首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用2008年5月16日至2009年4月17日太湖地区多光谱旋转遮光辐射仪(multi—filter ro—tating shadow—band radiometer,简称MFRSR)的观测资料进行反演,得出415、500、615、675和870nm5个波段大气气溶胶光学厚度(aerosol optical depth,简称AOD)及各季节浑浊度系数和波长指数的统计结果。结果表明,5个波段AOD的最大值分别为1.9、1.6、1.3、1.2和1.0;它们谱分布的半宽度分别为0.90、0.70、0.55、0.45和0.25;AOD频率分布极大值处所对应的AOD值分别为0.750、0.550、0.475、0.425和0.425。5个波段AOD的平均值在春季最大,夏季次之,除870nm外,均为冬季最小。浑浊度系数变化范围为0~1.25,其中大于0.2的占97%以上,大于0.4的占66%以上。春季、夏季、秋季和冬季的波长指数变化范围分别为0~3.0、0~2.8、0.2~2.0和0.2~2.0,表明太湖地区大气污染较为严重,且受人为源的影响显著。相对于秋冬季,春夏季有较大粒径的气溶胶粒子存在。  相似文献   

2.
中国不同地区气溶胶消光特性分析   总被引:14,自引:0,他引:14  
利用多波段太阳光度计在中国四个点(北京的密云,广东的新丰,青海的瓦里关,西藏的当雄)观测了450—900 um范围中多波长气溶胶光学厚度和Angstrom指数。本文分析了这些参数从1998年2月到1999年1月这一年中的特点。结果表明,在干旱和半干旱地区,如密云(17.12°E,40.65°N)和瓦里关(100.90°E,36.29°N),春季出现气溶胶光学厚度的最大值,大约是其它季节的2倍。在湿润地区,如新丰(114.2°E,24.5°N),虽然春季气溶胶光学厚度值也是最大,但只是比其它季节稍微大一些 瓦里关春季的Angstrom指数有最小值,约0.15,表明有比较大的粒子、密云和新丰的Angstrom指数也有很大的月际变化。但没有明显的季节倾向。这表明,气溶胶的源比较复杂。  相似文献   

3.
We present results of direct aerosol radiative forcing over a French Mediterranean coastal zone based on one year of continuous observations of aerosol optical properties during 2005–2006. Monthly-mean aerosol optical depth at 440 nm ranged between 0.1 and 0.34, with high Angstrom coefficient (α > 1.2). The single scattering albedo (at 525 nm) estimated at the surface ranged between 0.7 and 0.8, indicating significant absorption. The presence of aerosols over the Mediterranean zone during summer decreases the shortwave radiation reaching the surface by as much as 26 ± 3.9 W m− 2, and increases the top of the atmosphere reflected radiation by as much as 5.2 ± 1.0 W m− 2. The shortwave atmospheric absorption translates to an atmospheric heating of 2.5 to 4.6 K day− 1. Concerted efforts are needed for investigating the possible impact of the increase in heating rate on the maintenance of heat-waves frequently occurring over this coastal region during summer time.  相似文献   

4.
It is well established that aerosols affect the climate in a variety of ways. In order to understand these effects, we require an insight into the properties of aerosols. In this paper we present a study of aerosol properties such as aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol radiative forcing (ARF) over mega city of Lahore (Pakistan). The data from Aerosol Robotic Network (AERONET) have been used for the period December 2009 to October 2011. The seasonal average values of AOD, asymmetry parameter (ASY) and volume size distribution in coarse mode were observed to be highest in summer. On the other hand, the average values of Angstrom exponent (AE) and imaginary part of refractive index (RI) were found to be maximum in winter. The average value of real part of RI was found to be higher in spring than in all other seasons. The SSA exhibited an increasing trend with wavelength in the range 440 nm–1020 nm in spring, summer and fall indicating the dominance of coarse particles (usually dust). However, a decreasing trend was found in winter in the range 675 nm–1020 nm pointing towards the dominance of biomass and urban/industrial aerosols. As far as aerosol radiative forcing (ARF) is concerned, we have found that during the spring season ARF was lowest at the surface of Earth and highest at top of the atmosphere (TOA). This indicates that the atmosphere was warmer in spring than in all the remaining seasons.  相似文献   

5.
Reported in this article are the results of the analysis of extensive observations of aerosol optical, micro-physical characteristics, and precipitable water content (PWC) that have been carried out using compact, multi-band solar radiometers, over a semi-arid station, Agra (27°10′N, 78°05′E, 169 m AMSL) during winter 2004. The aerosol optical depth (AOD), Angstrom wavelength exponent (α), and PWC show, higher values on hazy- and foggy-days and lower values on clear-days. The turbidity coefficient (β) shows higher values for smaller values of α and vice versa. The aerosol size spectra exhibit bi-modal distribution with abundance of accumulation-mode particles during fog and haze occasions, and relatively coarse-mode particles on clear-days. The above features have been explained with co-located PWC and surface-level meteorological parameters. The NOAA HYSPLIT five-day back trajectories indicate the influence of trans-boundary pollution transport over the experimental station during the study period.  相似文献   

6.
Aerosol depolarization ratio and aerosol optical depth (AOD) were measured at Chungli (24.58° N, 121.1° E), Taiwan during the period from 2002–2004. The depolarization ratios of background aerosol have values mostly less than 0.06. The maximum AOD in the altitude range of 0.7 to 2km occurs in the summer (June–August) while between 2 and 5km, the spring (March–May) shows the maximum. The former is mainly related to strong convection and humidity; however the latter is due to anthropogenic aerosols transported from East China and Southeast Asia based on calculations of backward trajectories. This seasonal variation of AOD inferred from different transport mechanisms and aerosol compositions which are supported by the height distributions of aerosol extinction and origins.  相似文献   

7.
利用2018年10月—2019年9月天空辐射计观测数据反演北京城区气溶胶光学特性参数,重点分析污染过程中气溶胶光学特性与气象条件的相关性。结果表明:500 nm气溶胶光学厚度在2—7月较大,最高值出现在6月,为0.71。单次散射反照率最高值出现在8月,为0.96;最低值出现在5月,为0.89。440~870 nm ?ngstr?m波长指数最高值出现在夏季,为1.11;最低值出现在春季,为0.89。统计发现污染日数仅占总日数的17%,其中62%为轻度污染;污染和清洁天气条件下PM2.5浓度分别为107.22 μg·m-3和47.16 μg·m-3,500 nm气溶胶光学厚度分别为0.85和0.49,单次散射反照率分别为0.96和0.92;冬季?ngstr?m波长指数在污染天气条件下(1.02)大于清洁天气(0.91),春季相反。结合天空辐射计、激光雷达和气象数据分析2019年1月一次污染事件,可知低风速与高湿度等不利气象条件、气溶胶粒子的吸湿增长和二次转化、污染物局地排放及区域输送共同导致污染事件发生。  相似文献   

8.
In order to understand the seasonal variation of aerosol optical properties in the Yangtze River Delta,5 years of measurements were conducted during September 2005 to December 2009 at Taihu,China.The monthly averages of aerosol optical depth were commonly >0.6;the maximum seasonal average(0.93) occurred in summer.The magnitude of the Angstr¨om exponent was found to be high throughout the year;the highest values occurred in autumn(1.33) and were the lowest in spring(1.08).The fine modes of volume size distribution showed the maxima(peaks) at a radius of ~0.15 μm in spring,autumn,and winter;at a radius of ~0.22 μm in summer.The coarse modes showed the maxima(peaks) at a radius of 2.9 μm in spring,summer,and autumn and at a radius of 3.8 μm in winter.The averages of single-scattering albedo were 0.92(spring),0.92(summer),0.91(autumn),and 0.88(winter).The averages of asymmetry factor were found to be larger in summer than during other seasons;they were taken as 0.66 at 440-1020 nm over Taihu.The real part of the refractive index showed a weak seasonal variation,with averages of 1.48(spring),1.43(summer),1.45(autumn),and 1.48(winter).The imaginary parts of the refractive index were higher in winter(0.013) than in spring(0.0076),summer(0.0092),and autumn(0.0091),indicating that the atmosphere in the winter had higher absorbtivity.  相似文献   

9.
This work aims at determining the aerosol particle radii in the atmosphere of Athens. Such a work is carried out in Athens for the first time. For this purpose, solar spectral direct-beam irradiance measurements were used in the spectral range 310–575 nm. To estimate the particle radius from aerosol optical depth retrieval, a minimization technique was employed based on the golden-section search of the difference between experimental and theoretical values of the aerosol optical depth. The necessary Mie computations were performed based on the algorithm LVEC.In this study, the mean particle radius of a given distribution was calculated every 30 min during cloudless days in the period November 1996 to September 1997. The largest particles were observed in the summer and the smallest during winter. The result was verified by the increased values of the aerosol optical depth and the turbidity factors calculated in the summer. The differences in the diurnal variation from season to season are attributed to the prevailing wind regime, pollutant emission and sink rates in the atmosphere of Athens.  相似文献   

10.
利用2010年9-11月鞍山大气成分监测站CE-318太阳光度计观测资料,依据气溶胶光学厚度测量原理,计算得到2010年鞍山秋季大气气溶胶光学厚度、波长指数等大气光学特性数据,通过统计分析,给出鞍山秋季气溶胶光学特性分布特征。结果表明:随着测量AOD波段的降低,AOD值逐渐增大,9月的AOD平均值最大,10月AOD平均值次之,11月AOD平均值最小。从频率分布看,2010年9月 AOD日均值集中分布在0.4-0.6之间,10月和11月AOD日均值集中分布在0.0-0.4之间,表明10-11月大气较为清洁|波长指数日均值的频率分布说明鞍山秋季大气污染物以细粒子为主。500 nm 的AOD值与波长指数成对数关系,两者在9、10月和11月的相关系数分别为0.5145、0.8412和0.2715;9月AOD与PM10、PM2.5、PM1.0质量浓度为较小负相关,10月和11月AOD与PM10、PM2.5、PM1.0质量浓度成正相关,且10、11月AOD与气溶胶细粒子相关性较为显著。AOD值与能见度在趋势上呈较小的负相关性,可能是由于高层气溶胶粒子对气溶胶光学厚度产生了主要影响。  相似文献   

11.
Broadband solar irradiance data obtained in the spectral range 400–940 nm at Kwangju, South Korea from 1999–2000 have been analyzed to investigate the effects of cloud cover and atmospheric optical depth on solar radiation components. Results from measurements indicate that the percentage of direct and diffuse horizontal components of solar irradiance depend largely on total optical depth (TOD) and cloud cover. During summer and spring, the percentages of diffuse solar irradiance relative to the global irradiance were 5.0% and 4.9% as compared to 2.2% and 3.0% during winter and autumn. The diffuse solar irradiance is higher than the direct in spring and summer by 24.2%, and 40.6%, respectively, which may largely be attributed to the attenuation (scattering) of radiation by heavy dust pollution and large cloud amount. In cloud-free conditions with cloud cover ≤2/10, the fraction of the direct and diffuse components were 66.0% and 34.0%, respectively, with a mean daily global irradiance value of 7.92±2.91 MJ m−2 day−1. However, under cloudy conditions (with cloud cover ≥8/10), the diffuse and direct fractions were 97.9% and 2.2% of the global component, respectively. The annual mean TOD under cloudless conditions (cloud cover≤2/10) yields 0.74±0.33 and increased to as much as 3.15±0.67 under cloudy conditions with cloud amount ≥8/10. An empirical formula is derived for estimating the diffuse and direct components of horizontal solar irradiance by considering the total atmospheric optical depth (TOD). Results from statistical models are shown for the estimation of solar irradiance components as a function of TOD with sufficient accuracy as indicated by low standard error for each solar zenith angle (SZA).  相似文献   

12.
Long-term record of global distribution of ozone during 1979 to 2001, from Total Ozone Mapping Spectrometer (TOMS), over a tropical urban environment has been analyzed and compared with ground measurements. Increase in atmospheric UV-absorbing aerosol loading has been observed after 1991. TOMS columnar ozone during 1979 to 2001 suggested a clear Gaussian pattern of minimum concentration in winter months and maximum in summer months. TOMS ozone showed good correlation with the ground measured columnar ozone during winter months and negative correlation with Sunburning Ultraviolet (SUV) (280–370 nm), UVA and aerosol optical depth (AOD).  相似文献   

13.
Aerosol optical properties over Solar Village, Saudi Arabia have been studied using ground-based remote sensing observations through the Aerosol Robotic Network (AERONET). Our analysis covered 8 recorded years of aerosol measurements, starting from February 1999 through January 2007. The seasonal mean values of aerosol optical thickness (AOT), the Ångström wavelength exponent α and the surface wind speed (V), exhibit a one year cyclical pattern. Seasonal variations are clearly found in the shape and magnitude of the volume size distribution (VSD) of the coarse size mode due to dust emission. The Spring is characterized by dusty aerosols as the modal value of the exponent α was low ~ 0.25 while that of AOT was high ~ 0.3. The modal value of wind speed was the highest ~ 3.6 m/s in spring. The increase in wind speed is responsible for increasing the concentration of dust particles during Spring. Spring of 2003 has the highest mean values of AOT, V and VSD and the lowest mean value for the exponent α. The seasonal mean values of the exponent α are anticorrelated with those of the wind speed (r = − 0.63). The annual mean values of the exponent α are well correlated (r = 0.77) with those of the difference between the maximum and minimum values of temperature ΔT. They are anticorrelated (r = − 0.74) with the annual mean values of the relative humidity. Large aerosol particles and high relative humidity increase the radiative forcing. This results in reduction of the values of the temperature difference ΔT.  相似文献   

14.
敦煌地区大气气溶胶光学厚度的季节变化   总被引:5,自引:10,他引:5  
李韧  季国良 《高原气象》2003,22(1):84-87
讨论了利用太阳直接辐射资料反演大气气溶胶光学厚度的一种方法,并且用1981-1983年敦煌地区太阳直接辐射资料计算了该地区大气气溶胶光学厚度的季节变化特征,结果表明:敦煌地区大气气溶胶光学厚度冬季稳定,变化小,春季不稳定,变化幅度大,夏季次之;秋季较小。  相似文献   

15.
Characterizations of urban and regional sources of particulate matter (PM) were performed in the Milan area (North of Italy) during Föhn and stagnant (non-Föhn) conditions. The measurements were performed at two different places: in an urban area North of Milan (Bresso) and in a regional area at the EMEP-GAW station in Ispra (about 65 km NW from Milan) during the winter periods of the years 2002–2007. Particle size distributions and chemical bulk analysis of aerosols are combined with single particle mass spectrometry to obtain information about the chemical content of the particles and their mixing state. Föhn conditions are characterized by extremely clean background air from which background aerosol is scavenged, and consequently local sources (here defined as sources between the sampling sites and the mountain range top about 100–150 km away depending on the wind direction) determine the aerosol properties.It was observed that during Föhn events the accumulation mode in the size range 50 nm < d < 300 nm practically disappears and that the size fraction below 50 nm dominates the total number distribution. The significant change in the number size distribution and the large decrease in PM10 mass during Föhn events are accompanied by a significant change in the chemical composition of the particles. Results from bulk chemical analysis showed high amounts of carbonaceous compounds and very low concentrations of ammonium nitrate (as indicator for secondary chemistry) during Föhn episodes, in contrast to stagnant conditions, when secondary components are dominating the aerosol composition. Single particle measurements confirm the high contribution of carbonaceous compounds in locally emitted particles.It was concluded that particles that originated in the urban area come mainly from combustion processes, especially direct traffic emissions, domestic heating and industrial activities, whereas the regionally emitted particles are different with much less traffic contribution.We estimate that under prevailing (non-Föhn) winter conditions, about 50–65% of the aerosol mass load in the city of Milan are caused by local emissions, and about 35–50% come from regional background. This finding suggests that in order to improve air quality in a big city like Milan, it is important to combine local traffic restriction interventions with other long-term regional scale air-quality-measures.  相似文献   

16.
From satellite observations and the reanalysis data, the late spring formation of warm water with temperature higher than 30 °C to the southwest of the Philippine Islands (8–18°N, 115–120°E) is investigated. Our analysis suggests that the blockage of the winter monsoon by the Philippine Islands results in this “Luzon warm water” (LWW) to the southwest of the Luzon Island and the “Vietnam cold tongue” (VCT) to the southeast of the Vietnam coast during winter and early spring in the South China Sea (SCS). The VCT is formed by the southward cold advection by the western boundary current and surface heat loss in the SCS. During the winter monsoon, the LWW first forms due to weak winds southwest of the Philippine Islands and the countering effect of warm Ekman advection against cold geostrophic advection. In spring its temperature exceeds 30 °C (LWW30), helped by strong solar radiation and the winter monsoon wake effect lee of the Philippine Islands. With the winter monsoon weakening, LWW30 extends southwestward in late spring but disappears quickly after the summer monsoon onset. Reduced latent heat flux in the winter monsoon wake is the dominant factor for the spring fast warming southwest of the Philippine Islands.Both VCT and LWW persist from winter to early spring as the Philippine Islands block the winter monsoon. Their interannual variations are correlated with the variation of the LWW30 since the blockage of the winter monsoon by the Philippine Islands modifies surface latent heat flux and ocean advection from winter to early spring. These results strongly suggest that the LWW30 is a result of land–sea–winter monsoon interaction.  相似文献   

17.
A high-volume cascade impactor, equipped with a PM10 inlet, was used to collect size-segregated aerosol samples during the summer of 2004 at two Portuguese locations: a coastal-rural area (Moitinhos) and an urban area (Oporto). Concentrations of airborne particulate matter (PM), total carbon (TC), organic carbon (OC), elemental carbon (EC), and water-soluble organic carbon (WSOC) were determined for the following particle size ranges: < 0.49, 0.49–0.95, 0.95–3.0, and 3.0–10 µm. The total PM mass concentrations at the urban and coastal-rural sites ranged from 22.8 to 79.6 μg m− 3 and 19.9 to 28.2 μg m− 3, respectively, and more than 56% of the total aerosol mass was found in the fractions below 3.0 μm. At both locations the highest concentrations of OC and EC were found in the submicrometer size range. The regional variability for the OC and EC concentrations, with the highest concentrations being found in the urban area, was related to the contribution of local primary sources (mostly traffic emissions). It was also verified an enrichment of the small size particles in WSOC, representing on average 37.3(± 12.4)% and 59.7(± 18.0)% of OC in the very fine aerosol at the coastal-rural and urban areas, respectively. The amount of secondary OC calculated by the minimum OC/EC ratio method indicates that secondary organic aerosol formation was important throughout the study at both sites. The obtained results suggest that long-range transport and favourable summer conditions for photochemical oxidation are key factors determining secondary OC formation in the coastal-rural and urban areas. The ultraviolet absorption properties of the chromophoric constituents of the WSOC fractions were also different among the different particle size ranges and also between the two sampling locations, thus suggesting the strong impact of the diverse emission sources into the composition of the size-segregated organic aerosol.  相似文献   

18.
《Atmospheric Research》2008,87(3-4):194-206
This work aims at determining the aerosol particle radii in the atmosphere of Athens. Such a work is carried out in Athens for the first time. For this purpose, solar spectral direct-beam irradiance measurements were used in the spectral range 310–575 nm. To estimate the particle radius from aerosol optical depth retrieval, a minimization technique was employed based on the golden-section search of the difference between experimental and theoretical values of the aerosol optical depth. The necessary Mie computations were performed based on the algorithm LVEC.In this study, the mean particle radius of a given distribution was calculated every 30 min during cloudless days in the period November 1996 to September 1997. The largest particles were observed in the summer and the smallest during winter. The result was verified by the increased values of the aerosol optical depth and the turbidity factors calculated in the summer. The differences in the diurnal variation from season to season are attributed to the prevailing wind regime, pollutant emission and sink rates in the atmosphere of Athens.  相似文献   

19.
Measurements at Barrow during the second Arctic Gas and Aerosol Sampling Program (AGASP-II), conducted in April 1986, showed no rapid long-range transport from lower-latitude source regions to Barrow, and only limited vertical transport from above the boundary layer to the surface. New aerosol size distribution measurements in the 0.005–0.1 m diameter size range using a Nuclepore-filter diffusion battery apparatus showed a median diameter of about 0.01 m during times of high condensation nucleus (CN) concentrations. Aerosol black carbon concentrations exceeding 400 ng m–3 were detected at the surface and were more strongly correlated with CN concentrations than with aerosol scattering extinction (sp), suggesting that aerosol carbon was generally associated with small particles rather than large particles. Measurements at Barrow during AGASP-I, conducted in March–April 1983, showed a series of aerosol events detected at the ground that were caused by rapid long-range transport paths to the vicinity of Barrow from Eurasia. These events were strongly correlated with aerosol loading in the vertical column (optical depth).  相似文献   

20.
2008年北京奥运会期间大气气溶胶物理特征分析   总被引:5,自引:0,他引:5  
应用MODIS卫星的气溶胶产品资料和地面的光学粒子计数器的资料,对比分析了北京地区2006、2007、2008年7~9月的气溶胶光学厚度、细粒子光学厚度、Angstrom指数、气溶胶粒子数浓度谱及体积谱,发现2008年北京奥运会期间(7月20日~9月20日)的气溶胶光学厚度比2006、2007年同期明显降低,气溶胶细模态光学厚度占总光学厚度的比上升,Angstrom指数上升,气溶胶细粒子数浓度没有明显相对变化,而粗粒子数浓度则减少约50%.利用大气标高,将MODIS反演的气溶胶柱的质量浓度转化为地面气溶胶质量浓度.用粒子计数器得到的体积谱,在假定气溶胶粒子密度的情况下,计算出其质量浓度.将这两种方法得到的气溶胶质量浓度与国家环境保护部公布的空气质量指数换算得到的可吸入颗粒物(PM10)质量浓度进行比较.结果表明:北京奥运期间空气质量总体达到了国家二级空气质量标准;与2006、2007年同期相比,2008年气溶胶PM10质量浓度明显下降,而这主要是由气溶胶粗粒子的减少引起的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号