首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-resolution Stokes spectral data of Hα,Ca II 8542 ,and Fe I 6302.5  lines for a two-ribbon microflare (TRMF) were simultaneously obtained by the THEMIS telescope on 2002 September 5.We derive the intensity,velocity,and longitudinal magnetic field maps.The hard X-ray emission observed by RHESSI provides evidence of nonthermal particle acceleration in the TRMF.Using Hα and Ca II 8542  line profiles and a non-LTE calculation,we obtain semi-empirical atmospheric models for the two brightest kernels of th...  相似文献   

2.
3.
4.
We present the evolution of magnetic field and its relationship with mag- netic(current)helicity in solar active regions from a series of photospheric vector magnetograms obtained by Huairou Solar Observing Station,longitudinal magne- tograms by MDI of SOHO and white light images of TRACE.The photospheric current helicity density is a quantity reflecting the local twisted magnetic field and is related to the remaining magnetic helicity in the photosphere,even if the mean current helicity density brings the general chiral property in a layer of solar active regions.As new magnetic flux emerges in active regions,changes of photospheric cur- rent helicity density with the injection of magnetic helicity into the corona from the subatmosphere can be detected,including changes in sign caused by the injection of magnetic helicity of opposite sign.Because the injection rate of magnetic helicity and photospheric current helicity density have different means in the solar atmosphere, the injected magnetic helicity is probably not proportional to the current helicity den- sity remaining in the photosphere.The evidence is that rotation of sunspots does not synchronize exactly with the twist of photospheric transverse magnetic field in some active regions(such as,delta active regions).They represent different aspects of mag- netic chirality.A combined analysis of the observational magnetic helicity parameters actually provides a relative complete picture of magnetic helicity and its transfer in the solar atmosphere.  相似文献   

5.
Hinode is an observatory‐style satellite, carrying three advanced instruments being designed and built to work together to explore the physical coupling between the photosphere and the upper layers for understanding the mechanism of dynam‐ ics and heating. The three instruments aboard are the Solar Optical Telescope (SOT), which can provide high‐precision photometric and polarimetric data of the lower atmosphere in the visible light (388–668 nm) with a spatial resolution of 0.2–0.3 arcseconds, the X‐Ray Telescope (XRT) which takes a wide field of full sun coverage X‐ray images being capable of diagnosing the physical condition of coronal plasmas, and the EUV Imaging Spectrometer (EIS) which observes the upper transition region and coronal emission lines in the wavelength ranges of 17–21 nm and 25–29 nm. Since first‐light observations in the end of October 2006, Hinode has been continuously providing unprecedented high‐quality solar data. We will present some new findings of the sun with Hinode, focusing on those from SOT (© 2010 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
7.
Using multi-wavelength data of Hinode, the rapid rotation of a sunspot in ac-tive region NOAA 10930 is studied in detail. We found extraordinary counterclockwise rotation of the sunspot with positive polarity before an X3.4 flare. From a series of vector magnetograms, it is found that magnetic force lines are highly sheared along the neu-tral line accompanying the sunspot rotation. Furthermore, it is also found that sheared loops and an inverse S-shaped magnetic loop in the corona formed gradually after the sunspot rotation. The X3.4 flare can be reasonably regarded as a result of this movement. A detailed analysis provides evidence that sunspot rotation leads to magnetic field linestwisting in the photosphere. The twist is then transported into the corona and triggers flares.  相似文献   

8.
With an extensive analysis,we study the temporal evolution of magnetic flux during three successive M-class flares in two adjacent active regions:NOAA 10039 and 10044.The primary data are full disk longitudinal magnetograms observed by SOHO/MDI.All three flares are observed to be accompanied by magnetic flux changes.The changes occurred immediately or within 1 ~ 10 minutes after the starting time of the flares,indicating that the changes are obvious consequences of the solar flares.Although changes in many ...  相似文献   

9.
We present spectropolarimetric analysis of umbral dots and a light bridge fragment that show dark lanes in G -band images. Umbral dots show upflow as well as associated positive Stokes V area asymmetry in their central parts. Larger umbral dots show downflow patches in their surrounding parts that are associated with negative Stokes V area asymmetry. Umbral dots show weaker magnetic field in central part and higher magnetic field in peripheral area. Umbral fine structures are much better visible in total circularly polarized light than in continuum intensity. Umbral dots show a temperature deficit above dark lanes. The magnetic field inclination shows a cusp structure above umbral dots and a light bridge fragment. We compare our observational findings with 3D magnetohydrodynamic simulations.  相似文献   

10.
A method combining the support vector machine (SVM) the K-Nearest Neighbors (KNN), labelled the SVM-KNN method, is used to construct a solar flare forecasting model. Based on a proven relationship between SVM and KNN, the SVM-KNN method improves the SVM algorithm of classification by taking advantage of the KNN algorithm according to the distribution of test samples in a feature space. In our flare forecast study, sunspots and 10cm radio flux data observed during Solar Cycle 23 are taken as predictors, and whether an M class flare will occur for each active region within two days will be predicted. The SVM- KNN method is compared with the SVM and Neural networks-based method. The test results indicate that the rate of correct predictions from the SVM-KNN method is higher than that from the other two methods. This method shows promise as a practicable future forecasting model.  相似文献   

11.
12.
The energy source of a flare is the magnetic field in the corona. A topological model of the magnetic field is used here for interpreting the recently discovered drastic changes in magnetic field associated with solar flares. The following observational results are self‐consistently explained: (1) the transverse field strength decreases at outer part of active regions and increases significantly in their centers; (2) the center‐of‐mass positions of opposite magnetic polarities converge towards the magnetic neutral line just after flares onset; (3) the magnetic flux of active regions decreases steadily during the course of flares. For X‐class flares, almost 50% events show such changes. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
We present simultaneous observations of three recurring jets in EUV and soft X-ray (SXR), which occurred in an active region on 2007 June 5. By comparing their morphological and kinematic characteristics in these two different wavelengths, we found that EUV and SXR jets had similar locations, directions, sizes and velocities. We also analyzed their spectral properties by using six spectral lines from the EUV Imaging Spectrometer (EIS) onboard Hinode and found that these jets had temperatures from 0.05 to 2....  相似文献   

14.
15.
16.
Zhixing Mei  Jun Lin   《New Astronomy》2008,13(7):526-540
The flare-related, persistent and abrupt changes in the photospheric magnetic field have been reported by many authors during recent years. These bewildering observational results pose a challenge to the current flare theories in which the photospheric magnetic field usually remains unchanged in the eruption. In this paper, changes in the photosphere magnetic field during the solar eruption are investigated based on the catastrophe model. The results indicate that the projection effect is an important source that yields the change in the observed photospheric magnetic field in the line-of-sight. Furthermore one may observe the change in the normal component of magnetic field if the spectrum line used to measure the photospheric magnetic field does not exactly come from the photospheric surface. Our results also show that the significance of selecting the correct spectral lines to study the photospheric field becomes more apparent for the magnetic configurations with complex boundary condition (or background field).  相似文献   

17.
18.
We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation co-efficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle ei-ther from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.  相似文献   

19.
Solar flares are known to release a large amount of energy. It is believed that the flares can excite velocity oscillations in active regions. We report here the changes in velocity signals in three active regions which have produced large X-class flares. The enhanced velocity signals appeared during the rise time of the GOES soft X-ray flux. These signals are located close to the vicinity of the hard X-ray source regions as observed with RHESSI. The power maps of the active region show enhancement in the frequency regime 5–6.5 mHz, while there is feeble or no enhancement of these signals in 2–4 mHz frequency band. High energy particles with sufficient momentum seem to be the cause for these observed enhanced velocity signals.  相似文献   

20.
We present the first evidence for occurrences of magnetic interactions between a jet, a filament and coronal loops during a complex event, in which two flares sequen-tially occurred at different positions of the same active region and were closely associated with two successive coronal mass ejections (CMEs), respectively. The coronal loops were located outside but nearby the filament channel before the flares. The jet, originating from the first flare during its rise phase, not only hit the filament body but also met one of the ends of the loops. The filament then underwent an inclined eruption followed by the second flare and met the same loop end once more. Both the jet and the filament erup- tion were accompanied by the development of loop disturbances and the appearances of brightenings around the meeting site. In particular, the erupting filament showed clear manifestations of interactions with the loops. After a short holdup, only its portion passed through this site, while the other portion remained at the same place. Following the fila-ment eruption and the loop disappearance, four dimmings were formed and located near their four ends. This is a situation that we define as "quadrupolar dimmings." It appears that the two flares consisted of a sympathetic pair physically linked by the interaction between the jet and the filament, and their sympathy indicated that of the two CMEs.Moreover, it is very likely that the two sympathetic CMEs were simultaneously associ-ated with the disappearing loops and the quadrupole dimmings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号