首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Trends in the time series of air temperature, precipitation, snow cover duration and onset of climatic seasons at ten stations in Estonia during 1951–2000 are analysed. Using the conditional Mann-Kendall test, these trends are compared with trends in the characteristics of large-scale atmospheric circulation: the NAO and AO indices, frequency of circulation forms according to the Vangengeim-Girs’ classification, and the northern hemisphere teleconnection indices. The objective of the study is to estimate the influence of trends in circulation on climate changes in Estonia. Statistically significant increasing trends in air temperature are detected in January, February, March, April and May, in winter (DJF), spring (MAM) and in the cold period (NDJFM). The trends in precipitation, as a rule, differ from station to station. Increasing trends are present during the cold half-year – from October until March – and also in June. Snow cover duration has decreased in Estonia by 17–20 days inland and by 21–36 days on the coast. The onsets of early spring and spring have shifted to an earlier date. Some important changes have occurred in the parameters of atmospheric circulation during 1951–2000. Intensity of zonal circulation, i.e. westerlies, has increased during the cold period, especially in February and March. Results of the conditional Mann-Kendall test indicate that the intensification of westerlies in winter is significantly related to climate changes in winter and also in spring. A negative trend in the East Atlantic Jet (EJ) index, i.e. the weakening of the westerlies in May has caused warming during that month. Decrease in northerly circulation, i.e. in frequency of circulation form C and in East Atlantic/West Russia teleconnection index (EW) is related to an increase in precipitation in October.  相似文献   

2.
武炳义 《大气科学》2018,42(4):786-805
北极历来是影响东亚冬季天气、气候的关键区域之一。北极表面增暖要比全球平均快2~3倍,即所谓北极的放大效应。随着全球增暖的持续以及北极海冰的持续融化,北极的生态环境正在发生显著的变化,进而可能对北半球中、低纬度的天气、气候产生影响。本文概述了有关北极海冰融化影响冬季东亚天气、气候的主要研究进展,特别是自2000年以来,北极海冰异常偏少影响东亚冬季气候变率以及极端严寒事件的可能途径、存在的科学问题,以及学术界的争论焦点。秋、冬季节是北极海冰快速形成时期,此时北极海冰对大气环流的影响要强于大气对海冰的影响。近二十年来的研究结果表明,北极海冰异常偏少,不仅影响北冰洋局地的气温和降水变化,而且通过复杂的相互作用和反馈过程,对北半球中、低纬度的天气、气候产生影响。北极海冰通过以下两个可能机制来影响东亚冬季的天气、气候:(1)北极海冰的负反馈机制;(2)由海冰异常偏少引起的平流层-对流层相互作用机制。秋、冬季节北极海冰持续异常偏少,特别是,巴伦支海-喀拉海海冰异常偏少,既可以加强冬季西伯利亚高压(东亚冬季风偏强),也可以导致冬季风偏弱。导致海冰影响不确定性的部分原因是:(1)夏季北极大气环流状态影响北极海冰异常偏少对冬季大气环流的反馈效果;(2)冬季大气环流对北极海冰异常偏少响应的位置、强度不同造成的。秋、冬季节北极海冰持续异常偏少,在适宜的条件下(例如,前期夏季北极大气环流的热力和动力条件,有利于加强北极海冰偏少对冬季大气的反馈作用),可以激发出有利于冬季亚洲大陆极端严寒过程的大气环流异常。目前学术界争论焦点主要集中在以下两个方面:(1)关于北极增暖、北极海冰融化对中纬度区域影响的争论;(2)关于1980年代后期以来,冬季欧亚大陆表面气温呈现降温趋势的原因。目前,有关北极海冰融化影响冬季欧亚大陆次季节变化以及极端天气、气候事件的过程和机制,我们认知非常有限,亟需开展深入细致的研究。  相似文献   

3.
In a warming climate, atmospheric wave activity and associated weather patterns may change, although conflicting results have been reported on this topic. Additionally, atmospheric wave changes in a future climate have mainly focused on waves of a specified spatial scale, rather than a particular spatiotemporal scale. Here, changes in the variability of Rossby waves of multiple spatiotemporal scales are analyzed using the wavenumber-frequency power spectrum, a tool commonly applied to analyze atmospheric equatorial waves. Daily 500 hPa geopotential height data over 40°–60°N from historical (1950–2005) and future (2006–2099) simulations from 20 models in the Coupled Model Intercomparison Project Phase 5 (CMIP5) under the RCP8.5 scenario were analyzed. When compared to the historical period, the late 21st century climate projections showed a decline in spectral power for both eastward and westward propagating waves with wavenumbers greater than 8 that spanned over all frequencies in all seasons, but an increase in mean power for eastward propagating waves with wavenumbers 1–7 over all frequencies was shown in winter and spring. This increase in power was accompanied by increased variance, i.e., an increased meridional extent of 500 hPa ridges and troughs, and was the result of increases in the mean number of high amplitude events and duration of activity within this wave band. These results indicate that large-scale (~ 104 km) eastward propagating weather systems may intensify with higher amplitudes for ridges and troughs, while short-scale (102–103 km) weather systems may decrease in their intensity due to reduced variability in the late 21st century under the high emissions scenario. Potential mechanisms for these changes are discussed, including enhanced Arctic warming and midlatitude-tropical interactions.  相似文献   

4.
The regional patterns of change of temperature and rainfall that might accompany a global warming due to increased carbon dioxide can be studied by experiments with theoretical models of the climate system, by reconstructing the climates of past warm epochs, and by determining the anomalies of temperature and precipitation that prevailed during years or seasons when the Arctic region was unusually warm. The current study pursues the last course, making use of the northern hemisphere meteorological data record for the period 1931–1978. Hemispheric maps of anomalies of both temperature and precipitation are presented for the 10 warmest Arctic seasons and years, and for differences between the 5 warmest and 5 coldest consecutive Arctic winters. Wintertime anomalies are generally greatest and dominate in determining the annual averages. The hemispheric temperature anomalies for these data sets are similar to those determined earlier by the first author (Williams, 1980) using 1900–1969 data, but the precipitation anomalies (for North America alone) show more variation, partly due to the method of computing the anomalies. Work reported here begun while a visitor to the National Center for Atmospheric Research. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

5.
Recently much concern has been expressed regarding the impact of an increased atmospheric CO2 concentration on climate. Unfortunately, present understanding and models of the climate system are not good enough for reliable prediction of such impacts. This paper presents an analysis of recent climate data in order to illustrate the nature of regional temperature and rainfall changes in different seasons and to provide some guidance with regard to points which might be borne in mind when scenarios of future climate (especially those taking into account human impacts) are being formulated.Since it is believed that an increased atmospheric CO2 concentration will cause a warming and models and data suggest that the Arctic is more sensitive to climatic change than other latitudes, anomalies associated with warm Arctic seasons have been studied.The regional temperature, precipitation and pressure anomalies in the northern hemisphere for the 10 warmest Arctic winters and 10 warmest Arctic summers during the last 70 years have been investigated. Even when the Arctic area is warm, there are circulation changes such that large coherent anomalies occur elsewhere, with some regions warming and some cooling. The 10 warmest Arctic winters were characterised by larger amplitude anomalies, in the Arctic and elsewhere, than the 10 warmest summers, illustrating the difference in response between seasons. The precipitation differences for the 10 warmest Arctic winters and summers show for North America large coherent areas of increase or decrease, which again differ according to season. However, in winter the differences are not statistically significant, while the differences in two areas are significant in summer.  相似文献   

6.
The role of terrestrial snow cover in the climate system   总被引:2,自引:0,他引:2  
Snow cover is known to exert a strong influence on climate, but quantifying its impact is difficult. This study investigates the global impact of terrestrial snow cover through a pair of GCM simulations run with prognostic snow cover and with all snow cover on land eliminated (NOSNOWCOVER). In this experiment all snowfall over land was converted into its liquid–water equivalent upon reaching the surface. Compared with the control run, NOSNOWCOVER produces mean-annual surface air temperatures up to 5 K higher over northern North America and Eurasia and 8–10 K greater during winter. The globally averaged warming of 0.8 K is one-third as large as the model’s response to 2 × CO2 forcing. The pronounced surface heating propagates throughout the troposphere, causing changes in surface and upper-air circulation patterns. Despite the large atmospheric warming, the absence of an insulating snow pack causes soil temperatures in NOSNOWCOVER to fall throughout northern Asia and Canada, including extreme wintertime cooling of over 20 K in Siberia and a 70% increase in permafrost area. The absence of snow melt water also affects extratropical surface hydrology, causing significantly drier upper-layer soils and dramatic changes in the annual cycle of runoff. Removing snow cover also drastically affects extreme weather. Extreme cold-air outbreaks (CAOs)—defined relative to the control climatology—essentially disappear in NOSNOWCOVER. The loss of CAOs appears to stem from both the local effects of eliminating snow cover in mid-latitudes and a remote effect over source regions in the Arctic, where −40°C air masses are no longer able to form.  相似文献   

7.
Studies dealing with impact of the Arctic warming and related sea ice decline on the Northern Hemisphere atmospheric circulation are considered. The causes of occurrence of extremely cold winters over the mid-latitude continents observed in the recent decades against the warming background are discussed. Several conceptions are outlined which explain potential reasons for occurrence of this phenomenon. The paper discusses impacts of the Arctic sea ice loss on the large-scale atmospheric circulation, oscillations of planetary waves. It also discusses issues related to sea ice changes in the Barents and Kara seas and their link to the frequency of extremely cold winters observed in Eurasia and North America, the contribution of internal atmospheric variability to the increasing frequency of cold weather, and the role of the Atlantic Multidecadal Oscillation in the Arctic sea ice reduction.  相似文献   

8.
Alaskan Arctic waters have participated in hemispheric-wide Arctic warming over the last two decades at over two times the rate of global warming. During 2008–13, this relative warming occurred only north of the Bering Strait and the atmospheric Arctic front that forms a north–south thermal barrier. This front separates the southeastern Bering Sea temperatures from Arctic air masses. Model projections show that future temperatures in the Chukchi and Beaufort seas continue to warm at a rate greater than the global rate, reaching a change of +4℃ by 2040 relative to the 1981–2010 mean. Offshore at 74°N, climate models project the open water duration season to increase from a current average of three months to five months by 2040. These rates are occasionally enhanced by midlatitude connections. Beginning in August 2014, additional Arctic warming was initiated due to increased SST anomalies in the North Pacific and associated shifts to southerly winds over Alaska, especially in winter 2015–16. While global warming and equatorial teleconnections are implicated in North Pacific SSTs, the ending of the 2014–16 North Pacific warm event demonstrates the importance of internal, chaotic atmospheric natural variability on weather conditions in any given year. Impacts from global warming on Alaskan Arctic temperature increases and sea-ice and snow loss, with occasional North Pacific support, are projected to continue to propagate through the marine ecosystem in the foreseeable future. The ecological and societal consequences of such changes show a radical departure from the current Arctic environment.  相似文献   

9.
Climatic impacts of historical wetland drainage in Switzerland   总被引:1,自引:0,他引:1  
The effects of historical land-use and land-cover changes on the climate of the Swiss Plateau in the different seasons were investigated. In the 19th century, a civil engineering project was initiated to reshape the lake and river system on the Swiss Plateau in order to ban the frequent flooding during extreme weather events. The landscape modifications consisted primarily of a conversion of wetlands with extended peat soils into a highly productive agricultural landscape. Historical maps (1800–1850) served as a basis for the reconstruction of the past land use. The “Lokal-Modell” of the Consortium for Small-Scale Modelling was used to conduct eight one-month long high-resolution simulations (1.5 × 1.5 km2) with present and past landscape conditions. The modified soil and surface properties led to distinctly altered energy and moisture exchanges at the surface and as a consequence affected the local and regional climate. The climatic changes show different characteristics and magnitudes in the cold (October – March) as compared to the warm season (April – September). The landscape modifications led to an average daytime cooling between −0.12 °C (January) and −0.61 °C (April) and a night-time warming of 0.19 °C−0.34 °C. The differences in the mean monthly temperatures show a warming of 0.1 °C−0.2 °C in the cold season and a cooling of similar magnitude in most of the study area in the warm season. The modification of the radiation budget and the surface energy balance distinctly affected the convective activity in the study area in the warm season, but had only a weak effect on convectivity in the cold season. The cloud coverage in the warm season is therefore distinctly reduced compared to the past.  相似文献   

10.
East Atlantic oscillation of the atmospheric circulation   总被引:1,自引:0,他引:1  
For the period 1950–2007, the comparison is made between the indices of the East Atlantic and North Atlantic oscillations and between the features of the atmospheric circulation and temperature regime of the Atlantic-European region connected with various combinations of indices. The analysis is made for the factors which have caused long difference in indices in 1996–2007 and for possible causes of anomalously warm winter in Europe in 2006–2007.  相似文献   

11.
Summary Changes in atmospheric circulation over Europe since 1958 were examined using both objective (modes of low-frequency variability and objective classification of circulation types) and subjective (Hess-Brezowsky classification of weather types) methods. The analysis was performed with an emphasis on the differences between the winter (DJF) and summer (JJA) seasons, and between objectively and subjectively based results. Majority of the most important changes in atmospheric circulation are same or similar for the objective and subjective methods: they include the strengthening of the zonal flow in winter since the 1960s to the early 1990s; the increase (decrease) in frequency of anticyclonic (cyclonic) types in winter from the late 1960s to the early 1990s, with a subsequent decline (rise); and the sharp increase in the persistence (measured by the mean residence time) of all groups of circulation types in winter around 1990 and of anticyclonic types in summer during the 1990s. Differences between the findings obtained using the objective and subjective methods may result from the intrinsically different approach to the classification (e.g. the Hess-Brezowsky weather types have a typical duration of at least 3 days while objective types typically last 1–3 days). Generally, changes in atmospheric circulation which have taken place since the 1960s were more pronounced in winter than in summer. The most conspicuous change seems to be the considerable increase in the persistence of circulation types during the 1990s, which may be also reflected in the increase in the occurrence of climatic extremes observed in Europe during recent years.  相似文献   

12.
Summary This paper investigates the warming trend and interannual variability of surface air temperatures in the Malaysian region during the period 1961–2002. The trend analyses show that most regions in Malaysia experience warming over the period at comparable rates to those in regions surrounding the Bay of Bengal. The regions of Peninsular Malaysia and northern Borneo experience warming rates of between 2.7–4.0 °C/100 years. However, the warming rates are lower in the south-western region of Borneo. The interannual variability of Malaysian temperature is largely dominated by the El Ni?o-Southern Oscillation (ENSO). Regardless of the warming trends, all regions in Malaysia experience uniform warming during an El Ni?o event, particularly during the October–November–December (OND) and the January–February–March (JFM) periods. This uniform warming is associated with the latent heat released from the central eastern Pacific region and forced adiabatic subsidence in the Maritime Continent during an El Ni?o event. During its early development period i.e. during the July–August–September (JAS) season, the El Ni?o’s impact on the Malaysian temperatures is relatively weak compare to its influence during the OND and JFM seasons. However, the warming continues to the April–May–June (AMJ) season although during this period the anomalous conditions in the eastern central Pacific have begun or have returned to normal. The Indian Ocean Dipole (IOD) mode exerts an influence on Malaysian temperatures. When it co-occurs with ENSO, it tends to weaken the ENSO influence particularly during an OND period. However, it appears to have an appreciable influence only during an AMJ period when it occurs in the absence of an ENSO event. Despite the strong influence of the ENSO, the warming rates during the 42-year period appears to be least affected by interannual variability.  相似文献   

13.
北极海冰对2008年1月乌拉尔高压异常的影响   总被引:1,自引:1,他引:0  
2008年1月我国南方发生了大范围的雨雪冰冻灾害天气,造成此次灾害的一个重要原因是乌拉尔高压异常的长期维持,而作为下垫面的海洋,2007/2008冬季环北欧海海冰异常偏少。观测资料合成分析表明,乌拉尔山地区出现高压异常与巴伦支海和喀拉海的海冰偏少存在密切对应关系。利用大气环流模式试验研究了(90°W~60°E)区域海冰异常对大气的影响,模拟结果显示海冰对乌拉尔高压异常有正的贡献,线性模式诊断表明天气尺度瞬变波是海冰影响乌拉尔高压异常的一种重要机制。  相似文献   

14.
The results of two oceanographic surveys, carried out by TINRO-Center in August 2003 and 2007 in the southwestern part of the Chukchi Sea under conditions of opposite regimes of atmospheric circulation in the Eastern Arctic, are given. A stationary anticyclone with the center over the Beaufort Sea in 2007 favored the transport of warm air masses to the Arctic basin and more rapid ice melting. The surface layer temperature to the east of Wrangel Island reached 12°C (6–8°C above the normal). The upwelling of bottom waters was registered in the coastal zone due to the southeastern winds, the Siberian coastal current was not observed. In summer 2003, on the contrary, the cyclonic circulation type prevailed over the eastern seas of the Arctic, the northwestern winds in the coastal zone favored the spreading of the Siberian coastal current almost up to Bering Strait, the water temperature was 2–3°C below normal. The coastal thermal front was formed in both situations: in the first case, due to upwelling, in the second case, due to the spreading of cold coastal desalinated East Siberian waters.  相似文献   

15.
Three striking and impactful extreme cold weather events successively occurred across East Asia and North America during the mid-winter of 2020/21.These events open a new window to detect possible underlying physical processes.The analysis here indicates that the occurrences of the three events resulted from integrated effects of a concurrence of anomalous thermal conditions in three oceans and interactive Arctic-lower latitude atmospheric circulation processes,which were linked and influenced by one major sudden stratospheric warming(SSW).The North Atlantic warm blob initiated an increased poleward transient eddy heat flux,reducing the Barents-Kara seas sea ice over a warmed ocean and disrupting the stratospheric polar vortex(SPV)to induce the major SSW.The Rossby wave trains excited by the North Atlantic warm blob and the tropical Pacific La Nina interacted with the Arctic tropospheric circulation anomalies or the tropospheric polar vortex to provide dynamic settings,steering cold polar air outbreaks.The long memory of the retreated sea ice with the underlying warm ocean and the amplified tropospheric blocking highs from the midlatitudes to the Arctic intermittently fueled the increased transient eddy heat flux to sustain the SSW over a long time period.The displaced or split SPV centers associated with the SSW played crucial roles in substantially intensifying the tropospheric circulation anomalies and moving the jet stream to the far south to cause cold air outbreaks to a rarely observed extreme state.The results have significant implications for increasing prediction skill and improving policy decision making to enhance resilience in“One Health,One Future”.  相似文献   

16.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

17.
The limited area model MAR (Modèle Atmosphérique Régional) is validated over the Antarctic Plateau for the period 2004–2006, focussing on Dome C during the cold season. MAR simulations are made by initializing the model once and by forcing it through its lateral and top boundaries by the ECMWF operational analyses. Model outputs compare favourably with observations from automatic weather station (AWS), radiometers and atmospheric soundings. MAR is able to simulate the succession of cold and warm events which occur at Dome C during winter. Larger longwave downwelling fluxes (LWD) are responsible for higher surface air temperatures and weaker surface inversions during winter. Warm events are better simulated when the small Antarctic precipitating snow particles are taken into account in radiative transfer computations. MAR stratosphere cools during the cold season, with the coldest temperatures occurring in conjunction with warm events at the surface. The decrease of saturation specific humidity associated with these coldest temperatures is responsible for the formation of polar stratospheric clouds (PSCs) especially in August-September. PSCs then contribute to the surface warming by increasing the surface downwelling longwave flux.  相似文献   

18.
Proxy reconstructions suggest that peak global temperature during the past warm interval known as the Medieval Climate Anomaly (MCA, roughly 950–1250 AD) has been exceeded only during the most recent decades. To better understand the origin of this warm period, we use model simulations constrained by data assimilation establishing the spatial pattern of temperature changes that is most consistent with forcing estimates, model physics and the empirical information contained in paleoclimate proxy records. These numerical experiments demonstrate that the reconstructed spatial temperature pattern of the MCA can be explained by a simple thermodynamical response of the climate system to relatively weak changes in radiative forcing combined with a modification of the atmospheric circulation, displaying some similarities with the positive phase of the so-called Arctic Oscillation, and with northward shifts in the position of the Gulf Stream and Kuroshio currents. The mechanisms underlying the MCA are thus quite different from anthropogenic mechanisms responsible for modern global warming.  相似文献   

19.
The effect of the stratospheric ozone depletion on the thermal and dynamical structure of the middle atmosphere is assessed using two 5-member ensembles of transient GCM simulations; one including linear trends in ozone, the other not, for the 1980–1999 period. Simulated temperatures and observations are in good agreement in terms of mean values, autocorrelations and cross correlations. Annual-mean and seasonal temperature trends have been calculated using the same statistical analysis. Simulations show that ozone trends are responsible for reduced wave activity in the Arctic lower stratosphere in February and March, confirming both the role of dynamics in controlling March temperatures and a recently proposed mechanism whereby Arctic ozone depletion causes the reduction in wave activity entering the lower stratosphere. Changes in wave activity are consistent with an intensification of the polar vortex at the time of ozone depletion and with a weakened Brewer–Dobson circulation: A decrease of the dynamical warming/cooling associated with the descending/ascending branch of the wintertime mean residual circulation at high/low latitudes has been obtained through the analysis of temperature observations (1980–1999). Ozone is responsible of about one third of the decrease of this dynamical cooling at high latitudes. An increase in the residual mean circulation is seen in the observations for the 1965–1980 period.  相似文献   

20.
This paper presents a concise summary of the studies on interdecadal variability of the East Asian winter monsoon (EAWM) from three main perspectives. (1) The EAWM has been significantly affected by global climate change. Winter temperature in China has experienced three stages of variations from the beginning of the 1950s: a cold period (from the beginning of the 1950s to the early or mid 1980s), a warm period (from the early or mid 1980s to the early 2000s), and a hiatus period in recent 10 years (starting from 1998). The strength of the EAWM has also varied in three stages: a stronger winter monsoon period (1950 to 1986/87), a weaker period (1986/87 to 2004/05), and a strengthening period (from 2005). (2) Corresponding to the interdecadal variations of the EAWM, the East Asian atmospheric circulation, winter temperature of China, and the occurrence of cold waves over China have all exhibited coherent interdecadal variability. The upper-level zonal circulation was stronger, the mid-tropospheric trough over East Asia was deeper with stronger downdrafts behind the trough, and the Siberian high was stronger during the cold period than during the warm period. (3) The interdecadal variations of the EAWM seem closely related to major modes of variability in the atmospheric circulation and the Pacific sea surface temperature. When the Northern Hemisphere annular mode/Arctic Oscillation and the Pacific decadal oscillation were in negative (positive) phase, the EAWM was stronger (weaker), leading to colder (warmer) temperatures in China. In addition, the negative (positive) phase of the Atlantic multi decadal oscillation coincided with relatively cold (warm) temperatures and stronger (weaker) EAWMs. It is thus inferred that the interdecadal variations in the ocean may be one of the most important natural factors influencing long-term variability in the EAWM, although global warming may have also played a significant role in weakening the EAWM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号