共查询到20条相似文献,搜索用时 0 毫秒
1.
The Hillgrove gold–antimony deposit is hosted in late Palaeozoic, biotite-grade metasedimentary rocks and Permo-Carboniferous granitoid intrusions of the New England Orogen. Mineralisation occurred at a range of structural levels during rapid uplift in the orogen at 255–245 Ma. Hydrothermal fluids were controlled by extensional faults in a regional-scale sinistral strike-slip fault system. Principal faults in this system were developed in, and possibly evolved from, mylonite zones which were active during Late Permian tectonics. Earliest mineralisation formed scheelite-bearing quartz veins, and these were followed by auriferous arsenopyrite–pyrite–quartz–carbonate veins with minor base metal sulphides. This latter type was accompanied by sericitisation and carbonation of the host rock, with addition of sulphur, arsenic and gold, in zones up to 20 m from veins. Quartz–stibnite veins with electrum, gold, aurostibite, and arsenopyrite form a prominent and economically important hydrothermal type, with little wall-rock alteration but extensive hydrothermal breccia formation and local open-space filling textures. Below a mining depth of 300–500 m, this type passes over a short distance downwards into stibnite-poor gold-bearing veins. Late-stage carbonate–stibnite veins with gold and silver sulphosalts cut all earlier veins, and have open-space filling textures. Aspects of the Hillgrove deposit have similarities to many other orogenic gold deposits in the SW Pacific which have been formed at different structural levels. Hillgrove is distinctive in having evidence for mineralisation at this wide range of structural levels in the one deposit, formed progressively during syn-orogenic uplift.
Editorial handling: N. White 相似文献
2.
At Sams Creek, a gold-bearing, peralkaline granite porphyry dyke, which has a 7 km strike length and is up to 60 m in thickness, intrudes camptonite lamprophyre dykes and lower greenschist facies metapelites and quartzites of the Late Ordovician Wangapeka formation. The lamprophyre dykes occur as thin (< 3 m) slivers along the contacts of the granite dyke. δ18Omagma values (+5 to +8‰, VSMOW) of the A-type granite suggest derivation from a primitive source, with an insignificant mature crustal contribution. Hydrothermal gold–sulphide mineralisation is confined to the granite and adjacent lamprophyre; metapelite country rocks have only weak hydrothermal alteration. Three stages of hydrothermal alteration have been identified in the granite: Stage I alteration (high fO2) consisting of magnetite–siderite±biotite; Stage II consisting of thin quartz–pyrite veinlets; and Stage III (low fO2) consisting of sulphides, quartz and siderite veins, and pervasive silicification. The lamprophyre is altered to an ankerite–chlorite–sericite assemblage. Stage III sulphide veins are composed of arsenopyrite + pyrite ± galena ± sphalerite ± gold ± chalcopyrite ± pyrrhotite ± rutile ± graphite. Three phases of deformation have affected the area, and the mineralised veins and the granite and lamprophyre dykes have been deformed by two phases of folding, the youngest of which is Early Cretaceous. Locally preserved early-formed fluid inclusions are either carbonic, showing two- or three-phases at room temperature (liquid CO2-CH4 + liquid H2O ± CO2 vapour) or two-phase liquid-rich aqueous inclusions, some of which contain clathrates. Salinities of the aqueous inclusions are in the range of 1.4 to 7.6 wt% NaCl equiv. Final homogenisation temperatures (Th) of the carbonic inclusions indicate minimum trapping temperatures of 320 to 355°C, which are not too different from vein formation temperatures of 340–380°C estimated from quartz–albite stable isotope thermometry. δ18O values of Stage II and III vein quartz range from +12 and +17‰ and have a bimodal distribution (+14.5 and +16‰) with Stage II vein quartz accounting for the lower values. Siderite in Stage III veins have δ18O (+12 to +16‰) and δ13C values (−5‰, relative to VPDB), unlike those from Wangapeka Formation metasediments (δ13Cbulk carbon values of −24 to −19‰) and underlying Arthur Marble marine carbonates (δ18O = +25‰ and δ13C = 0‰). Calculated δ18Owater (+8 to +11‰, at 340°C) and
(−5‰) values from vein quartz and siderite are consistent with a magmatic hydrothermal source, but a metamorphic hydrothermal origin cannot be excluded. δ34S values of sulphides range from +5 to +10‰ (relative to CDT) and also have a bimodal distribution (modes at +6 and +9‰, correlated with Stage II and Stage III mineralisation, respectively). The δ34S values of pyrite from the Arthur Marble marine carbonates (range from +3 to +13‰) and Wangapeka Formation (range from −4 to +9.5‰) indicate that they are potential sources of sulphur for sulphides in the Sams Creek veins. Another possible source of the sulphur is the lithospheric mantle which has positive values up to +14‰. Ages of the granite, lamprophyre, alteration/mineralisation, and deformation in the region are not well constrained, which makes it difficult to identify sources of mineralisation with respect to timing. Our mineralogical and stable isotope data does not exclude a metamorphic source, but we consider that the source of the mineralisation can best be explained by a magmatic hydrothermal source. Assuming that the hydrothermal fluids were sourced from crystallisation of the Sams Creek granite or an underlying magma chamber, then the Sams Creek gold deposit appears to be a hybrid between those described as reduced granite Au–Bi deposits and alkaline intrusive-hosted Au–Mo–Cu deposits. 相似文献
3.
K. C. Hill R. D. Kendrick P. V. Crowhurst P. A. Gow 《Australian Journal of Earth Sciences》2013,60(4):737-752
In New Guinea, the upper crust is rich in Late Miocene and Pliocene copper‐gold deposits, yet the host intrusives are mainly in the New Guinea Fold Belt and are of mantle origin and not directly subduction‐related. Structural, thermochronological and geodynamic analyses of the Grasberg, Porgera, Ok Tedi and Frieda River deposits show that the richest deposits occur along the eastern edge of the intersections between long‐lived crustal transfers perpendicular to strike and strike‐parallel crustal extensional faults that were strongly inverted during Late Miocene ‐ Pliocene orogenesis. The deposits are all associated with north‐northeast‐trending transfers, parallel to the aeromagnetic grain in basement, across which the continent‐ocean suture shows >50 km horizontal separation, as identified by the southern limit of the central New Guinea ophiolites. In the fold belt, the transfers coincide with the termination of regional anticlines or uplifts that are 150–200 km long and 30–60 km wide. Balanced sections reveal that the southern limit of these regional anticlines is commonly fault‐bound and coincides with major facies and thickness changes, indicating long‐lived, crustal extensional faults that were inverted. Fission track and 40Ar/39Ar cooling ages show that mineralisation occurred during inversion of these faults and, hence, correlates with propagation of orogenesis from northeast to southwest. It is proposed that the pre‐compression New Guinea margin comprised step‐like promontories and embayments delineated by long‐lived crustal fracture zones, as on Australia's North West Shelf. During Late Miocene ‐ Pliocene compression the crust was thickened, accompanying melting of the underlying mantle, and the crustal fracture zones were reactivated as transfers. Where the transfers intersected crustal extensional faults that were being inverted, local zones of dilation occurred, allowing emplacement of mantle magmas and associated mineralisation. When the deformation propagated southwards, so did the crustal thickening and the reactivation of major faults, allowing emplacement of younger magmas and mineralisation. 相似文献
4.
Incidences of landsliding and gullying are prevalent in parts of southeastern Nigeria. It is proposed here that the apparent susceptibility of the geologic formations to landsliding and gullying may indeed derive substantially from the effects of palæo- and neotectonic features. Tertiary palæotectonics created regional cuestas, joints and faults that now determine the pace of gully erosion. Recent tectonics and seismic effects cause ground vibrations that initiate movement on the marginally stable slopes. It is observed that southeastern Nigeria has climatic and land-use characteristics which are very similar to those of southwestern Nigeria, as well as being underlain by similar Tertiary formations, yet gully erosion and landslides are much less common in the latter. This is ascribed to the differences in the palæotectonic setting. Recent case incidences of tectonics-related disasters are presented. 相似文献
5.
Idu–Karmo of the federal capital territory, Abuja, is located within the weathered basement aquifers of Northern Nigeria. Fifteen groundwater samples obtained were analysed for their major ionic components. The physical properties show that the water is slightly acidic to neutral (6.0–7.0) and has moderate to very high values of electrical conductivity (155–2230 µS/cm).The dominant hydrochemical facies of groundwater is the Ca–Cl2 groundwater type. Irrigation parameters measured include: SAR which ranges from 0.12 to 1.06; TH which ranges from 0.8 to 196; KR ranges from 0.03 to 0.42; PI which ranges from 46 to 199; and RSC ranges from ??131.90 to 3.43. These parameters (SAR, total hardness, Kelly’s ratio, permeability index and residual sodium carbonate) show that the water is suitable for agricultural purpose except for the magnesium ratio which has a high unsuitability for irrigation, probably due to the presence of ferro-magnesian minerals contained in the calc-alkaline basement rocks of the Idu–Karmo area. The results of the geochemical survey reveal major ionic components are in the order Cl??>?HCO3??>?NO3??>?SO42? and Mg2+?>?Ca2+?>?Na+?>?K+. Comparison with WHO and APHA standards shows that all the ionic concentrations satisfy all permissible limits for drinking purpose except for elevated concentrations of nitrate which probably may have arisen from poor handling of domestic wastes, leakages from nearby septic tanks/soak-away and the excessive use of fertilisers. Qualitatively, treatment is required especially on the nitrate-contaminated areas to make the water fit for drinking and irrigation. 相似文献
6.
We carried out experiments on crystallization of Fe-containing melts FeS2Ag0.1–0.1xAu0.1x (x = 0.05, 0.2, 0.4, and 0.8) with Ag/Au weight ratios from 10 to 0.1. Mixtures prepared from elements in corresponding proportions were heated in evacuated quartz ampoules to 1050 ºC and kept at this temperature for 12 h; then they were cooled to 150 ºC, annealed for 30 days, and cooled to room temperature. The solid-phase products were studied by optical and electron microscopy and X-ray spectroscopy. The crystallization products were mainly from iron sulfides: monoclinic pyrrhotite (Fe0.47S0.53 or Fe7S8) and pyrite (Fe0.99S2.01). Gold–silver sulfides (low-temperature modifications) are present in all synthesized samples. Depending on Ag/Au, the following sulfides are produced: acanthite (Ag/Au = 10), solid solutions Ag2–xAuxS (Ag/Au = 10, 2), uytenbogaardtite (Ag/Au = 2, 0.75), and petrovskaite (Ag/Au = 0.75, 0.12). They contain iron impurities (up to 3.3 wt.%). Xenomorphic micro- (<1–5 μm) and macrograins (5–50 μm) of Au–Ag sulfides are localized in pyrite or between the grains of pyrite and pyrrhotite. High-fineness gold was detected in the samples with initial ratio Ag/Au ≤ 2. It is present as fine and large rounded microinclusions or as intergrowths with Au–Ag sulfides in pyrite or, more seldom, at the boundary of pyrite and pyrrhotite grains. This gold contains up to 5.7 wt.% Fe. Based on the sample textures and phase relations, a sequence of their crystallization was determined. At ~1050 ºC, there are probably iron sulfide melt L1 (Fe,S ? Ag,Au), gold–silver sulfide melt L2 (Au,Ag,S ? Fe), and liquid sulfur LS. On cooling, melt L1 produces pyrrhotite; further cooling leads to the crystallization of high-fineness gold (macrograins from L1 and micrograins from L2) and Au–Ag sulfides (micrograins from L1 and macrograins from L2). Pyrite crystallizes after gold–silver sulfides by the peritectic reaction FeS + LS = FeS2 at ~743 ºC. Elemental sulfur is the last to crystallize. Gold–silver sulfides are stable and dominate over native gold and silver, especially in pyrite-containing ores with high Ag/Au ratios. 相似文献
7.
Assessment of heavy metals contamination in deposited street dusts in different urbanized areas in the city of Ma’an, Jordan 总被引:1,自引:1,他引:1
Omar Ali Al-Khashman 《Environmental Earth Sciences》2013,70(6):2603-2612
190 Street dust samples were collected from nine different localities including high traffic (desert highway), moderate traffic (city center), light traffic (minor streets), residential streets, school gardens, hospital and health centers, industrial sites, parks and background sites (control) of Ma’an area. The concentrations of Fe, Zn, Ni, Pb, Mn, Cu and Cd were analyzed by flame atomic absorption spectrophotometer to assess and to compare road dust contamination levels of metals among the different types of urban environment. The results showed that dust samples from the urban and industrial site contained significant levels of the metals studied compared to the values obtained from the background site. The variation in concentration of the heavy metals determined from different locations was in the decreasing order as: industrial > high traffic > parks > moderate traffic > hospital and health centers > school gardens > light traffic > background sites. The mean concentrations of the metals were in the order of C Fe > C Zn > C Ni > C Pb > C Mn > C Cu > C Cd where C is the concentration of these metals in solution. Enrichment factor calculations indicated that Cd, Pb, Zn and Ni were highly enriched. Fossil fuel combustion, wear of brake lining materials, traffic emissions and several industrial processes are considered the main sources of these metals. Assessment of the contamination level in dust sample was estimated based on the geoaccumulation index (I geo), the pollution index, and integrated pollution index (IPI). The values of IPI are in the following order: Pb > Zn > Cu > Ni > Cd > Mn. All the indices for the metals under consideration were either low or corresponded to middle level of contamination. The use of factor analysis showed that anthropogenic activities seem to be the responsible source of contamination for metals in dust samples. 相似文献
8.
Basem A. Zoheir 《Mineralium Deposita》2008,43(1):79-95
The Betam gold deposit, located in the southern Eastern Desert of Egypt, is related to a series of milky quartz veins along
a NNW-trending shear zone, cutting through pelitic metasedimentary rocks and small masses of pink granite. This shear zone,
along with a system of discrete shear and fault zones, was developed late in the deformation history of the area. Although
slightly sheared and boudinaged within the shear zone, the auriferous quartz veins are characterised by irregular walls with
a steeply plunging ridge-in-groove lineation. Shear geometry of rootless intra-folial folds and asymmetrical strain shadows
around the quartz lenses suggests that vein emplacement took place under a brittle–ductile shear regime, clearly post-dating
the amphibolite-facies regional metamorphism. Hydrothermal alteration is pervasive in the wallrock metapelites and granite
including sericitisation, silicification, sulphidisation and minor carbonatisation. Ore mineralogy includes pyrite, arsenopyrite
and subordinate galena, chalcopyrite, pyrrhotite and gold. Gold occurs in the quartz veins and adjacent wallrocks as inclusions
in pyrite and arsenopyrite, blebs and globules associated with galena, fracture fillings in deformed arsenopyrite or as thin,
wire-like rims within or around rhythmic goethite. Presence of refractory gold in arsenopyrite and pyrite is inferred from
microprobe analyses. Clustered and intra-granular trail-bound aqueous–carbonic (LCO2 + Laq ± VCO2) inclusions are common in cores of the less deformed quartz crystals, whereas carbonic (LCO2 ± VCO2) and aqueous H2O–NaCl (L + V) inclusions occur along inter-granular and trans-granular trails. Clathrate melting temperatures indicate low
salinities of the fluid (3–8 wt.% NaCl eq.). Homogenisation temperatures of the aqueous–carbonic inclusions range between
297 and 323°C, slightly higher than those of the intra-granular and inter-granular aqueous inclusions (263–304°C), which are
likely formed during grain boundary migration. Homogenisation temperatures of the trans-granular H2O–NaCl inclusions are much lower (130–221°C), implying different fluids late in the shear zone formation. Fluid densities
calculated from aqueous–carbonic inclusions along a single trail are between 0.88 and 0.98 g/cm3, and the resulting isochores suggest trapping pressures of 2–2.6 kbar. Based on the arsenopyrite–pyrite–pyrrhotite cotectic,
arsenopyrite (30.4–30.7 wt.% As) associated with gold inclusions indicates a temperature range of 325–344°C. This ore paragenesis
constrains f
S2 to the range of 10−10 to 10−8.5 bar. Under such conditions, gold was likely transported mainly as bisulphide complexes by low salinity aqueous–carbonic fluids
and precipitated because of variations in pH and f
O2 through pressure fluctuation and CO2 effervescence as the ore fluids infiltrated the shear zone, along with precipitation of carbonate and sericite. Wallrock
sulphidation also likely contributed to destabilising the gold–bisulphide complexes and precipitating gold in the hydrothermal
alteration zone adjacent to the mineralised quartz veins. 相似文献
9.
Carbonate alteration at the Mulgarrie gold mine in the Eastern Goldfields of Western Australia, is represented by porphyroblasts, veins and pervasive, texturally destructive, carbonatisation. Two foliations, S1M and S2M, were produced by two separate deformation events at the mine‐scale, D1M and D2M. D1M and D2M both occurred in response to regional D2 tectonism. Carbonate alteration was the product of two separate episodes of fluid ingress: the earlier produced magnesite and the latter Fe‐dolomite. Both periods of carbonate alteration occurred pre‐ to early syn‐D2M, when mafic to ultramafic komatiitic rocks reacted with fluids that moved along regional faults and pre‐date the alteration associated with regional peak metamorphism. Gold at Mulgarrie overprints pre‐ and late syn‐D2 quartz veins in zones of massive carbonate alteration, suggesting it has a late‐ to post‐D2 timing. This late timing agrees with the generally accepted syn‐D3 (and younger) age for gold mineralisation in the Eastern Goldfields. We suggest that carbonate alteration at Mulgarrie is not a product of the hydrothermal event responsible for the gold mineralisation. Rather, the different relative timing of magnesite, Fe‐dolomite and gold indicates there were two carbonate‐producing fluid systems and a fluid transporting the gold overprinted these. Similarly, early carbonate alteration may play a role in localising auriferous vein deposits throughout the Yilgarn and other Archaean cratons. 相似文献
10.
11.
A. Reed 《Australian Journal of Earth Sciences》2013,60(5):879-890
The Lefroy Goldfield in eastern Tasmania is anomalous in southeastern Australia because mineralised fault reefs (i.e. reefs that are also faults) strike in an easterly direction at a high angle to the predominantly northwest strike of bedding and folds. Gold mineralisation is of Early to Middle Devonian age, with reef formation coinciding with a third regionally compressive deformation event (D3), and a second phase of Tabberabberan orogenesis. Mineralised reefs are hosted by Mathinna Supergroup turbidites of Cambrian to Ordovician age and extend for up to 2 km across the boundary between the sandstone‐dominated Stony Head Sandstone and the shale‐dominated Turquoise Bluff Slate. Ore shoots in the reefs plunge moderately west and, in the Volunteer Mine, coincide with the intersection of the reef and a D1/D2 thrust contact. The subvertical orientation and discordant relationship of the mineralised reefs to bedding, as well as the lack of gold mineralisation along bedding and pre‐D3 structures, indicate that the reefs formed during a period of wrench faulting. In contrast to lode‐style deposits in Victoria, the far‐field minimum compressive stress at Lefroy during reef formation was not vertical but, rather, occupied a subhorizontal orientation. 相似文献
12.
Two‐ and three‐dimensional numerical modelling techniques, constrained by key geodynamic data, provide insights into the controls on development of porphyry‐related Cu–Au mineralisation in the Tertiary collision zone of New Guinea. Modelling shows that the creation of local dilation to facilitate magma emplacement can be caused by reactivation of arc‐normal transfer faults, where they cut the weakened fold belt. Additionally, dilation occurs where fluid overpressuring is caused by collision‐related, south‐directed fluid flow being localised into the more permeable units of the Mesozoic passive‐margin sedimentary succession. Rapid uplift and erosion, which may be a mechanism for magmatic fluid release in these systems, is shown to be greatest in the west of West Papua, where the stronger Australian crust acts as a buttress. Within the Papuan Fold Belt, uplift is greatest near the margins, where the weaker fold belt abuts the stronger crust and/or major faults have been reactivated. Increased orographically induced precipitation and erosion exposes the lower parts of the stratigraphy within or on the margins of these uplifted zones. On a smaller scale, 2–D coupled fluid‐flow ‐ thermal‐chemical modelling uses a scenario of fluid mixing to calculate metal precipitation distribution and magnitude around an individual intrusive complex. Modelling highlights the interdependence of the spatial permeability structure, the regional temperature gradient, and the geometry of the convection cells and how this impacts on the distribution of metal precipitation. 相似文献
13.
Cabral Alexandre Raphael Tupinambá Miguel Zeh Armin Lehmann Bernd Wiedenbeck Michael Brauns Michael Kwitko-Ribeiro Rogerio 《Mineralogy and Petrology》2017,111(6):807-819
Mineralogy and Petrology - The platiniferous gold–palladium belt of Minas Gerais, Brazil, forms an approximately 240-km-long, roughly north–south-trending domain that includes numerous... 相似文献
14.
15.
B. J. M. Goes 《Hydrogeology Journal》1999,7(3):294-304
The Hadejia–Nguru Wetlands are annually inundated flood plains in semi-arid northeastern Nigeria. The area has a unique ecosystem
that forms a natural barrier against the encroachment of the Sahara desert. Both the rich wetland vegetation and local farmers
using shallow tube wells depend on a groundwater mound (with a water table less than 6 m below the surface) that is present
in the unconfined aquifer under the flood-plain area. Using well records (1991–97) and a hydrogeologic profile based on piezometers
that were monitored for two years, it is shown that recharge through the annually inundated flood plains is the source of
the groundwater mound. Maintenance of the groundwater-recharge function of the flood plains depends on wet-season releases
from two large upstream dams. On the basis of a water-budget method, the mean (1991–97) wet-season unconfined groundwater
recharge in the flood-plain area between Hadejia and Nguru and in the immediate vicinity (1250 km2) is estimated to be 132 mm (range, 73–197 mm). Outflow from the unconfined flood-plain aquifer to the unconfined upland aquifer
is approximately 10% of the wet-season flood-plain recharge. The unconfined groundwater outflow from the flood-plain area
can provide a significant contribution to the present-day rural water supply in the surrounding uplands, but it does not offer
much potential for additional groundwater abstraction. In addition to outflow to the upland aquifer (∼14 mm), the distribution
of the annually recharged water volume of the shallow flood-plain aquifer is (1) domestic uses (3 mm), (2) small-scale irrigation
(∼15 mm), and (3) evapotranspiration ( 1 100 mm). Along the hydrogeologic profile, the recharge in the upland (i.e., outflow
from the unconfined flood-plain aquifer and possibly diffuse rain-fed recharge) is in balance with the water uses (i.e., domestic
uses, groundwater outflow, and evapotranspiration). The absence of a seasonal water-level trend in the two piezometers in
the upland indicates that no rain-fed recharge occurs through preferential path-way (macropore) flow.
Received, June 1998 / Revised, November 1998, January 1999 / Accepted, January 1999 相似文献
16.
Environmental Geochemistry of Mining Activities in Panzhihua Region, Southwestern China 总被引:4,自引:0,他引:4
Teng Yanguo Institute of Environmental Sciences State Key Laboratory of Water Environmental Simulation Beijing Normal University Beijing Tuo Xianguo Department of Nuclear Resources Technology Chengdu University of Technology Chengdu 《中国地质大学学报(英文版)》2001,12(4)
INTRODUCTIONMining activlties have significant envi ronmenta1 inll)ac'l ssuch as visual intrusions, dust, noise, blasting, trafflc and h}'drology (Kwolek, l999; Ripley et al., l996 ). The l)rot'csst'sof mineral extraction, processing, smelting and refinlng;1rt'never approximate to the environmental neutrality, but tht' affected areas can be ameliorated (KwoIek, l999; Klukanov;1;llltlRapant, 1999). The regions, where mining activities are I,r('sent or continuous for a long tlme, are pote… 相似文献
17.
David A. Holwell Thomas Abraham-James Reid R. Keays Adrian J. Boyce 《Mineralium Deposita》2012,47(1-2):3-21
The Kangerlussuaq region of East Greenland hosts a variety of early Tertiary extrusive and intrusive igneous rocks related to continental break up and the passage of the ancestral Iceland plume. These intrusive bodies include a number of gabbroic macrodykes, two of which—the Miki Fjord Macrodyke, and the newly discovered Togeda Macrodyke—contain Cu–PGE–Au sulphide mineralisation along their margins. Sulphides occur as disseminated interstitial blebs and rounded globules of chalcopyrite and pyrrhotite with some Fe–Ti oxides and platinum-group minerals, comprising largely Pd bismuthides and tellurides. The globules are interpreted to have formed from fractionation of trapped droplets of an immiscible Cu- and Pd-rich sulphide melt and show geopetal indicators. Sulphur isotopes imply a local crustal source of S in these from pyritic sediments of the Kangerlussuaq Basin. Thus, generation of these sulphide occurrences was controlled by local country rock type. Low Ni/Cu and Pt/Pd ratios, also present in the Platinova reefs in the Skaergaard Intrusion, indicate that early fractionation of olivine may have depleted the magma of Ni and suggest the likely presence of a large magma chamber at depth. Xenoliths of Ni-rich olivine cumulates in the Miki Fjord Macrodyke may have been sourced from such a body. The location of thus far unidentified conduit or feeder zones to the macrodykes beneath the present day surface may represent potential targets for more massive sulphide orebodies. 相似文献
18.
The Navachab gold deposit in the Damara belt of central Namibia is hosted by a near-vertical sequence of amphibolite facies
shelf-type metasediments, including marble, calc-silicate rock, and biotite schist. Petrologic and geochemical data were collected
in the ore, alteration halos, and the wall rock to evaluate transport of elements and interaction between the wall rock and
the mineralizing fluid. The semi-massive sulfide lenses and quartz–sulfide veins are characterized by a complex polymetallic
ore assemblage, comprising pyrrhotite, chalcopyrite, sphalerite, and arsenopyrite, native bismuth, gold, bismuthinite, and
bismuth tellurides. Mass balance calculations indicate the addition of up to several orders of magnitude of Au, Bi, As, Ag,
and Cu. The mineralized zones also record up to eightfold higher Mn and Fe concentrations. The semi-massive sulfide lenses
are situated in the banded calc-silicate rock. Petrologic and textural data indicate that they represent hydraulic breccias
that contain up to 50 vol.% ore minerals, and that are dominated by a high-temperature (T) alteration assemblage of garnet–clinopyroxene–K-feldspar–quartz.
The quartz–sulfide veins crosscut all lithological units. Their thickness and mineralogy is strongly controlled by the composition
and rheological behavior of the wall rocks. In the biotite schist and calc-silicate rock, they are up to several decimeters
thick and quartz-rich, whereas in the marble, the same veins are only a few millimeters thick and dominated by sulfides. The
associated alteration halos comprise (1) an actinolite–quartz alteration in the biotite schist, (2) a garnet–clinopyroxene–K-feldspar–quartz
alteration in the marble and calc-silicate rock, and (3) a garnet–biotite alteration that is recorded in all rock types except
the marble. The hydrothermal overprint was associated with large-scale carbonate dissolution and a dramatic increase in CO2 in the ore fluid. Decarbonation of wall rocks, as well as a low REE content of the ore fluid resulted in the mobilization
of the REE, and the decoupling of the LREE from the HREE. The alteration halos not only parallel the mineralized zones, but
may also follow up single layers away from the mineralization. Alteration is far more pronounced facing upward, indicating
that the rocks were steep when veining occurred. The petrologic and geochemical data indicate that the actinolite–quartz–
and garnet–clinopyroxene–K-feldspar–quartz alterations formed in equilibrium with a fluid (super-) saturated in Si, and were
mainly controlled by the composition of the wall rocks. In contrast, the garnet–biotite alteration formed by interaction with
a fluid undersaturated in Si, and was mainly controlled by the fluid composition. This points to major differences in fluid–rock
ratios and changes in fluid composition during alteration. The alteration systematics and geometry of the hydrothermal vein
system are consistent with cyclic fluctuations in fluid pressure during fault valve action.
Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. 相似文献
19.
Jon E. Bouch Jonathan Naden Thomas J. Shepherd John A. McKervey Brian Young Antony J. Benham Hilary J. Sloane 《Mineralium Deposita》2006,41(8):821-835
The North Pennine Orefield Alston Block has produced approximately 4 Mt Pb, 0.3 Mt Zn, 2.1 Mt fluorite, 1.5 Mt barite, 1 Mt witherite, plus a substantial amount of iron ore and copper ore from predominantly vein-hosted mineralisation in Carboniferous limestones. However, a significant proportion of this production (ca. 20%) came from stratabound deposits. Though much is known about the vein mineralisation, the relationship between the veins and the stratabound mineralisation is not well-understood. New petrographic, isotopic and fluid inclusion data derived from samples of stratabound mineralisation allow us to present a unified model that addresses the genesis of both the vein and stratabound styles of mineralisation. The mineralisation can be considered in terms of three episodes:
相似文献
1. | Dolomitisation and ankeritisation Limestones in the vicinity of the stratabound mineralisation were pervasively dolomitised/ankeritised, and developed vuggy porosity in the presence of a high-salinity brine consistent with fluids derived from adjacent mud and shale-filled basins. |
2. | Main stage fluorite–quartz–sulphide mineralisation Metasomatism of limestone was accompanied by brecciation, dissolution and hydrothermal karstification with modification of the existing pore system. The open space was filled with fluorite, galena, sphalerite, quartz and barite, formed in response to mixing of low-salinity sodic groundwater with high-salinity calcic brine with elevated metal contents (particularly Fe up to 7,000 ppm) relative to “normal” high total dissolved solids sedimentary brines. |
3. | Late-stage barite mineralisation paragenetically appears to represent either the waning stages or the distal portions of the main hydrothermal circulation system under cooler conditions. |
20.
Although a relationship between the occurrence of large earthquakes and the eruptions of close mud volcanoes is well known, several uncertainties remain on understanding the triggering mechanisms. In the present study, we evaluate both the static and dynamic strains induced by earthquakes in the substratum of mud volcanoes. We studied the effects of two earthquakes of M w 6.18 and 6.08 occurred in the Caspian Sea on 25 November 2000 close to Baku city, Azerbaijan. A total of 33 eruptions occurred at 24 mud volcanoes within a maximum distance of 108 km from the epicentres in the 5 years following the earthquakes. The overall eruption rate in the studied area of the 50 years before the 2000 earthquakes was 1.24 that is much smaller than the eruption rate of 6.6 of the 5 years following these earthquakes. The largest number of eruptions occurred within 2 years from the earthquakes with the highest frequency within 6 months. Our calculated earthquake-induced static effects show that crustal dilatation might have triggered only seven eruptions at a maximum distance of about 60 km from the epicentres and within 3 years. Based on our data, dynamic rather than static strain is likely to have been the dominating “promoting” factor because it affected all the studied unrest volcanoes and its magnitude was much larger. 相似文献