首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我国西藏地区冰湖溃决灾害综述   总被引:11,自引:4,他引:11  
冰湖溃决是我国西藏地区典型的地质灾害类型之一,具有突发性强、规模大、破坏力强和危害范围广等特点,往往造成下游地区遭受惨重的生命财产损失。冰湖溃决成因特征是形成机制、早期识别和危险性评价等冰湖溃决研究的基础,受客观条件限制,我国西藏冰湖溃决的基础调查工作存在资料分散甚至缺失的局限性。为解决这个难题,通过资料收集、遥感解译和野外调查等技术手段,重新梳理了我国西藏地区的冰湖溃决事件及基本特征,共调查出33个冰湖37次溃决事件,其中2个为冰川阻塞湖(简称冰川湖),划定了冰湖溃决高发地带的地理分布位置,分析出冰崩/冰滑坡、埋藏冰融化、冰川融水、强降水、泥石流和上游冰湖溃决洪水6种诱发原因,为我国西藏冰湖溃决研究提供基础调查成果和参考依据。  相似文献   

2.
Vilca  Oscar  Mergili  Martin  Emmer  Adam  Frey  Holger  Huggel  Christian 《Landslides》2021,18(6):2211-2223

Glacial lakes represent a threat for the populations of the Andes and numerous disastrous glacial lake outburst floods (GLOFs) occurred as a result of sudden dam failures or dam overtoppings triggered by landslides such as rock/ice avalanches into the lake. This paper investigates a landslide-triggered GLOF process chain that occurred on February 23, 2020, in the Cordillera Vilcabamba in the Peruvian Andes. An initial slide at the SW slope of Nevado Salkantay evolved into a rock/ice avalanche. The frontal part of this avalanche impacted the moraine-dammed Lake Salkantaycocha, triggering a displacement wave which overtopped and surficially eroded the dam. Dam overtopping resulted in a far-reaching GLOF causing fatalities and people missing in the valley downstream. We analyze the situations before and after the event as well as the dynamics of the upper portion of the GLOF process chain, based on field investigations, remotely sensed data, meteorological data and a computer simulation with a two-phase flow model. Comparison of pre- and post-event field photographs helped us to estimate the initial landslide volume of 1–2 million m3. Meteorological data suggest rainfall and/or melting/thawing processes as possible causes of the landslide. The simulation reveals that the landslide into the lake created a displacement wave of 27 m height. The GLOF peak discharge at the dam reached almost 10,000 m3/s. However, due to the high freeboard, less than 10% of the lake volume drained, and the lake level increased by 10–15 m, since the volume of landslide material deposited in the lake (roughly 1.3 million m3) was much larger than the volume of released water (57,000 m3, according to the simulation). The model results show a good fit with the observations, including the travel time to the uppermost village. The findings of this study serve as a contribution to the understanding of landslide-triggered GLOFs in changing high-mountain regions.

  相似文献   

3.
In recent years, climate change and retreating glaciers constitute a major hazard in the Himalaya of South Asia. Glacial lakes are rapidly developing or increasing due to climate change. The rapid development of the lake may cause outburst of the lake. The outburst discharge from the glacial lake can cause catastrophic flooding and disaster in downstream area. Therefore, it is necessary to investigate the impact of climate change on glacial lakes and to understand the characteristics of the glacial lake outburst. In this study, the field assessment of Tsho Rolpa Glacial Lake in the Himalaya of Nepal has been presented and the impact of climate change on this glacial lake has been discussed. The Tsho Rolpa Glacial Lake is the largest and most potentially dangerous glacial lake in Nepal. In addition, a numerical model has been also developed for computing the characteristics of glacial lake outburst due to moraine dam failure by seepage and water overtopping. The numerical model is tested for the flume experimental cases. The simulated results of the outburst discharge, the dam surface erosion, and the temporal variation of the moisture movement in the dam are compared with those obtained from the hydraulic model experiments. The moisture profile calculated by numerical model was agreeable with the experimental moisture profile. The simulated failure surface of the dam due to seepage by considering the suction in slope stability analysis gave more agreeable results than the Janbu's simplified method. The results of the outburst discharge and dam surface erosion also agreed with the experimental results.  相似文献   

4.
Glacial lake outburst floods occurred frequently during the last deglaciation of the Laurentide Ice Sheet. Within the Interior Plains, these floods carved large spillway systems; however, due to a lack of abundant sediment, deposits within prairie spillways are rarely preserved. Here, we present geomorphic and sedimentary evidence and hydraulic modelling of the eastern Beaver River Spillway, formed by the catastrophic drainage of the ice‐dammed glacial Lake Algar, in north central Alberta. During this flood, coarse‐grained sediment eroded from local till formed large pendant bars. Within the first ~50 km of the spillway (Reach 1), pendant bars contain downstream orientated foresets overlain by horizontally bedded coarser gravels. The remaining pendant bars (Reach 2), present downflow of a moraine barrier, differ, comprising massive, matrix‐supported, inversely graded gravels capped by a boulder layer. We use a HEC‐GeoRAS/HEC‐RAS system in conjunction with palaeostage indicators to estimate the steady‐state water surface elevation. Modelling results show that peak discharge within Reach 1 of the eastern Beaver River Spillway was approximately 14 000–21 000 m3 s?1. For Reach 2, 30 km downstream, the peak discharge was estimated at 23 000–40 000 m3 s?1 (nbulked 18 000–26 000 m3 s?1). The downstream discharge increase, consistent with the sedimentary change in pendant bar deposits, is attributed to sediment bulking of the flood flow. This provides the opportunity to observe a range of flow conditions, and associated sedimentology, from a single flood event. The reconstructed flow conditions, coupled with lake volume estimates from the ponding above the moraine barrier suggest a minimum flow duration of 3–5 days.  相似文献   

5.
This article documents a 240,000-m3 debris flow resulting from a glacial lake outburst flood in Fjærland, Western Norway, May 8, 2004. The event started when a glacial lake breached a moraine ridge. The ensuing debris flow was able to erode material along its path, increasing in volume from about 25,000 to 240,000 m3 before depositing about 3 km from its starting point. Field investigations, pre- and post-flow aerial photographs as well as airborne laser scanning (LIDAR) were used to describe and investigate the flow. The most striking and unusual feature of this case study is the very pronounced erosion and bulking. We have made a detailed study of this aspect. Erosion and entrainment is quantified and the final volume of the debris flow is determined. We also present geometrical and sedimentological features of the final deposit. Based on the Fjærland data, we suggest that a self-sustaining mechanism might partly explain the extreme growth of debris flows traversing soft terrain.  相似文献   

6.
冰湖溃决泥石流形成的临界条件   总被引:2,自引:0,他引:2  
党超  褚娜娜  丁瑜 《冰川冻土》2014,36(5):1176-1183
随着全球气候的变暖, 在世界上许多高山峡谷区的冰湖溃决及其溃决洪水引发的泥石流, 经常对下游居民及其他基础设施造成极为严重的危害. 使用水槽试验的方法, 从单宽流量和库容、沟道纵坡、堆积物粒径3个方面探讨了冰湖溃决泥石流形成的影响因素和临界条件. 结果显示: 冰湖溃决泥石流形成与否不仅与溃决洪水提供的能量有关, 还与参与泥石流活动的沟床物质特性紧密相关. 通过对试验数据的分析, 当泥石流形成的特征参数K>2.66时, 冰湖溃决洪水可以演化为泥石流. 该种方法可以对危险性冰湖的预测提供理论参考.  相似文献   

7.
Natural Hazards - Glacial lakes are rapidly growing in response to climate change and glacier retreat which may lead to catastrophic socio-economic disasters. The failure of moraine-dammed lakes is...  相似文献   

8.
Glacial hazards relate to hazards associated with glaciers and glacial lakes in high mountain areas and their impacts downstream. The climatic change/variability in recent decades has made considerable impacts on the glacier life cycle in the Himalayan region. As a result, many big glaciers melted, forming a large number of glacial lakes. Due to an increase in the rate at which ice and snow melted, the accumulation of water in these lakes started increasing. Sudden discharge of large volumes of water with debris from these lakes potentially causes glacial lake outburst floods (GLOFs) in valleys downstream. Outbursts from glacier lakes have repeatedly caused the loss of human lives as well as severe damage to local infrastructure. Monitoring of the glacial lakes and extent of GLOF impact along the downstream can be made quickly and precisely using remote sensing technique. A number of hydroelectric projects in India are being planned in the Himalayan regions. It has become necessary for the project planners and designers to account for the GLOF also along with the design flood for deciding the spillway capacity of projects. The present study deals with the estimation of GLOF for a river basin located in the Garwhal Himalaya, India. IRS LISSIII data of the years 2004, 2006 and 2008 have been used for glacial lake mapping, and a total of 91 lakes have been found in the year 2008, and out of these, 45 lakes are having area more than 0.01?km2. All the lakes have been investigated for vulnerability for potential bursting, and it was found that no lake is vulnerable from GLOF point of view. The area of biggest lake is 0.193, 0.199 and 0.203?km2 in the years 2004, 2006 and 2008, respectively. Although no lake is potentially hazardous, GLOF study has been carried out for the biggest lake using MIKE 11 software. A flood of 100-year return period has been considered in addition to GLOF. The flood peak at catchment outlet comes out to be 993.74, 1,184.0 and 1,295.58 cumec due to GLOF; 3,274.74, 3,465.0 and 3,576.58 cumec due to GLOF; and 100-year return flood together considering breach width of 40, 60 and 80?m, respectively.  相似文献   

9.
Studies focusing on moraine deposits which slide into glacial lakes are scarce, even though they can trigger impact waves responsible for generating glacial lake outburst floods. We focused on landslides in lateral moraines as possible triggers. Detailed geomorphological, geophysical, and satellite radar interferometric investigations of the Palcacocha Lake moraine (Cordillera Blanca, Peru) together with laboratory tests on samples from the site provided data for slope stability calculations using GeoSlope software and hydrodynamic impact wave modeling using the Iber code. We identified landslides that could affect Palcacocha Lake and calculated their stability (factor of safety) under specified conditions, including variable water saturation and earthquake effects. Calculations showed that the moraine slopes are close to the threshold value (Fs?=?1) for stability and are especially sensitive to water saturation. The height of impact waves triggered by a landslide in 2003 and the potential wave heights from newly identified, possibly active landslides were calculated, based on landslide volume estimates, detailed lake bathymetry, and basin topography. Results show that potential future landslide-triggered waves could have similar properties to the 2003 impact wave. Evidence gathered in this study suggests that glacial lake outburst floods triggered by landslides from moraines, however, would be probably smaller than floods resulting from other types of slope processes (e.g., ice/rock avalanches) if dam breach is not taken into account. This assumption has to be critically evaluated against site-specific conditions at a given lake and any possible environmental factors, such as climate change or earthquake that may mobilize larger volumes of moraine material.  相似文献   

10.
In April 2010, an ice/rockfall into Lake 513 triggered a glacial lake outburst flood (GLOF) along the Chucchun River in the Cordillera Blanca of Peru. This paper reconstructs the hydrological characteristics of this as yet undocumented event using a 1D flood model prepared with HEC-RAS. The principle model inputs were obtained during detailed field surveys of surface characteristics and topography within the river and across the adjacent floodplain; a total of 120 cross-sections were surveyed. These inputs were refined further by eyewitness accounts and additional geomorphological observations. The flood modelling has enabled us to constrain the extent of the water surface and its elevation at each cross-section in addition to defining the peak discharge (580 m3 s?1). These modelling results show good agreement with other information about the flood including: flood marks and minimum flood levels; the lake displacement wave height; the extent of the flooded area; and the travel time from Lake 513 to the confluence with the Santa River. This demonstrates that the model offers a reliable reconstruction of the basic hydrological characteristics of the GLOF. It provides important information about the flood intensity and significantly improves our ability to model future flood scenarios along both the studied river and within neighbouring catchments. The flood hazard, defined by the flood depth during peak discharge, shows that the majority of the damaged infrastructure (houses, bridges, and a drinking water treatment plant) was only subjected to low or medium flood intensities (defined by a maximum water depth of less than 2 m). These low flood intensities help to explain why the flooding caused comparatively minor damage despite the significant public attention it attracted.  相似文献   

11.
2013年西藏嘉黎县“7.5”冰湖溃决洪水成因及潜在危害   总被引:8,自引:3,他引:8  
冰湖溃决洪水(泥石流)是西藏自治区主要自然灾害之一. 2013年7月5日,西藏自治区嘉黎县忠玉乡发生“7.5”冰湖溃决洪水灾害事件,导致人员失踪,房屋被毁,桥梁、道路等基础设施遭到严重破坏,直接经济损失高达2.7亿元. 基于不同时间段地形图和遥感影像资料,利用地理信息技术,发现导致“7.5”洪灾的溃决冰湖为然则日阿错. 该冰湖溃决的直接诱因可能是雪崩和冰崩的共同作用,溃决前的强降水过程及气温的快速上升是其间接原因,而冰湖长期稳定的扩张导致水量聚集是其溃决并造成巨大灾害的基础. 然则日阿错溃决后形成2个冰湖,面积分别为0.25 km2和0.01 km2,再次发生溃决的概率极小. 这次溃决洪水和泥石流灾害事件阻塞了尼都藏布的罗琼沟及衣布沟,并形成2处面积分别为0.33 km2和0.13 km2堰塞湖,且存在溃决风险,在今后一段时间内应加强监测工作与排险工程实施.  相似文献   

12.
Flood and sediment disasters caused by glacial lake outbursts have occurred frequently in recent years in the Himalayas of Nepal. Glacial lake outburst floods (GLOFs) can cause catastrophic flooding in downstream areas with serious damage to lives and property. It is thus important to investigate outburst floods from potentially dangerous glacial lakes. In this study, the characteristics of potential outburst floods from the Tsho Rolpa glacial lake due to two types of moraine dam failure caused by seepage flow or water overtopping were analyzed with various scenarios by using integrated modeling system of three numerical models: (1) the flow and bed-surface erosion model, (2) the seepage model and (3) the slope stability model. Flood inundation areas were also identified by using the numerical model of the flow and moraine dam failure and geographical information system tools. Possible threats and damages due to the potential GLOF events from the lake were also analyzed based on numerical results, flood inundation maps and field investigations.  相似文献   

13.
《Quaternary Research》2011,76(3):393-396
A prominent lake formed when glaciers descending from the Kodar Range blocked the River Vitim in central Transbaikalia, Siberia. Glacial Lake Vitim, evidenced by palaeoshorelines and deltas, covered 23,500 km2 and held a volume of ~ 3000 km3. We infer that a large canyon in the area of the postulated ice dam served as a spillway during an outburst flood that drained through the rivers Vitim and Lena into the Arctic Ocean. The inferred outburst flood, of a magnitude comparable to the largest known floods on Earth, possibly explains a freshwater spike at ~ 13 cal ka BP inferred from Arctic Ocean sediments.  相似文献   

14.
西藏喜马拉雅山地区冰湖溃决的预测模型及其应用研究   总被引:1,自引:1,他引:1  
以西藏喜马拉雅山地区的冰湖为研究对象,基于现有的冰湖溃决预测方法,提出了建立冰湖溃决预测方法的关键点,即选取的指标必须能够体现冰湖的动态变化特征.在定量分析的建模过程中应该采用不确定性的数学理论,对于冰湖溃决可能性的等级划分需要进行合理性及实用性验证.选取坝顶宽度、湖水面距坝顶高度与坝高之比、冰湖面积和补给冰川面积为预测指标,通过对西藏喜马拉雅山地区29个冰湖样本进行逻辑回归分析,建立了冰湖溃决的预测模型,并用所有样本进行了交叉验证.结果表明:该模型能够在分类应用中取得较好效果,根据溃决冰湖累积百分数随冰湖溃决可能性大小的变化曲线,将冰湖溃决的可能性划分为四个等级.以黄湖为例,把湖水面距坝顶高度与坝高之比作为冰湖溃决的诱变指标,分析了冰湖溃决可能性大小的变化规律.结合现有的冰湖溃决预测的定性方法,讨论了所建立的冰湖溃决预测模型的优点和缺点.  相似文献   

15.
Daoming Xu 《GeoJournal》1988,17(4):569-580
A catastrophic outburst of a moraine dammed lake at the head of a tributary of Boqu river on the S-flank of the Tibetan Himalayas took place in 1981. The flood with a peak discharge of 15920 m3/s at the breach and 2316 m3/s at Bharabise, more than 50 km downstream, was 16 times larger than the average annual flood of the river, and caused a large scale sediment morement. Spreading over 50 km or more along Boqu river, the debris flow involved a total of about 4 mio. m3 of solid material. The debris flow valley may be divided into three sections according to erosion and deposition: the section of vertical erosion, the section of lateral erosion-flow passage, and the section of lateral erosion-deposition. Half of the total solid materials was derived from the vertical erosion in the first section and the other half from the lateral erosion in the latter two sections. This debris flow was a sediment-laminated movement under the conditions of an extraordinary flood. The moving layer of sediment may be estimated as being 4 to 10 m in thickness.Debris flow deposits with well developed morphologies are chiefly scattered along the last section of the debris flow valley. The most significant morphologies include the levee (a leteral deposit), the stone pile (a flow surge deposit) and the residual terrace (the residue of the flow). The sedimentology of these deposits is characteristicly coarse grain and of mixed composition with a lack of bedding and sorting, the presence of inverse grading, parallelism of long axes and imbrication. All these features imply an accordance with the grain flow concept developed by R. A. Bagnold in the mechanics of sediment movement.  相似文献   

16.
Cores and outcrops from the southern shore of Lake Biel were studied to reconstruct the nearshore environment of the lake between ca. 12000 and 5000 yr BP. Core correlations were established by lithostratigraphical and pollen analytical correlations. From the Allerød to the Preboreal time quiet hydrodynamic conditions favoured the deposition of lake marl in the littoral zone and peat on the shore. Between the Preboreal(?) and the Atlantic the littoral zone shows a higher hydrodynamic environment with allochthonous material, whereas peat and clay layers are recorded from the shore. During the Older Atlantic severe erosional episodes caused the erosion of Boreal, Preboreal and Younger Atlantic layers. The previously described long hiatus between the Allerød and the Boreal time can now be connected with these erosional episodes. From Younger Atlantic to Subboreal time the littoral zone displays quiet conditions again with sedimentation of lake marl. On the basis of these results a lake level curve for Lake Biel is proposed: high lake level stands can be traced during the Allerød, Boreal, Older Atlantic and Younger Atlantic biozones; low lake level stands are found during the Allerød, Younger Dryas, Preboreal and Older Atlantic biozones.  相似文献   

17.
Sattar  Ashim  Goswami  Ajanta  Kulkarni  Anil V. 《Natural Hazards》2019,98(2):535-557
Natural Hazards - This study aims to examine a set of alternatives as remedial measures for the flood management purposes in order to protect the northern part of Nicosia which has been affected by...  相似文献   

18.
《Quaternary Research》1987,27(2):182-201
The last floods from glacial Lake Missoula, Montana, probably ran into glacial Lake Columbia, in northeastern Washington. In or near Lake Columbia's Sanpoil arm, Lake Missoula floods dating from late in the Fraser glaciation produced normally graded silt beds that become thinner upsection and which alternate with intervals of progressively fewer varves. The highest three interflood intervals each contain only one or two varves, and about 200–400 successive varves conformably overlie the highest flood bed. This sequence suggests that jökulhlaup frequency progressively increased until Lake Missoula ended, and that Lake Columbia outlasted Lake Missoula. The upper Grand Coulee, Lake Columbia's late Fraser-age outlet, contains a section of 13 graded beds, most of them sandy and separated by varves, that may correlate with the highest Missoula-flood beds of the Sanpoil River valley. The upper Grand Coulee also contains probable correlatives of many of the approximately 200–400 succeeding varves, as do nearby parts of the Columbia River valley. This collective evidence casts doubt on a prevailing hypothesis according to which one or more late Fraser-age floods from Lake Missoula descended the Columbia River valley with little or no interference from Lake Columbia's Okanogan-lobe dam.  相似文献   

19.
Sattar  Ashim  Goswami  Ajanta  Kulkarni  Anil V. 《Natural Hazards》2019,98(2):817-817
Natural Hazards - The article was published with the citation “Worni et al. (2012)”. The author group of the article would like readers to know that this information should instead...  相似文献   

20.
青藏高原是全球冰湖溃决灾害发生最频繁的区域之一,冰湖溃决对人类及工程建设安全造成严重威胁。以2015—2018年Landsat 8 OLI_TIRS等遥感影像及数据为基础,对青藏高原40000余条冰川10 km范围内且面积大于900 m2的冰湖进行了遥感解译,分析了冰湖分布与发育特征,建立了冰湖溃决隐患的识别指标体系,利用突变级数法(CPM)对隐患点进行了危险性分级评价。结果表明:①青藏高原发育冰湖16481处,海拔分布在5000~5500 m之间的冰湖占总量的43.69%;面积集中在100~500 km2之间的占总量的47.40%;行政分布上主要分布在西藏自治区,有12664个,占总量的76.84%;流域上主要分布在雅鲁藏布江流域,有8321个,占总量的50.49%。②识别出冰湖灾害隐患点369个,其中低危险点126个,中危险点177个,高危险点66个。③冰湖溃决隐患点面积多为0.1~0.2 km2;海拔主要分布在5000~5500 m之间;与母冰川距离大多小于100 m;冰碛坝宽度一般小于300 m,背水坡坡度大多小于50°;冰湖溃决隐患点的母冰川冰舌端坡度分布在10°~20°之间;绝大多数冰湖溃决的方向朝向北方。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号