensional numerical MHD simulation of the flow structure in the asynchronous polar CD Ind during the switching phases between the magnetic poles of the...  相似文献   

2.
Dynamo waves approaching the solar poles are analyzed in the Parker approximation taking into account meridional circulation. Asymptotic solutions of the equations describing the generation of the magnetic field are constructed. It is shown in which cases the effect of meridional circulation results in traveling dynamo waves both incident on and reflected from the pole, or in a superposition of standing dynamo waves.  相似文献   

3.
We have performed three-dimensional magnetohydrodynamical calculations of stream accretion in cataclysmic variable stars for which the white dwarf primary possesses a strong, complex magnetic field. These calculations were motivated by observations of polars: cataclysmic variables containing white dwarfs with magnetic fields sufficiently strong to prevent the formation of an accretion disk. In this case, an accretion stream flows from the L1 point and impacts directly onto one or more spots on the surface of the white dwarf. Observations indicate that the white dwarfs in some binaries possess complex (non-dipolar) magnetic fields. We performed simulations of ten polars, with the only variable being the azimuthal angle of the secondary with respect to the white dwarf. These calculations are also applicable to asynchronous polars, where the spin period of the white dwarf differs by a few percent from the orbital period. Our results are equivalent to calculating the structure of one asynchronous polar at ten different spin-orbit beat phases. Our models have an aligned dipolar plus quadrupolar magnetic field centered on the whitedwarf primary. We find that, with a sufficiently strong quadrupolar component, an accretion spot arises near the magnetic equator for slightly less than half our simulations, while a polar accretion zone is active for most of the remaining simulations. For two configurations, accretion at a dominant polar region and in an equatorial zone occurs simultaneously. Most polar studies assume that the magnetic field is dipolar, especially for single-pole accretors. We demonstrate that, with the orbital parameters and magnetic-field strengths typical of polars, the accretion flow patterns can vary widely in the case of a complex magnetic field. This may make it difficult formany polars to determine observationally whether the field is pure dipolar or is more complex, but there shoulid be indications for some systems. In particular, a complex magnetic field should be suspected if there is an accretion zone near the white dwarf’s equator (assumed to be in the orbital plane) or if there are two or more accretion regions that cannot be fitted by dipolar magnetic field. Magnetic-field constraints are expected to be substantially stronger for asynchronous polars, with clearer signs of complex field geometry due to changes in the accretion flow structure as a function of azimuthal angle. These indications become clearer in asynchronous polars because each azimuthal angle corresponds to a different spin-orbit beat phase.  相似文献   

4.
Abstract

Four oroclinal structures have been identified from structural, magnetic and gravity trends across a Carboniferous continental arc, forearc basin [Tamworth Belt (TB)] and conjugate accretionary complex in the southern New England Orogen (SNEO) of eastern Australia. None of the structures has yet been confirmed conclusively by paleomagnetism as oroclinal. Ignimbrites are common within the forearc basin and have been demonstrated to retain primary magnetisations despite prevalent overprinting. They are well exposed across six major tectono-stratigraphic blocks with partly interlinked stratigraphies, making the forearc basin highly prospective to oroclinal testing by comparing pole path segments for individual blocks across curved structures. Paleomagnetic studies have shown no noticeable rotation across the western/southwestern TB (Rocky Creek, Werrie and Rouchel blocks), but documented herein is a minor counter-clockwise rotation of the Gresford Block of the southern TB. This study details paleomagnetic, rock magnetic and magnetic fabric results for 87 sites (969 samples) across the southern Gresford Block. Predominantly thermal, also alternating field and liquid nitrogen, demagnetisations show a widely present low-temperature overprint, attributed to regional late Oligocene weathering, and high-temperature primary and overprint components residing in both mainly magnetite and mainly hematite carriers. Subtle, but systematic, directional differences between magnetite and hematite subcomponents show the latter as the better cleaned, better-defined, preferred results, detailing nine primary poles of middle and late Carboniferous ages and Permian and Permo-Triassic overprints as observed elsewhere in the western/southwestern TB. The primary poles update a poorly defined mid-Carboniferous section of the SNEO pole path and demonstrate counter-clockwise rotation, quantified at about 15° ± 13° from comparison of mid-Carboniferous Martins Creek Ignimbrite Member poles for the Rouchel and Gresford blocks, that may not necessarily have been completed prior to the Hunter–Bowen phase of the Gondwanide Orogeny. This minor counter-clockwise rotation of the Gresford Block accentuates a primary curvature of the southwestern/southern TB and heralds further, more complex, rotations of the Myall Block of the southeastern TB.  相似文献   

5.
Time and tectonic processes involved in docking of the Argentine Precordillera (Cuyania terrane) against SW Gondwana has been a matter of much debate. A paleomagnetic study on the Early Caradoc Pavón Formation, exposed in the San Rafael block, province of Mendoza, Argentina, is presented. After detailed thermal and alternating field demagnetizations two geologically significant magnetic components were defined. A widespread post-tectonic component (A) is present in most sites of the Pavón Formation, with dual polarities, and is coincident with the characteristic remanence isolated from a Permo-Triassic rhyolitic dome intruding the sediments. Its pole position (83.7°S, 271.0°E, dp = 6.8°, dm = 9.0° N = 11 sites) falls on the Late Permian-Early Triassic South American reference poles suggesting that this component was acquired during the Choiyoi magmatic phase. A second component (B) also shows dual polarities and a positive fold test suggesting a primary origin. Unblocking temperatures and rock magnetic experiments indicate that B is carried either by hematite or magnetite at different sites. Anisotropy of magnetic susceptibility results suggest a depositional fabric and no remanence distortion due to deformation or compaction. A paleomagnetic pole computed from this remanence (PV) falls on 3.6°N, 346.4°E (dp = 2.9°, dm = 4.6° n = 22 samples). It indicates a paleolatitude around 26°S for deposition of Pavón sediments and constrains the paleogeographic evolution of Cuyania during the Ordovician, which was still at subtropical latitudes by the Early Caradoc. PV is consistent with the Laurentian Late Ordovician reference pole if Cuyania remains attached to SE Laurentia for the Early Caradoc, while it shows a significant cw rotation with no paleolatitude anomaly respect to the Gondwana reference pole when kept in its present position in SW South America. These comparisons are interpreted in three possible alternatives for the paleogeographic and tectonic setting of Cuyania in the Late Ordovician.  相似文献   

6.
We present a comprehensive paleomagnetic study on Paleoproterozoic (2173–2060 Ma) plutonic and metamorphic rocks from French Guiana, representative of the full range of the main Transamazonian tectonothermal steps. Twenty-seven groups of directions and poles were obtained from combination of 102 sites (613 samples) based on age constraint, similar lithology and/or geographical proximity. Paleomagnetic results show variations between rocks of different ages which are supposed to be characteristic of magnetizations acquired during uplift and cooling of successive plutonic pulses and metamorphic phases. This is also reinforced by positive field tests (baked contact and reversal tests). Recent U/Pb and Pb/Pb on zircon and complementary 40Ar/39Ar on amphibole and biotite allow questioning the problem of magnetic ages relative to rock formation ages. Estimated magnetic ages, based on amphibole dating as a proxy, enable us to construct a Guiana Shield apparent polar wander path for the 2155–1970 Ma period. It is also possible to present paleolatidudinal evolution and continental drift rates related to specific Transamazonian tectonic regimes.French Guiana and probably the Guiana Shield were located at the Equator from ca. 2155 to 2130 Ma during the Meso-Rhyacian D1 magmatic accretion phase, related to subduction of Eorhyacian oceanic crust. After closure of the Eorhyacian Ocean and collision of West African and Amazonian plates, the Guiana Shield moved. The first evolution towards 60° latitude, occurs after 2080 Ma, during the Neorhyacian D2a post collisional sinistral transcurrent phase. During the Late Rhyacian D2b phase, up to 2050 Ma, the Guiana Shield reaches the pole and starts to move to lower latitudes on an opposite meridian. By the Orosirian D2c phase, from ca. 2050 to 1970 Ma, the Guiana Shield reaches the Equator.Based on the amphibole 40Ar/39Ar dates, we estimate the continental drift between 12 and 16 cm/y for the Meso to Late Rhyacian period followed by a lower rate between 9 and 14 cm/y up to Orosirian time. This study highlights rock ages and magnetic ages are prerequisite to any continental reconstruction especially when it is shown continental drift is important for a 100–200 Ma time period. Our results confirm the possibility of APWP construction on Paleoproterozoic plutonic rocks but suggest improvement will rely on the combination with multidisciplinary approaches such as structural geology and multi-method radiometric dating.  相似文献   

7.
Jin Tian  Yue Li 《Natural Hazards》2014,72(2):633-650
Based on a system dynamics (SD) model of long-term cost-effectiveness of power pole maintenance over 50 years, the influence of factors that affect cost-effectiveness was examined. Taking a typical region subjected to hurricanes (i.e., Miami-Dade County, USA) as a case, the SD model was established and tested with scenarios of power poles maintenance strategies. Factors such as wind speed variation (due to climate change), regional annual growth rate of the pole population, and discount rate were explored. It was shown that changing the parameters for these factors results in the following: The variation of wind speed due to climate change produces a negative impact on cost-effectiveness under the given replacement strategy; the factors of wind speed and annual growth rate of poles have a significant influence on the replacement ratio of poles particularly in the later period such as later 30 years; similarly, the discount rate has a marked impact on cumulative cost in the later decades. The difference between the contribution of factors is more significant in the later stages of the design life. The simulation results indicate how the change of these factors can lead to an impact on cost-effectiveness over time. The results have meaningful strategy implications, allowing an optimization of the timing of maintenance and a focus on different critical factors at various time periods.  相似文献   

8.
Structural, magnetic and gravity trends of the southern New England Orogen (SNEO) indicate four oroclinal structures, none conclusively confirmed paleomagnetically. Curved structures of the Tamworth Belt (TB)—a continental forearc exposed across six tectono-stratigraphic blocks with interlinked Carboniferous stratigraphies and extensive ignimbritic rocks known to retain primary magnetisations despite prevalent overprinting—are prospective to oroclinal testing through comparison of Carboniferous pole paths for individual blocks. Pole paths (a) have been established for the Rocky Creek and Werrie blocks (northwestern/western TB), (b) are described herein for the Rouchel Block (southwestern TB), and (c) are forthcoming for the Gresford and Myall blocks (southern/southeastern TB). The Rouchel path derives from detailed paleomagnetic, rock magnetic and magnetic fabric studies. Thermal, alternating field and liquid nitrogen demagnetisations show a low-temperature overprint, attributed to late Oligocene weathering, and high-temperature (HT) primary and overprint components in both magnetite and hematite carriers, showing slight, systematic, directional differences with hematite providing the better cleaned site poles. Seven primary mean-site poles of Tournaisian and mainly Visean age and three overprint poles show six positive fold tests, five at 95% or higher confidence levels. Two dispersed groupings of intermediate (IT) and HT overprint site poles of Permian and Permo-Triassic age are attributed to early and late phases in oroclinal evolution of the SNEO. HT and IT/HT overprint site poles of mid-Carboniferous age are attributed to Variscan Australia–Asia convergence. Individual pole paths for the Rocky Creek, Werrie and Rouchel blocks show no noticeable rotation between them, indicating primary curvature for the southwestern TB. Their integrated SNEO pole path establishes a reference frame for determining rotations of the southern and southeastern TB.  相似文献   

9.
Jin Tian  Yue Li 《Natural Hazards》2014,70(2):1263-1285
This paper presents a system dynamics-based method to evaluate the cost-effectiveness of mitigation strategies for the replacement of power distribution poles subjected to hurricanes. The method demonstrates how the performance of poles distributed over a certain region, as well as the cost of maintenance and replacement, varies with time. Compared to a static assessment, the dynamic analysis provides more information for decision-making about replacement strategies, e.g., the changing trend of cost and performance in a period, and thus a potential trade-off between short-term and long-term benefits. Also, some variables and features that play an important role in cost-effectiveness are examined using sensitivity analysis, so that refinement of pole replacement strategies can be made. The model depicts the systemic and dynamic natures of long-term cost-effectiveness of pole maintenance and assists in the development of a better replacement strategy for multipole systems. In a case study, the model was applied to a typical region subjected to hurricanes, i.e., Miami-Dade County in Florida, USA. The simulation results from the model led to a maintenance strategy optimization that included both selection of class of poles and ways of replacement.  相似文献   

10.
通过模型磁异常分解,结合功率谱分析及异常振幅计算场源深度并判断场源分布平面位置,表明小波多尺度分析在位场分离中的有效性.将该方法应用于北衙铁金矿区磁异常分析解释,通过功率谱分析估算了各阶细节及四阶逼近的场源深度,结合不同深度异常振幅推断了磁源空间展布关系特征.分析表明,区内北部和西部强磁异常主要由矿体引起,且矿体在中深部产状发生改变;而东部大范围磁异常区主要为二叠系玄武岩所致.  相似文献   

11.
R. Van der Voo  R.B. French 《Earth》1974,10(2):99-119
We present a compilation of reliable paleomagnetic pole positions from five continental plates (North America, Europe, the Iberian Peninsula, Africa, and South America) for ten time intervals ranging from Late Carboniferous to Eocene. Only well-dated results obtained by demagnetization techniques have been used. Paleomagnetic poles are plotted with respect to the paleo-positions of the continents, as reconstructed from correlations of marine magnetic anomalies in the Atlantic Ocean by Pitman and Talwani and from the fit by Bullard et al. The poles from North America, Europe and the younger poles from Africa show a very good grouping for most of the ten intervals considered, and a continuous apparent polar wandering path is obtained. These data have been used to construct paleolatitude maps for most intervals; thus the relative positions of the continents were established from sea-floor spreading data and their absolute positions on the globe were determined from paleomagnetic data. The older data from South America and the other Gondwana continents show a systematic deviation from those of the northern continents for Late Paleozoic and Early Triassic time periods. An explanation is offered in a different continental reconstruction between Laurasia and Gondwanaland before Middle Triassic times.  相似文献   

12.
柬埔寨王国位于低纬度地区,地质勘查程度较低,地面高精度磁测技术能够快速获取磁异常信息,进行找矿评价。在低纬度地区磁化方向主要以水平磁化为主,磁性体产生的磁异常以负磁异常为主。本文通过对柬埔寨王国Mesam金矿磁测数据进行倒相180°、化赤和低纬度化极处理对比,认为三种处理方法得到的结果都能够完整地反映磁场分布特点,在不能忽略剩磁影响的低纬度地区对实测数据进行低纬度化极后再进行解释更加贴近真实且细节更加丰富。通过对低纬度化极后的磁异常进行水平总梯度模和小波多尺度分解计算等位场异常处理,认为磁异常水平总梯度模计算能够较好地反映深部地质体的边界范围,小波多尺度分解计算能够提取特定深度地质体的空间信息,在该区选取的磁异常处理技术是有效的,为进一步扩大该金矿区远景储量提供了新的思路。  相似文献   

13.
扶永铭  田宪模 《物探与化探》1998,22(5):394-400,378
将磁偶极子在导电水平圆柱体的场分解为单磁极的一次场、二次场、柱内场、柱外场。然后,由两个单磁极的场叠加而得到磁偶极子的场,并编程序对总场的频率响应函数的虚实分量二次磁场分别做了计算。  相似文献   

14.
The lattice preferred orientation (LPO) of an anorthosite (composed of andesine) sampled from a highly deformed anorthositic mylonite (Grenville Province, Quebec) was measured by TOF neutron diffraction and SEM-EBSD. The quantitative texture analysis of neutron data was accomplished by using the Rietveld texture analysis with the WIMV algorithm, implemented in the program package Materials Analysis Using Diffraction (MAUD). The texture calculations of the EBSD data were performed by using the program BEARTEX. Analyses from neutron and electron diffraction data gave similar results if EBSD data are smoothed to account for grain statistics. The principal pole figures show (010) roughly parallel to the rock foliation, (001) poles exhibiting a low angle (25°) to the pole to foliation, and (100) poles close to the Y-direction (perpendicular to the lineation and foliation pole). The [100] crystallographic direction shows a maximum in the lineation direction, [010] directions concentrate near the foliation pole. The geological deformation conditions and the constructed pole figure patterns indicate that the preferred orientation could be attributed to intracrystalline slip dominantly on (010) with [100] as slip direction. Elastic properties, calculated by averaging, document weak anisotropy that has implications for the seismic structure of the lower crust.  相似文献   

15.
A new combined magnetic database and a magnetic-profile map are developed for the Eurasia Basin as a result of adjusting all available historical and recent Russian and American magnetic data sets. The geohistorical analysis of magnetic data includes several steps: identification of linear magnetic anomalies along each trackline, calculation of the Euler rotation pole positions for the relative motion of the North American and Eurasian plates, analysis of temporal and spatial variations in the spreading rate, and plate reconstructions. The pattern of key Cenozoic magnetic isochrons (24, 20, 18, 13, 6, 5, 2a) is constructed for the entire Eurasia Basin. In the western half of the basin, this pattern is consistent with a recently published scheme [16]. In its eastern half, magnetic isochrons are determined in detail for the first time and traced up to the Laptev Sea shelf. The main stages in the seafloor spreading are established for the Eurasia Basin. Each stage is characterized by a specific spreading rate and the degree of asymmetry of the basin opening. The revealed differences are traced along the Gakkel Ridge. Systematic patterns in wandering of the Eurasia Basin opening pole are established for particular stages. The continent-ocean transition zone corresponding to the primary rupture between plates is outlined in the region under consideration on the basis of gravimetric data. The nature of different potential fields and bottom topography on opposite sides of the Gakkel Ridge is discussed. The characteristic features of the basin-bottom formation at main stages of its evolution are specified on the basis of new and recently published data. The results obtained are in good agreement with plate geodynamics of the North Atlantic and the adjacent Arctic basins.  相似文献   

16.
《China Geology》2023,6(2):269-284
This paper report paleomagnetic data from late Cretaceous diorite dykes that sub-vertically intrude granodiorites in the eastern Gangdese belt near the city of Lhasa. Our research goals are to provide further constraints on pre-collisional structure of the southern margin of Asia and the onset of the India-Asia collision. Magnetite is identified as the main magnetic carrier in our study. The magnetite shows no evidence of metamorphism or alteration as determined from optical and scanning electron microscope observations. A strong mineral orientation is revealed by anisotropy of magnetic susceptibility analysis both for the intruded dykes and the country rocks. The authors interpret this AMS fabric to have formed during intrusion rather than deformation. Fifteen of 23 sites yield acceptable site mean characteristic remanences with dual polarities. A scatter analysis of the virtual geomagnetic poles suggests that the mean result adequately averaged paleosecular variation. The paleomagnetic pole from the Gangdese dykes yields a paleolatitude of 14.3°N±5.8°N for the southern margin of Asia near Lhasa. The paleolatitude corresponds to an in-between position of the Lhasa terrane during about 130–60 Ma. Furthermore, the mean declination of the characteristic remanent magnetization reveals a significant counterclockwise rotation of 18°±9° for the sampling location since about 83 Ma. In the light of tectonic setting of the dykes, the strike of the southern margin of Asia near Lhasa is restored to trend approximately about 310°, which is compatible with the hypothesis that the southern margin of Eurasia had a quasi-linear structure prior to its collision with India.©2023 China Geology Editorial Office.  相似文献   

17.
在老矿区重新开展物探测量,往往受到许多干扰和限制,而利用以往物探数据进行数据处理,推断深部存在矿体的可能性,不失为一种有效的研究思路。文章以河北迁安马兰庄铁矿区为例,将原有磁法数据进行化极、小波多尺度分解、上延、功率谱计算场源近似深度等处理,预测在已探明铁矿体的下方还有磁性体存在;经验证钻孔证实,深部确有厚大的磁铁矿体,为老矿山新增了地质储量,研究成果成为利用以往磁法勘探资料寻找深部厚大铁矿体的成功实例。  相似文献   

18.
Granulite facies tonalitic gneiss, mafic granulite and late metadolerite dykes from Bremer Bay in the Mesoproterozoic Albany Mobile Belt yield palaeomagnetic remanence that were acquired between ca 1.2 Ga and 1.1 Ga. A well‐constrained pole (66.6°N, 303.7°E) fits the ca 1.2 Ga part of the Precambrian Australian apparent polar wander path. This pole is in agreement with the high‐latitude position of Australia at ca 1.2–1.1 Ga shown on some Rodinia reconstructions. More data are required before any significance can be attributed to a second, poorly defined pole (41.8°S, 243.7°E) that falls at some distance from the ca 0.8 Ga part of the Australian apparent polar wander path. Magnetic anisotropy measurements from all samples except late granite dykes indicate northeast‐southwest elongation (i.e. parallel to the local trend of the orogenic belt) and northwest‐southeast contraction. This is in agreement with the orientation of principal strain axes deduced from structures formed during late stages of ductile deformation. The mean magnetic fabric lineation (long axis of the strain ellipsoid) is subparallel to a mineral elongation lineation and the axes of late upright to inclined folds. Short axes of the strain ellipsoid determined from magnetic fabric measurements are in a similar orientation to poles to the axial surfaces of these folds and to the associated cleavage. This mean shortening axis bisects late conjugate ductile shear zones that overprint the folds. This study has shown that structurally complex high‐grade gneisses and intrusive rocks with variable timing relationships may yield meaningful palaeomagnetic results for late stages of metamorphism. Magnetic anisotropy analysis is also seen to be a valuable tool in providing principal strain directions for late ductile deformation.  相似文献   

19.
A detailed rock magnetic and paleomagnetic study was performed on samples from the Neoproterozoic Itajaí Basin in the state of Santa Catarina, Brazil, in order to better constrain the paleogeographic evolution of the Rio de la Plata craton between 600 and 550 Ma. However, rock magnetic properties typical of remagnetized rocks and negative response in the fold test indicated that these rocks carried a secondary chemical remanent magnetization. After detailed AF and thermal cleaning, almost all samples showed a normal polarity characteristic remanent magnetization component close to the present geomagnetic field. The main magnetic carriers are magnetite and hematite, probably of authigenic origin. The mean paleomagnetic pole of the Itajaí Basin is located at Plat = − 84°, Plong = 97.5° (A95 = 2°) and overlaps the lower Cretaceous segment of the apparent polar wander path of South America, suggesting a cause and effect with the opening of the South Atlantic Ocean. A compilation of remagnetized paleomagnetic poles from South America is presented that highlights the superposition of several large-scale remagnetization events between the Cambrian and the Cretaceous. It is suggested that some paleomagnetic poles used to calibrate the APWP of Gondwana at Precambrian times need to be revised; the indication of remagnetized areas in southern South America may offer some help in the selection of sites for future paleomagnetic investigations in Precambrian rocks.  相似文献   

20.
A paleomagnetic study of Late Mesozoic dolente dykes and sills and Paleozoic sediments from Spitsbergen, the main island of the Svalbard Archipelago, gives the position of the pole in the Late Mesozoic and Paleozoic as distinct from the corresponding poles of Europe and North America. The Paleozoic pole is to the south of corresponding poles for Europe and North America. The data suggest that Svalbard has moved independently of Europe and North America at least in the Late Mesozoic, and thus might behave as a microplate or block.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号