首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The generalized Wiedemann-Franz law for a nonisothermal quasi-neutral plasma with developed ion-acoustic turbulence and Coulomb collisions has been proven. The results obtained are used to explain the anomalously low thermal conductivity in the chromosphere-corona transition region of the solar atmosphere. Model temperature distributions in the lower corona and the transition region that correspond to well-known experimental data have been determined. The results obtained are useful for explaining the abrupt change in turbulent-plasma temperature at distances smaller than the particle mean free path.  相似文献   

2.
Using measurements of EUV and X-ray spectral lines we derive the differential emission measure vs electron temperature T from the transition region to the corona of an active region (105 T <5 × 106 K). The total emission measure and radiative losses are of order 3 × 1048 cm–3 and 4 × 1026 ergss–1 respectively. The emission measure at T > 106 K (i.e. that mainly responsible for the X-ray emission) is about 75% of the total. We also examine the use of Mg x 625 Å as an indicator of coronal electron density. A set of theoretical energy balance models of coronal loops in which the loop divergence is a variable parameter is presented and compared with the observations. Particular attention is given to the limitations inherent in any such comparison.  相似文献   

3.
The temperature curve in the solar chromosphere has puzzled astronomers for a long time.Referring to the structure of supergranular cells,we propose an in ductive heating model.It mainly includes the following three steps.(1) A small-scale dynamo exists in the supergranulation and produces alternating small-scale magnetic fluxes;(2) The supergranular flow distributes these small-scale fluxes according to a regular pattern;(3) A skin effect occurs in the alternating and regularly-distributed magnetic fields.The induced current is concentrated near the transition region and heats it by resistive dissipation.  相似文献   

4.
Doyle  J.G.  van den Oord  G.H.J.  O'Shea  E.  Banerjee  D. 《Solar physics》1998,181(1):51-71
The power spectra for line intensities of several lines formed in the upper transition region around 100000 to 250000 K are presented. A period of 5 min is clearly present in lines due to Oiii, Oiv, and Ov. In one dataset a period approaching 10 min is present for 40 min. The size of the emitting features is limited to 7 arc sec squared. In all datasets examined, there is excess power below 4 mHz everywhere along the slit, although the observed periods do not always come from the most intense regions. In 40% of instances clear periods are observable in the 2–5 mHz range with the largest power peak at 3.0 mHz. In all regions, the 5.0 mHz power peak is smaller. For the frequencies investigated there are no significant time delays in any of the datasets examined. This finding may not be entirely unexpected as the formation temperatures of Oiii (100000 K) and Ov (250000 K) may be too close in order to result in an observable phase shift.The observations are discussed in terms of trapped magnetic modes below the transition region and resonant absorption of MHD waves. For resonant absorption we derive from the observed period of 5 min and the observed extent of the structure a typical magnetic field strength of about 2 G. This value is in good agreement with results from MDI for quiet-Sun regions. Our results seem to imply that resonant waves can play a role in the heating of the quiet Sun. We discuss the effect of observing without tracking on the power spectrum and show that the effect is small.  相似文献   

5.
Recently launched X-ray telescopes have discovered several candidate isolated neutron stars. The thermal radiation from these objects may potentially constrain our understanding of nuclear physics in a realm inaccessible to terrestrial experiments. To translate the observed fluxes from neutron stars into constraints, one needs precise calculations of the heat transfer through the thin insulating envelopes of neutron stars. We describe models of the thermal structure of the envelopes of neutron stars with magnetic fields up to 1014 G. Unlike earlier work, we infer the properties of envelope models in two dimensions and precisely account for the quantization of the electron phase-space. Both dipole and uniformly magnetized envelopes are considered.  相似文献   

6.
It is the objective of the present study to establish an absolute scale for flows in the solar transition region in observations obtained with the UVSP/SMM. By use of the polar limbs as reference one finds that the downflows range between 3 and 10 km s–1. The brighter regions show the largest downward flows.Paper presented at the 11th European Regional Astronomical Meetings of the IAU on New Windows to the Universe, held 3–8 July, 1989, Tenerife, Canary Islands, Spain.  相似文献   

7.
Previous studies using observations made at low spatial and spectral resolution showed that the resonance lines of He  i and He  ii are anomalously strong in the quiet Sun when compared with other transition region lines formed at similar temperatures. Here, the higher spatial and spectral resolution provided by the Coronal Diagnostic Spectrometer ( cds ) instrument on board the Solar and Heliospheric Observatory ( SOHO ) is used to re-examine the behaviour of the He  i and He  ii lines and other transition region lines, in quiet regions near Sun centre. Supergranulation cell boundaries and cell interiors are examined separately. Near-simultaneous observations with the sumer instrument provide information on the lower transition region and the electron pressure. While the lines of He  i and He  ii have a common behaviour, as do the other transition region lines, the behaviour of the helium lines relative to the other transition region lines is significantly different. The emission measure distributions that account for all transition region lines, except those of helium, fail to produce sufficient emission in the He  i and He  ii resonance lines by around an order of magnitude, in both supergranulation cell boundary and cell interior regions. The electron pressure appears to be higher in the cell interiors than in the average cell boundaries, although the uncertainties are large. While the VAL-D model gives a closer match to the He  i 584.3-Å line, it does not successfully reproduce other transition region lines.  相似文献   

8.
I. H. Urch 《Solar physics》1969,10(1):219-228
A steady state, inviscid, single fluid model of the solar win d in the equatorial plane is developed using magneto-hydrodynamics and including the heat equation wit h thermal conduction but no non-thermal heating (i.e. a conduction model). The effects of solar rotation and magnetic field are included enabling both radial and azimuthal components of the velocity and magnetic fields to be found in a conduction model for the first time.The magnetic field cuts off the thermal conduction far from the sun and leads to an increased temperature at 1 AU and relatively small changes to the radial velocity and density. Models have been found which fit the experimental electron densities in 2 R < r < 16 R . These models predict at 1 AU a radial velocity of 300–380 km·sec-1 and a density of 8 protons·cm-3. The latter velocity corresponds to a density profile obtained by Blackwell and Petford (1966) during the last sunspot minimum, and is about 100 km·sec-1 above that found in previous conduction models which fit the coronal electron densities. The radial velocities are now consistent with the mean quiet solar wind, as are the densities when the experimental values are averaged over a magnetic sector. However, the azimuthal velocity at 1 AU is only 1–2 km·sec-1 which is low compared to the experimental values, as found by previous authors.  相似文献   

9.
R-matrix calculations of electron impact excitation rates for transitions in Si iii are used to derive the electron-density-sensitive emission line ratios R 1 = I(1113.2 Å)/I(1206.3 Å), R 2 = I(1298.9 Å)/I(1206.3 Å), and R 3 = I(1296.7 Å)/I(1206.3 Å). A comparison of these with observational data for several solar features obtained with the Harvard S-055 spectrometer on board Skylab reveals that theory and experiment are compatible if the electron temperature of the Si iii emitting region of the solar atmosphere is log T e = 4.5, but not if log T e = 4.7. The implication of the choice of a lower temperature on the electron energy distribution function is also briefly discussed.  相似文献   

10.
Existing models of the quiet chromosphere-corona transition region predict a distribution of emission measure over temperature that agrees with observation for T 105 K. These network models assume that all magnetic field lines that emerge from the photosphere extend into and are in thermal contact with the corona. We show that the observed fine-scale structure of the photospheric magnetic network instead suggests a two-component picture in which magnetic funnels that open into the corona emerge from only a fraction of the network. The gas that makes up the hotter transition region is mostly contained within these funnels, as in standard models, but, because the funnels are more constricted in our picture, the heat flowing into the cooler transition region from the corona is reduced by up to an order of magnitude. The remainder of the network is occupied by a population of low-lying loops with lengths 104 km. We propose that the cooler transition region is mainly located within such loops, which are magnetically insulated from the corona and must, therefore, be heated internally. The fine-scale structure of ultraviolet spectroheliograms is consistent with this proposal, and theoretical models of internally heated loops can explain the behavior of the emission measure below T 105 K.Operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.  相似文献   

11.
The solar transition region(TR) is the temperature regime from roughly 0.02 MK to 0.8 MK in the solar atmosphere. It is the transition layer from the collisional and partially ionized chromosphere to the collisionless and fully ionized corona. The TR plays an important role in the mass and energy transport in both the quiet solar atmosphere and solar eruptions. Most of the TR emission lines fall into the spectral range of far ultraviolet and extreme ultraviolet(~400-1600). Imaging and spectroscopic observations in this spectral range are the most important ways to obtain information about the physics of the TR. Static solar atmosphere models predict a very thin TR. However, recent highresolution observations indicate that the TR is highly dynamic and inhomogeneous. I will summarize some major findings about the TR made through imaging and spectroscopic observations in the past20 years. These existing observations have demonstrated that the TR may be the key to understanding coronal heating and origin of the solar wind. Future exploration of the solar TR may need to focus on the upper TR, since the plasma in this temperature regime(0.1 MK-0.8 MK) has not been routinely imaged before. High-resolution imaging and spectroscopic observations of the upper TR will not only allow us to track the mass and energy from the lower atmosphere to the corona, but also help us to understand the initiation and heating mechanisms of coronal mass ejections and solar flares.  相似文献   

12.
We have calculated an equilibrium temperature distribution over the column depth of plasma in the transition region between the solar corona and chromosphere by assuming the plasma in the transition region and the chromosphere to be heated by the heat flux from the corona and the energy fluxes from the convective zone, respectively. The corona-chromosphere transition region is shown to be actually a stable, very thin layer in which, however, the standard collision approximation is well applicable for describing the heat flux. The solution we found explains well the currently available results of satellite observations of extreme ultraviolet (EUV) radiation from the transition region.  相似文献   

13.
The connection between the magnetic field geometry and the thermal properties of solar coronal structures is investigated. Gravitational effects, that can modify the spatial dependence of the thermodynamical quantities, but have no influence on the plasma-field interaction, are omitted to simplify the problem. A series of two-dimensional models is constructed, in which a strong coupling between the magnetic field shear and the thermal structure of the loop is clearly pointed out.It is shown how it is possible to deduce detailed information on the small scale magnetic structure by the use of measurement of purely thermodynamical quantities. Similarly information on the spatial dependence of the energy deposition function can also be obtained.  相似文献   

14.
High-lying, dynamic loops have been observed at transition region temperatures since Skylab observations. The nature of these loops has been debated for many years with several explanations having been put forward. These include that the loops are merely cooling from hotter coronal loops, that they are produced from siphon flows, or that they are loops heated only to transition region temperatures. In this paper we will make use of combined SOHO-MDI (Michelson-Doppler Imager), SOHO-CDS (Coronal Diagnostic Spectrometer) and Yohkoh SXT (Soft X-ray Telescope) datasets in order to determine whether the appearance of transition region loops is related to small-scale flaring in the corona, and to estimate the magnetic configuration of the loops. The latter allows us to determine the direction of plasma flows in the transition region loops. We find that the appearance of the transition region loops is often related to small-scale flaring in the corona and in this case the transition region loops appear to be cooling with material draining down from the loop top.  相似文献   

15.
High-lying, dynamic loops have been observed at transition region temperatures since Skylab observations. The nature of these loops has been debated for many years with several explanations having been put forward. These include that the loops are merely cooling from hotter coronal loops, that they are produced from siphon flows, or that they are loops heated only to transition region temperatures. In this paper we will make use of combined SOHO-MDI (Michelson-Doppler Imager), SOHO-CDS (Coronal Diagnostic Spectrometer) and Yohkoh SXT (Soft X-ray Telescope) datasets in order to determine whether the appearance of transition region loops is related to small-scale flaring in the corona, and to estimate the magnetic configuration of the loops. The latter allows us to determine the direction of plasma flows in the transition region loops. We find that the appearance of the transition region loops is often related to small-scale flaring in the corona and in this case the transition region loops appear to be cooling with material draining down from the loop top.  相似文献   

16.
We theoretically analyzed the properties of surface waves near the temperature jump in the solar atmosphere whose dispersion relation is identical in form to the equation for waves on deep water. We found an exact solution to the model equation for the vertical velocity of the medium in such a wave. Based on the derived space-time dependence of the vertical velocity of the medium, we quantitatively explained one of the events recorded in the SOI/MDI experiment onboard the SOHO spacecraft that accompanied coronal mass ejection.  相似文献   

17.
We study the velocity fields in the region of quiet solar filaments using spectral observations at the Sayan Solar Observatory (ISTP, Irkutsk). Once the series of spectral images have been processed, maps of the two-dimensional distribution of the velocity and its variations in the chromosphere (in the Hβ λ = 486.13 nm line) and the photosphere (in the Fe I λ = 486.37 nm line) are constructed. The motions in the filaments have been found to consist of steady and periodic components. Our analysis of the spatial distributions of various oscillation modes shows that the short-period (<10 min) oscillations propagate mainly vertically and are observed at the filament edges, on scales of several arcseconds. The quasi-hour (>40 min) oscillations propagate mostly along the filament at a small angle to its axis. The intensity in the Hβ core in individual fragments of some filaments varies with a period of about one hour. The observed velocity structures in the filaments and the imbalance of steady motions on the opposite sides of the filaments can be explained in terms of the model of a twisted fine-structure magnetic flux tube.  相似文献   

18.
Observations of UV-line intensities referring to the whole undisturbed Sun are used to investigate the chromosphere-corona transition region. For the evaluation of the integral representing the theoretical line intensities it appears to be an improvement to consider not the temperature gradient but the conductive flux to be nearly constant in the line-forming region. The variation of conductive flux with temperature calculated in this way is indeed small. Moreover, in the conductive flux versus temperature diagram the scatter of points is found to be less with coronal values of relative abundances than with photospheric ones. The results are used for determining the temperature structure of the transition region.A short report about this investigation was presented at the recent IAU Colloquium No. 14 on Ultraviolet and X-ray Spectroscopy in Astrophysical and Laboratory Plasmas held in Utrecht, the Netherlands, August 1971. An abstract of it is to appear in Space Science Reviews 11 (1972).  相似文献   

19.
Two competing fundamental hypotheses are usually postulated in the solar coronal heating problem: heating by nanoflares and heating by waves. In the latter it is assumed that acoustic and magnetohydrodynamic disturbances whose amplitude grows as they propagate in a medium with a decreasing density come from the convection zone. The shock waves forming in the process heat up the corona. In this paper we draw attention to yet another very efficient shock wave generation process that can be realized under certain conditions typical for quiet regions on the Sun. In the approximation of stationary dissipative hydrodynamics we show that a shock wave can be generated in the quiet solar chromosphere–corona transition region by the fall of plasma from the corona into the chromosphere. This shock wave is directed upward, and its dissipation in the corona returns part of the kinetic energy of the falling plasma to the thermal energy of the corona. We discuss the prospects for developing a quantitative nonstationary model of the phenomenon.  相似文献   

20.
N. A. Lotova 《Solar physics》1988,117(2):399-406
The morphology and physical characteristics of the extended solar wind transsonic region, an intrinsically unique regime of the heliosphere, are described. It is here where the primary acceleration of the solar wind occurs and both subsonic and supersonic plasma flows co-exist and interact. This concept of mixed flow has evolved from an analysis of interplanetary scintillation (IPS) data that reveal the solar wind stream structure and anomalous scattering within the solar wind transsonic region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号