首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We present the results of our spectroscopic observations for the classical symbiotic star V1413 Aql in 20122017. In this period the system was in both active and rare (for it) quiescent states. In 2012 the optical spectrum was dominated by the radiation from the erupted hot component of spectral type F47 III. In 2017 the system passed to a quiescent state that lasted at least three months. In this period lines of ions with high ionization potentials, such as He II 4686 Å and CIV 5802 Å, appeared in the spectrum. The temperature and luminosity of the hot component in this period were $$T_{\textrm{hot}}\approx 90\,000$$ K and $$L_{\textrm{hot}}\approx 1800L_{\odot}$$. We show that the quiescent state in 2017 differs little in its time and energy characteristics from the previous active state observed in 1993.  相似文献   

2.
EinsteinA-coefficients for transitions inSii, calculated with the atomic structure package CIV3, are used to derive the electron density sensitive emission line ratio
  相似文献   

3.
The development of the post-nova light curve of V1500 Cyg inUBV andHβ, for 15 nights in September and October 1975 are presented. We confirm previous reports that superimposed on the steady decline of the light curve are small amplitude cyclic variations. The times of maxima and minima are determined. These together with other published values yield the following ephemerides from JD 2 442 661 to JD 2 442 674: $$\begin{gathered} {\text{From}} 17 {\text{points:}} {\text{JD}}_{ \odot \min } = 2 442 661.4881 + 0_{^. }^{\text{d}} 140 91{\text{n}} \hfill \\ \pm 0.0027 \pm 0.000 05 \hfill \\ {\text{From}} 15 {\text{points:}} {\text{JD}}_{ \odot \max } = 2 442 661.5480 + 0_{^. }^{\text{d}} 140 89{\text{n}} \hfill \\ \pm 0.0046 \pm 0.0001 \hfill \\ \end{gathered} $$ with standard errors of the fits of ±0 . d 0052 for the minima and ±0 . d 0091 for the maxima. Assuming V1500 Cyg is similar to novae in M31, we foundr=750 pc and a pre-nova absolute photographic magnitude greater than 9.68.  相似文献   

4.
From new observational material we made a curve of growth analysis of the penumbra of a large, stable sunspot. The analysis was done relative to the undisturbed photosphere and gave the following results (⊙ denotes photosphere, * denotes penumbra): $$\begin{gathered} (\theta ^ * - \theta ^ \odot )_{exe} = 0.051 \pm 0.007 \hfill \\ {{\xi _t ^ * } \mathord{\left/ {\vphantom {{\xi _t ^ * } {\xi _t }}} \right. \kern-\nulldelimiterspace} {\xi _t }}^ \odot = 1.3 \pm 0.1 \hfill \\ {{P_e ^ * } \mathord{\left/ {\vphantom {{P_e ^ * } {P_e ^ \odot = 0.6 \pm 0.1}}} \right. \kern-\nulldelimiterspace} {P_e ^ \odot = 0.6 \pm 0.1}} \hfill \\ {{P_g ^ * } \mathord{\left/ {\vphantom {{P_g ^ * } {P_g }}} \right. \kern-\nulldelimiterspace} {P_g }}^ \odot = 1.0 \pm 0.2 \hfill \\ \end{gathered} $$ The results of the analysis are in satisfactory agreement with the penumbral model as published by Kjeldseth Moe and Maltby (1969). Additionally we tested this model by computing the equivalent widths of 28 well selected lines and comparing them with our observations.  相似文献   

5.
Non-linear stability of the libration point L 4 of the restricted three-body problem is studied when the more massive primary is an oblate spheroid with its equatorial plane coincident with the plane of motion, Moser's conditions are utilised in this study by employing the iterative scheme of Henrard for transforming the Hamiltonian to the Birkhoff's normal form with the help of double D'Alembert's series. It is found that L 4 is stable for all mass ratios in the range of linear stability except for the three mass ratios: $$\begin{gathered} \mu _{c1} = 0.0242{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.1790{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c2} = 0.0135{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0993{\text{ }}...{\text{ }}A_1 , \hfill \\ \mu _{c3} = 0.0109{\text{ }}...{\text{ }}{}^{{\text{\_\_}}}0.0294{\text{ }}...{\text{ }}A_1 . \hfill \\ \end{gathered} $$   相似文献   

6.
Some useful results and remodelled representations ofH-functions corresponding to the dispersion function $$T\left( z \right) = 1 - 2z^2 \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x/\left( {z^2 - x^2 } \right)} $$ are derived, suitable to the case of a multiplying medium characterized by $$\gamma _0 = \sum\limits_1^n {\int_0^{\lambda r} {Y_r } \left( x \right){\text{d}}x > \tfrac{1}{2} \Rightarrow \xi = 1 - 2\gamma _0< 0} $$   相似文献   

7.
The discovery of ‘twin quasistellar objects’ arose interests among astronomers and astrophysicists to study gravitational lensing problems. The deviation of light from its straight line path is caused by two sources according to the general theory of relativity: (i) the presence of massive objects, i.e. the presence of gravitational field and (ii) the presence of a ‘vacuum field’ which arises because there is a non-zero cosmological vacuum energy. Recently, the research on the relationship between cosmological constant and gravitational lensing process is rather active (see reference [1, 2, 3]. According to the Kottler space time metric, we have deduced an explicit representation of the angular deviation of light path. The deviation term is found to be simply , where M is the mass of the ‘astronomical lens’, rmin is the distance between the point of nearest approach and the centre of M, other symbols have their usual meaning. The presence of this term may be meaningful to the study of cosmological constant using the concept of gravitational lensing; however more sophisticated analysis awaits. Consider a signal radar to be sent from one planet to another. We have found that the radar echo delay contributed by the existence of the cosmological constant Λ is expressible as This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
We consider the Alfvén-Arrhenius fall-down mechanism and describe an approximate model for the infall, capture and distribution of dust particles on a given magnetic field line and their possible neutralization at the ‘2’/3 points, the points at which the field aligned compnents of the gravitational and centrifugal forces are equal and opposite. We find that a small fraction (<10%) of an incoming particle distribution will actually contribute to the above ‘2’/3 fall-down process. We also show that if at the 2/3 points, the ratio of dust to plasma density is $$\frac{{n_D \left( {\tfrac{2}{3}} \right)}}{{n_p \left( {\tfrac{2}{3}} \right)}} > \frac{{10^{ - 3} }}{{r_{g_\mu } T_{eV} }}$$ . (r gμ=radius of a grain in microns,T=plasma temperature in eV), then the dust particles will lose their charge, decouple from the field line and follow Keplerian orbits in accordance with the Alfvén-Arrhenius mechanism. We then determine the limits on the plasma parameters in order that rotation of a quasi-neutral plasma in thermal equilibrium be possible in the gravitational and dipole field of a rotating central body. The constraints imposed by the above conditions are rather weak, and the plasma parameters can have a wide range of values. For a plasma corotating with an angular velocity Ω~10?4s?1, we show that the plasma temperature and density must satisfy $$10^{ - 1}<< T_{(eV)}<< 10^2 ,10T_{eV}^2<< n^p \left( {cm^3 } \right)<< 10^6 $$ .  相似文献   

9.
Stars are gravitationally stabilized fusion reactors changing their chemical composition while transforming light atomic nuclei into heavy ones. The atomic nuclei are supposed to be in thermal equilibrium with the ambient plasma. The majority of reactions among nuclei leading to a nuclear transformation are inhibited by the necessity for the charged participants to tunnel through their mutual Coulomb barrier. As theoretical knowledge and experimental verification of nuclear cross sections increases it becomes possible to refine analytic representations for nuclear reaction rates. Over the years various approaches have been made to derive closed-form representations of thermonuclear reaction rates (Critchfield, 1972; Haubold and John, 1978; Haubold, Mathai and Anderson, 1987). They show that the reaction rate contains the astrophysical cross section factor and its derivatives which has to be determined experimentally, and an integral part of the thermonuclear reaction rate independent from experimental results which can be treated by closed-form representation techniques in terms of generalized hypergeometric functions. In this paper mathematical/statistical techniques for deriving closed-form representations of thermonuclear functions, particularly the four integrals $$\begin{gathered} I_1 (z,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_2 (z,d,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_3 (z,t,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - z(y + 1)^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ I_4 (z,\delta ,b,v)\mathop = \limits^{def} \int\limits_0^\infty {y^v e^{ - y} e^{ - by^\delta } e^{ - zy^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} } dy,} \hfill \\ \end{gathered} $$ will be summarized and numerical results for them will be given. The separation of thermonuclear functions from thermonuclear reaction rates is our preferred result. The purpose of the paper is also to compare numerical results for approximate and closed-form representations of thermonuclear functions. This paper completes the work of Haubold, Mathai, and Anderson (1987).  相似文献   

10.
By systematically searching the region of far infrared loops, we found a number of huge cavity-like dust structures at \(60\,\mu \hbox {m}\) and \(100\,\mu \hbox {m}\) IRIS maps. By checking these with AKARI maps (\(90\,\mu \hbox {m}\) and \(140\,\mu \hbox {m}\)), two new cavity-like structures (sizes \(\sim \) \( 2.7\,\hbox {pc} \times 0.8\,\hbox {pc}\) and \(\sim \) \( 1.8\,\hbox {pc} \times 1\,\hbox {pc}\)) located at R.A. (\(\hbox {J}2000)=14^{h}41^{m}23^{s}\) and Dec. \((\hbox {J}2000)=-64^{\circ }04^{\prime }17^{{\prime }{\prime }}\) and R.A. \((\hbox {J}2000)=05^{h}05^{m}35^{s}\) and Dec. \((\hbox {J}2000)=-\,69^{\circ }35^{\prime } 25^{{\prime }{\prime }}\) were selected for the study. The difference in the average dust color temperatures calculated using IRIS and AKARI maps of the cavity candidates were found to be \(3.2\pm 0.9\,\hbox {K}\) and \(4.1\pm 1.2\,\hbox {K}\), respectively. Interestingly, the longer wavelength AKARI map gives larger values of dust color temperature than that of the shorter wavelength IRIS maps. Possible explanation of the results will be presented.  相似文献   

11.
The long-term systematic errors of the analytical theories IAU 2000 and IAU 2006 of the Earth’s precession–nutational motion are studied making use of the VLBI data of 1984–2007. Several independent methods give indubitable evidence of the significant quadratic error in the IAU 2000 residuals of the precessional angle while the adopted value of the secular decrease /cy of the Earth’s ellipticity e (derived from Satellite Laser Ranging data) should manifest itself in the residuals of as the negative quadratic trend . The problem with the precession of the IAU 2006 theory adopted as a new international standard and based on the precession model P03 (Capitaine et al., Astron Astrophys 432:355–367, 2005) appears to be even more serious because the above mentioned quadratic term has already been incorporated into the P03 precession. Our analysis of the VLBI data demonstrates that the quadratic trend of the IAU 2006 residuals does amount to the expected value (30.0 ± 3) mas/cy2. It means, first, that the theoretical precession rate of IAU 2006 should be augmented by the large secular correction and, second, that the available VLBI data have potentiality of estimating the rate . And indeed, processing these data by the numerical theory ERA of the Earth’s rotation (Krasinsky, Celest Mech Dyn Astron 96:169–217, 2006, Krasinsky and Vasilyev, Celest Mech Dyn Astron 96:219–237, 2006) yields the estimate /cy statistically in accordance with the satellite-based . On the other hand, applying IAU 2000/2006 models, the positive value /cy is found which is incompatible with the SLR estimate and, evidently, has no physical meaning. The large and steadily increasing error of the precession motion of the IAU 2006 theory makes the task of replacing IAU 2006 by a more accurate model be most pressing.  相似文献   

12.
It is shown that the fractional increase in binding energy of a galaxy in a fast collision with another galaxy of the same size can be well represented by the formula $$\xi _2 = 3({G \mathord{\left/ {\vphantom {G {M_2 \bar R}}} \right. \kern-\nulldelimiterspace} {M_2 \bar R}}) ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {V_p }}} \right. \kern-\nulldelimiterspace} {V_p }})^2 e^{ - p/\bar R} = \xi _1 ({{M_1 } \mathord{\left/ {\vphantom {{M_1 } {M_2 }}} \right. \kern-\nulldelimiterspace} {M_2 }})^3 ,$$ whereM 1,M 2 are the masses of the perturber and the perturbed galaxy, respectively,V p is the relative velocity of the perturber at minimum separationp, and \(\bar R\) is the dynamical radius of either galaxy.  相似文献   

13.
Fadeyev  Yu. A. 《Astronomy Letters》2022,48(10):614-621
Astronomy Letters - The evolutionary tracks of stars with masses on the main sequence $$0.84\;M_{\odot}\leq M_{\textrm{ZAMS}}\leq 0.95\;M_{\odot}$$ and initial metal abundances $$Z=0.006$$ and...  相似文献   

14.
In this paper, using two methods: LCN'S (Lyapunov characteristic numbers) method and slice cutting method, we study numerically two mappings with odd dimension: $$T_1 :\left\{ {\begin{array}{*{20}c} {x_{n + 1} = x_n + z_n ,} \\ {y_{n + 1} = y_n + x_{n + 1} , (\bmod 2\pi )} \\ {z_{n + 1} = z_n + A\sin y_{n + 1} ,} \\ \end{array} } \right. T_2 :\left\{ {\begin{array}{*{20}c} {x_{n + 1} = x_n + y_n + B \sin z_n ,} \\ {y_{n + 1} = y_n + A \sin x_{n + 1} , (\bmod 2\pi ),} \\ {z_{n + 1} = z_n + B \sin y_{n + 1} ,} \\ \end{array} } \right.$$ whereA, B are parameters. For the mappingT 1 the whole region is stochastic; however, we find two-dimensional invariant manifolds for the mappingT 2.  相似文献   

15.
This addendum uses an alternate fit for the electron density distribution \(N(r)\) (see Figure 1) and estimates the coronal magnetic field using the new model. We find that the estimates of the magnetic field are in close agreement using both the models.
We have fit the \(N(r)\) distribution obtained from STEREO-A/COR1 and SOHO/LASCO-C2 using a fifth-order polynomial (see Figure 1). The expression can be written as
$$\begin{aligned} N_{\text{cor}}(r) &= 1.43 \times 10^{9} r^{-5} - 1.91 \times 10^{9} r^{-4} + 1.07 \times 10^{9} r^{-3} - 2.87 \times 10^{8} r^{-2} \\ &\quad {} + 3.76 \times 10^{7} r^{-1} - 1.91 \times 10^{6} , \end{aligned}$$
(1)
where \(N_{\text{cor}}(r)\) is in units of cm?3 and \(r\) is in units of \(\mathrm{R}_{\odot}\). The background coronal electron density is enhanced by a factor of 5.5 at 2.63 \(\mathrm{R}_{\odot}\) during the coronal mass ejection (CME). The estimated coronal magnetic field strength (\(B\)) using radio data indicates that \(B(r) \approx(0.51\text{\,--\,}0.48) \pm 0.02\ \mathrm{G}\) in the range \(r \approx2.65\text{\, --\,}2.82\ \mathrm{R}_{\odot}\). The field strengths for STEREO-A/COR1 and SOHO/LASCO-C2 are ≈?0.32 G at \(r \approx 3.11\ \mathrm{R}_{\odot}\) and ≈?0.12 G at \(r \approx 4.40\ \mathrm{R}_{\odot}\), respectively.
  相似文献   

16.
A spherically-symmetric static scalar field in general relativity is considered. The field equations are defined by $$\begin{gathered} R_{ik} = - \mu \varphi _i \varphi _k ,\varphi _i = \frac{{\partial \varphi }}{{\partial x^i }}, \varphi ^i = g^{ik} \varphi _k , \hfill \\ \hfill \\ \end{gathered} $$ where ?=?(r,t) is a scalar field. In the past, the same problem was considered by Bergmann and Leipnik (1957) and Buchdahl (1959) with the assumption that ?=?(r) be independent oft and recently by Wyman (1981) with the assumption ?=?(r, t). The object of this paper is to give explicit results with a different approach and under a more general condition $$\phi _{;i}^i = ( - g)^{ - 1/2} \frac{\partial }{{\partial x^i }}\left[ {( - g)^{1/2} g^{ik} \frac{\partial }{{\partial x^k }}} \right] = - 4\pi ( -g )^{ - 1/2} \rho $$ where ?=?(r, t) is the mass or the charge density of the sources of the field.  相似文献   

17.
If a dynamical problem ofN degress of freedom is reduced to the Ideal Resonance Problem, the Hamiltonian takes the form 1 $$\begin{array}{*{20}c} {F = B(y) + 2\mu ^2 A(y)\sin ^2 x_1 ,} & {\mu \ll 1.} \\ \end{array} $$ Herey is the momentum-vectory k withk=1,2?N, x 1 is thecritical argument, andx k fork>1 are theignorable co-ordinates, which have been eliminated from the Hamiltonian. The purpose of this Note is to summarize the first-order solution of the problem defined by (1) as described in a sequence of five recent papers by the author. A basic is the resonance parameter α, defined by 1 $$\alpha \equiv - B'/\left| {4AB''} \right|^{1/2} \mu .$$ The solution isglobal in the sense that it is valid for all values of α2 in the range 1 $$0 \leqslant \alpha ^2 \leqslant \infty ,$$ which embrances thelibration and thecirculation regimes of the co-ordinatex 1, associated with α2 < 1 and α2 > 1, respectively. The solution includes asymptotically the limit α2 → ∞, which corresponds to theclassical solution of the problem, expanded in powers of ε ≡ μ2, and carrying α as a divisor. The classical singularity at α=0, corresponding to an exact commensurability of two frequencies of the motion, has been removed from the global solution by means of the Bohlin expansion in powers of μ = ε1/2. The singularities that commonly arise within the libration region α2 < 1 and on the separatrix α2 = 1 of the phase-plane have been suppressed by means of aregularizing function 1 $$\begin{array}{*{20}c} {\phi \equiv \tfrac{1}{2}(1 + \operatorname{sgn} z)\exp ( - z^{ - 3} ),} & {z \equiv \alpha ^2 } \\ \end{array} - 1,$$ introduced into the new Hamiltonian. The global solution is subject to thenormality condition, which boundsAB″ away from zero indeep resonance, α2 < 1/μ, where the classical solution fails, and which boundsB′ away from zero inshallow resonance, α2 > 1/μ, where the classical solution is valid. Thedemarcation point 1 $$\alpha _ * ^2 \equiv {1 \mathord{\left/ {\vphantom {1 \mu }} \right. \kern-\nulldelimiterspace} \mu }$$ conventionally separates the deep and the shallow resonance regions. The solution appears in parametric form 1 $$\begin{array}{*{20}c} {x_\kappa = x_\kappa (u)} \\ {y_1 = y_1 (u)} \\ {\begin{array}{*{20}c} {y_\kappa = conts,} & {k > 1,} \\ \end{array} } \\ {u = u(t).} \\ \end{array} $$ It involves the standard elliptic integralsu andE((u) of the first and the second kinds, respectively, the Jacobian elliptic functionssn, cn, dn, am, and the Zeta functionZ (u).  相似文献   

18.
The spheroidal harmonics expressions $$\left[ {P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) - P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ and $$\left[ {\eta ^2 P_{2k}^{2s} \left( {i\xi } \right)P_{2k - 2r}^{2s} \left( \eta \right) + \xi ^2 P_{2k - 2r}^{2s} \left( {i\xi } \right)P_{2k}^{2s} \left( \eta \right)} \right]e^{i2s\theta } $$ , have ξ22 as a factor. A method is presented for obtaining for these two expressions the coefficient of ξ22 in the form of a linear combination of terms of the formP 2m 2s (iξ)P 2n 2s (η)e i2sθ. Explicit formulae are exhibited for the casesr=1, 2, 3 and any positive or zero integersk ands. Such identities are useful in gravitational potential theory for ellipsoidal distributions when matching Legendre function expansions are employed.  相似文献   

19.
20.
The fact that the energy density ρg of a static spherically symmetric gravitational field acts as a source of gravity, gives us a harmonic function \(f\left( \varphi \right) = e^{\varphi /c^2 } \) , which is determined by the nonlinear differential equation $$\nabla ^2 \varphi = 4\pi k\rho _g = - \frac{1}{{c^2 }}\left( {\nabla \varphi } \right)^2 $$ Furthermore, we formulate the infinitesimal time-interval between a couple of events measured by two different inertial observers, one in a position with potential φ-i.e., dt φ and the other in a position with potential φ=0-i.e., dt 0, as $${\text{d}}t_\varphi = f{\text{d}}t_0 .$$ When the principle of equivalence is satisfied, we obtain the well-known effect of time dilatation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号