共查询到9条相似文献,搜索用时 0 毫秒
1.
Xiangdong Zhao Xianye Zhao Lei Chen Qi Zhang Bo Wang 《Proceedings of the Geologists' Association. Geologists' Association》2019,130(6):691-695
The Eomeropidae is a species-poor family with only 11 known fossil species from the Early Jurassic to Palaeogene. A new species of fossil eomeropid, Tsuchingothauma gongi sp. nov., is described based on a well-preserved wing from the Middle Jurassic Daohugou deposits of Inner Mongolia, China. Our new species is distinguished from the type species T. shihi mainly in having very numerous crossveins and cells; more longitudinal veins: 13 and 11 terminal branches in radial sector and medial field, CuA with 3 terminal branches and A with 7 terminal branches. 相似文献
2.
Paleoproterozoic volcanic rocks in the southern margin of the North China Craton,central China:Implications for the Columbia supercontinent 总被引:1,自引:0,他引:1
The volcanic rocks of the Xiong'er Group are situated in the southern margin of the North China Craton(NCC).Research on the Xiong er Group is important to understand the tectonic evolution of the NCC and the Columbia supercontinent during the Paleoproterozoic.In this study,to constrain the age of the Xiong'er volcanic rocks and identify its tectonic environment,we report zircon LA-ICP-MS data with Hf isotope,whole-rock major and trace element compositions and Sr-Nd-Pb-Hf isotopes of the volcanic rocks of the Xiong'er Group.The Xiong'er volcanic rocks mainly consist of basaltic andesite,andesite.dacite and rhyolite,with minor basalt.Our new sets of data combined with those from previous studies indicate that Xiong'er volcanism should have lasted from 1827 Ma to 1746 Ma as the major phase of the volcanism.These volcanics have extremely low MgO.Cr and Ni contents,are enriched in LREEs and LILEs but depleted in HFSEs(Nb,Ta,and Ti),similar to arc-related volcanic rocks.They are characterized by negative zircon ε_(Hf)_(t) values of-17.4 to 8.8,whole-rock initial ~(87)Sr/~(86)Sr values of 0.7023 to 0.7177 andε_(Nd)(t) values of-10.9 to 6.4.and Pb isotopes(~(206)Pb/~(204)Pb =14.366-16.431,~(207)Pb/~(204)Pb =15.106-15.371,~(208)Pb/~(204)Pb= 32.455-37.422).The available elemental and Sr-Nd-Pb-Hf isotope data suggest that the Xiong'er volcanic rocks were sourced from a mantle contaminated by continental crust.The volcanic rocks of the Xiong'er Group might have been generated by high-degree partial melting of a lithospheric mantle that was originally modified by oceanic subduction in the Archean.Thus,we suggest that the subduction-modified lithospheric mantle occurred in an extensional setting during the breakup of the Columbia supercontinent in the Late Paleoproterozoic,rather than in an arc setting. 相似文献
3.
Edmund A. Jarzembowski B. Wang 《Proceedings of the Geologists' Association. Geologists' Association》2019,130(6):673-676
Mayflies are very rare in the British fossil record. The first nymph to be found, Schistonotorum wallisi gen. et sp. nov., is described from the non-marine Lower Cretaceous of southeast England. This Early Barremian find is from the Upper Weald Clay Formation at Smokejacks brickworks, Surrey. It is preserved as an adpression in concretionary sideritic ironstone from the upper insect bed exposed in the northeast face of the pit. The palaeoecological significance of this record is discussed. 相似文献
4.
Arsenic is a carcinogen known for its acute toxicity to organisms.Geothermal waters are commonly high in arsenic,as shown at the Bjarnarflag Power Plant,Iceland(~224 μg/kg of solvent).Development of geothermal energy requires adequate disposal of arsenic-rich waters into groundwater/geothermal systems.The outcome of arsenic transport models that assess the effect of geothermal effluent on the environment and ecosystems may be influenced by the sensitivity of hydraulic parameters.However,previous such studies in Iceland do not consider the sensitivity of hydraulic parameters and thereby the interpretations remain unreliable.Here we used the Lake Myvatn basaltic aquifer system as a case study to identify the sensitive hydraulic parameters and assess their role in arsenic transport.We develop a one-dimensional reactive transport model(PHREEQC ver.2.),using geochemical data from Bjarnarflag,Iceland.In our model,arsenite(H_3 ASO_3)was predicted to be the dominant species of inorganic arsenic in both groundwater and geothermal water.Dilution reduced arsenic concentration below~5 μg/kg.Adsorption reduced the residual contamination below~0.4μg/kg at 250 m along transect.Based on our modelling,we found volumetric input to be the most sensitive parameter in the model.In addition,the adsorption strength of basaltic glass was such that the physical hydrogeological parameters,namely:groundwater velocity and longitudinal dispersivity had little influence on the concentration profile. 相似文献
5.
Fan Yang Fei Xue M.Santosh Gongwen Wang Sung Won Kim Zhiwei Shen Wenjuan Jia Xuhuang Zhang 《地学前缘(英文版)》2019,10(5):1803-1821
The Qinling Orogen in Central China records the history of a complex geological evolution and tectonic transition from compression to extension during the Late Mesozoic,with concomitant voluminous granitoids formation.In this study,we present results from petrological,geochemical,zircon U-Pb-Lu-Hf isotopic studies on the Lengshui felsic dykes from Luanchuan region in the East Qinling Orogen.We also compile published geochronological,geochemical,and Hf isotopic data from Luanchuan region and present zircon Hf isotopic contour maps.The newly obtained age data yield two group of ages at~145 Ma and 140 Ma for two granite porphyries from the Lengshui felsic dykes,with the ~145 Ma interpreted as response to the peak of magmatism in the region,and the ~140 Ma as the timing of formation of the felsic dykes.The corresponding Hf isotopic data of the granite porphyries display negativeeHit)values of-16.67 to-4.61,and Hf crustal model ages(T_(DM~C_)of 2255-1490 Ma,indicating magma sourced from the melting of Paleo-to Mesoproterozoic crustal materials.The compiled age data display two major magmatic pulses at 160-130 Ma and 111-108 Ma with magmatic quiescence in between,and the zircon Hf isotopic data display/ε_(Hf)(t)values ranging from-41.9 to 2.1 and T_(DM)~c values of3387-1033 Ma,suggesting mixed crustal and mantle-derived components in the magma source,and correspond to multiple tectonic events during the Late Mesozoic.The Luanchuan granitoids are identified as 1-type granites and most of these are highly fractionated granites,involving magma mixing and mingling and crystal fractionation.The tectonic setting in the region transformed from the Late Jurassic syn-collision setting to Early Cretaceous within-plate setting,with E-W extension in the Early Cretaceous.This extension is correlated with the N-S trending post-collisional extension between the North China Craton and Yangtze Craton as well as the E-W trending back-arc extension triggered by the westward Paleo-Pacific Plate subduction,eventually leading to lithospheric thinning,asthenospheric upwelling,mafic magma underplating,and crustal melting in the East Qinling Orogen. 相似文献
6.
The postperovskite phase transition of Fe and Al-bearing MgSiO3 bridgmanite, the most aboundant mineral in the Earth's lower mantle, is believed to be a key to understanding seismological observations in the D″ layer, e.g., the discontinuous changes in seismic wave velocities. Experimentally reported phase transition boundaries of Fe and Al-bearing bridgmanite are currently largely controversial and generally suggest wide two-phase coexistence domains. Theoretical simulations ignoring temperature effects cannot evaluate correctly two-phase coexistence domains under high-temperature. We show high-pressure and high-temperature phase transition boundaries for various compositions with geophysically relevant impurities of Fe2+SiO3, Fe3+Fe3+O3, Fe3+Al3+O3, and Al3+Al3+O3 derived from the ab initio finite-temperature free energies calculated combining the internally consistent LSDA + U method and a lattice dynamics approach. We found that at ~ 2500 K, incorporations accompanied by Fe3+ expand the two-phase coexistence domains distinctly, implying that D″ seismic discontinuities likely arise from the phase transition of Fe2+-bearing bridgmanite. 相似文献
7.
The Zambezi Belt in southern Africa has been regarded as a part of the 570-530 Ma Kuunga Orogen formed by a series of collision of Archean cratons and Proterozoic orogenic belts.Here,we report new petrological,geochemical,and zircon U-Pb geochronological data of various metamorphic rocks(felsic to mafic orthogneiss,pelitic schist,and felsic paragneiss) from the Zambezi Belt in northeastern Zimbabwe,and evaluate the timing and P-T conditions of the collisional event as well as protolith formation.Geochemical data of felsic orthogneiss indicate within-plate granite signature,whereas those of mafic orthogneiss suggest MORB,ocean-island,or within-plate affinities.Metamorphic P-Testimates for orthogneisses indicate significant P-T variation within the study area(700-780 C/6.7-7.2 kbar to 800-875 C/10-11 kbar) suggesting that the Zambezi Belt might correspond to a suture zone with several discrete crustal blocks.Zircon cores from felsic orthogneisses yielded two magmatic ages:2655±21 Ma and 813士5 Ma,which suggests Neoarchean and Early Neoproterozoic crustal growth related to within-plate magmatism.Detrital zircons from metasediments display various ages from Neoarchean to Neoproterozoic(ca.2700-750 Ma).The Neoarchean(ca.2700-2630 Ma) and Paleoproterozoic(ca.2200-1700 Ma) zircons could have been derived from the adjacent Kalahari Craton and the Magondi Belt in Zimbabwe,respectively.The Choma-Kalomo Block and the Lufilian Belt in Zambia might be proximal sources of the Meso-to Neoproterozoic(ca.1500-950 Ma) and early Neoproterozoic(ca.900-750 Ma) detrital zircons,respectively.Such detrital zircons from adjacent terranes possibly deposited during late Neoproterozoic(744-670 Ma),and subsequently underwent highgrade metamorphism at 557-555 Ma possibly related to the collision of the Congo and Kalahari Cratons during the latest Neoproterozoic to Cambrian.In contrast,670-627 Ma metamorphic ages obtained from metasediments are slightly older than previous reports,but consistent with~680-650 Ma metamorphic ages reported from different parts of the Kuunga Orogen,suggesting Cryogenian thermal events before the final collision. 相似文献
8.
Jiawei Zhang Taiping Ye Yaran Dai Jianshu Chen Hui Zhang Chuangu Dai Guohua Yuan Kaiyuan Jiang 《地学前缘(英文版)》2019,10(5):1823-1839
The Neoproterozoic Tonian strata(ca.870-725 Ma)in the western Jiangnan Orogen archive the records of sedimentary provenance and tectonic setting which can be used to understand the geological evolution of the South China Continent.These strata are separated into the basement and cover sequences by a regional angular unconformity.The basement sequence can be subdivided into the lower and the upper parts by the widespread interbedded ca.840 Ma basalt with pillow structure.In the present work,234 concordant detrital zircon analyses are obtained from three Tonian sandstone samples in the Fanjingshan district,Guizhou Province.Combined with previous results,a total of 1736 analyses of detrital zircon U-Pb ages derived from 12 formations of Tonian strata in the western Jiangnan Orogen are used to decipher the integrated sedimentary and tectonic histories.The zircons from the lowermost part of the basement sequence(the Yujiagou Formation)show oval morphology and display two Paleoproterozoic age peaks at 2325 Ma and 1845 Ma which are similar with the detrital zircon age peaks from the Late Paleoproterozoic to Early Mesoproterozoic Dongchuan/Dahongshan/Hekou groups,suggesting a passive margin basin in which the sediments were mainly sourced from the southwestern Yangtze Block.However,the zircon age population of the lower part of the basement sequence(the Xiaojiahe,Huixiangping formations and their equivalents)indicates the sedimentary derivation from bidirectional sources(the ca.870 Ma arc materials in the south and the old detritus from the southwestern Yangtze Block)which is consistent with a back arc setting for the deposition of the sediments.Zircons from the upper part of the basement sequence(the Duyantang Formation and its equivalent)show euhedral and subangular morphology and display a unimodal age peak at ca.835 Ma.This sequence was possibly deposited in a convergent setting and the detritus were came from the locally distributed syn-collisional igneous rocks.The lower part of the cover sequence(the Xinzhai and Wuye formations and their equivalents)shows a distinct zircon age peak at 815—809 Ma and two subordinate peaks at 2485 Ma and 2018 Ma,suggesting that the basin had gradually transformed into a continental rift basin and received the detritus from the ca.815 Ma post-collisional magmatic rocks as well as from different Paleoproterozoic source rocks in the northern Yangtze Block.We propose a tectonic evolution model that envisages eruption of ca.840 Ma basalt in a back arc basin that existed during ca.870-835 Ma,an angular unconformity was formed during amalgamation of the Yangtze Block and the Cathaysia Block at ca.835-820 Ma and the rifting of the South China Continent was initiated at ca.800 Ma.Our study concludes that the South China Continent was formed on the periphery of the Rodinia supercontinent. 相似文献
9.
Extensional and compressional structures are globally abundant on Mars. Distribution of these structures and their ages constrain the crustal stress state and tectonic evolution of the planet. Here in this paper, we report on our investigation over the distribution of the tectonic structures and timings of the associated stress fields from the Noachis-Sabaea region. Thereafter, we hypothesize possible origins in relation to the internal/external processes through detailed morphostructural mapping. In doing so, we have extracted the absolute model ages of these linear tectonic structures using crater size-frequency distribution measurements, buffered crater counting in particular. The estimated ages indicate that the tectonic structures are younger than the mega impacts events(especially Hellas) and instead they reveal two dominant phases of interior dynamics prevailing on the southern highlands, firstly the extensional phase terminating around3.8 Ga forming grabens and then compressional phase around 3.5-3.6 Ga producing wrinkle ridges and lobate scarps. These derived absolute model ages of the grabens exhibit the age ca. 100 Ma younger than the previously documented end of the global extensional phase. The following compressional activity corresponds to the peak of global contraction period in Early Hesperian. Therefore, we conclude that the planet wide heat loss mechanism, involving crustal stretching coupled with gravitationally driven relaxation(i.e.,lithospheric mobility) resulted in the extensional structures around Late Noachian(around 3.8 Ga). Lately cooling related global contraction generated compressional stress ensuing shortening of the upper crust of the southern highlands at the Early Hesperian period(around 3.5-3.6 Ga). 相似文献