首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The observation of ions created by ionization of cometary gas, either by ground-based observations or byin situmeasurements can give us useful information about the gas production and composition of comets. However, due to the interaction of ions with the magnetized solar wind and their high chemical reactivity, it is not possible to relate measured ion densities (or column densities) directly to the parent gas densities. In order to quantitatively analyze measured ion abundances in cometary comae it is necessary to understand their dynamics and chemistry. We have developed a detailed ion–chemical network of cometary atmospheres. We include production of ions by photo- and electron impact-ionization of a background neutral atmosphere, charge exchange of solar wind ions with cometary atoms/molecules, reactions between ions and molecules, and dissociative recombination of molecular ions with thermal electrons. By combining the ion–chemical network with the three-dimensional plasma flow as computed by a new fully three-dimensional MHD model of cometary plasma environments (Gombosiet al.1996) we are able to compute the density of the major cometary ions everywhere in the coma. The input parameters for our model are the solar wind conditions (density, speed, temperature, magnetic field) and the composition and production rate of the gas. We applied our model to Comet P/Halley in early March 1986, for which the input parameters are reasonably well known. We compare the resulting column density of H2O+with ground-based observations of H2O+from DiSantiet al.(1990). The results of our model are in good agreement with both the spatial distribution and the absolute abundance of H2O+and with their variations with the changing overall water production rate between two days. The results are encouraging that it will be possible to obtain production rates of neutral cometary constituents from observations of their ion products.  相似文献   

2.
We examine the potential contamination of cometary nuclei through impacts from asteroidal origin meteoroids. The paper uses a simple model and has the goal of determining whether asteroidal contamination is potentially significant. We assume a meteoroid power law mass distribution with index values in the range from s=1.83 to s=2.09. We used maximum and minimum models which we believe will bracket the true meteoroid mass distribution. We identify those comets which are expected to be most significantly contaminated, and find values of up to 3.6 kg of asteroidal meteoroid impact per square meter of the cometary surface per orbital revolution. This is less than the expected mass loss per perihelion passage for most comets. Therefore any remnant effects of the contamination will depend on the penetration depth of the meteoroids in the cometary nucleus, and possibly on the distribution of active and inactive areas on cometary nuclei. We present a simple model which suggests that even small meteoroids will embed relatively deeply into a cometary nucleus.  相似文献   

3.
We investigate a method to compute a finite set of preliminary orbits for solar system bodies using the first integrals of the Kepler problem. This method is thought for the applications to the modern sets of astrometric observations, where often the information contained in the observations allows only to compute, by interpolation, two angular positions of the observed body and their time derivatives at a given epoch; we call this set of data attributable. Given two attributables of the same body at two different epochs we can use the energy and angular momentum integrals of the two-body problem to write a system of polynomial equations for the topocentric distance and the radial velocity at the two epochs. We define two different algorithms for the computation of the solutions, based on different ways to perform elimination of variables and obtain a univariate polynomial. Moreover we use the redundancy of the data to test the hypothesis that two attributables belong to the same body (linkage problem). It is also possible to compute a covariance matrix, describing the uncertainty of the preliminary orbits which results from the observation error statistics. The performance of this method has been investigated by using a large set of simulated observations of the Pan-STARRS project.  相似文献   

4.
We study the evolution of spherically symmetric radiating fluid distributions using the effective variables method, implemented ab initio in Schwarzschild coordinates. To illustrate the procedure and to establish some comparison with the original method, we integrate numerically the set of equations at the surface for two different models. The first model is derived from the Schwarzschild interior solution. The second model is inspired in the Tolman VI solution.  相似文献   

5.
W-H. Ip  D.A. Mendis 《Icarus》1977,30(2):377-384
The structure of the ionosphere of a CO-rich comet is computed using two different models. The first one, the photochemical model, assumes that the dissociation and ionization of cometary neutrals and ions are due to photoionization and photodissociation by solar uv radiation together with dissociative recombinations and ion-neutral reactions. The second one, the internal source model, also incorporates the ionization and dissociation effects of an electric current dischanging through the inner coma. The generation of this current has been discussed in earlier papers. It is concluded that the internal source model can explain qualitatively the basic morphology of the ionospheres of CO-rich comets such as Humason (1962, VIII) and Morehouse (1908, III), whereas the photochemical model cannot. The main aim of this paper is not so much to provide accurate numerical estimates as to draw attention to a process which may very well dominate the structures of cometary ionospheres.  相似文献   

6.
Perov  N. I. 《Solar System Research》2003,37(2):165-174
Based on one of the particular cases of twice averaged model Hill problem with the allowance for the oblateness of the central body a quadrature is derived for the determination of the migration time of cometary nuclei from various cometary reservoirs and a (14-th order) algebraic equation for the determination of the initial conditions that allow the escape of the cometary nucleus (which at the initial instant of time moves in an orbit with arbitrary eccentricity (0 < e < 1) and inclination (0° < i < 180°) deeply inside the sphere o f action of the central body) from the sphere of action of the central body or its impact onto the central body. We analyze the shape of the boundaries of the hypothetical cometary reservoirs and the method of searching for regions of high concentration of interstellar particles in the Solar System.  相似文献   

7.
We consider the estimates of the main forces acting on dust particles near a cometary nucleus. On the basis of these estimates, the motion of dust particles of different structure and mass is analyzed. We consider the following forces: (1) the cometary nucleus gravity, (2) the solar radiation pressure, and (3) the drag on dust particles by a flow of gas produced in the sublimation of cometary ice. These forces are important for modeling the motion of dust particles relative to the cometary nucleus and may substantially influence the dust transfer over its surface. In the simulations, solid silicate spheres and homogeneous ballistic aggregates are used as model particles. Moreover, we propose a technique to build hierarchic aggregates—a new model of quasi-spherical porous particles. A hierarchic type of aggregates makes it possible to model rather large dust particles, up to a millimeter in size and larger, while no important requirements for computer resources are imposed. We have shown that the properties of such particles differ from those of classical porous ballistic aggregates, which are usually considered in the cometary physics problems, and considering the microscopic structure of particles is of crucial significance for the analysis of the observational data. With the described models, we study the dust dynamics near the nucleus of comet 67P/Churyumov–Gerasimenko at an early stage of the Rosetta probe observations when the comet was approximately at 3.2 AU from the Sun. The interrelations between the main forces acting on dust aggregates at difference distances from the nucleus have been obtained. The dependence of the velocity of dust aggregates on their mass has been found. The numerical modeling results and the data of spaceborne observations with the Grain Impact Analyzer and Dust Accumulator (GIADA) and the Cometary Secondary Ion Mass Analyzer (COSIMA) onboard the Rosetta probe are compared at a quantitative level.  相似文献   

8.
If the angle ϵ between the radius vector and the axis of the comet tail is known one can determine the velocity component of the solar wind pointing into the direction of the radius vector. This paper describes a geometrical method to determine the orientation of cometary tails (it will be represented by l ). If n is the normal vector of the cometary orbit, ϱ is the geocentrical position vector of the cometary nuclei and ϱ * is the geocentrical direction vector towards the direction of an indicated arbitary point of the cometary tail (and the equality | ϱ |; = |; ϱ |;* holds) then by means of the factor k where k = nϱ/nϱ* the vector l = k ϱ * – ϱ can be calculated. The factor k is indefinite when nq* = o that means when the Earth passes through the orbit of the comet. At that time ϵ must be determined in other ways for example by means of dynamical methods or ϵ must be interpolated between two neighbouring observed data which are sufficiently near in time. A continuous ϵ-time function must be assumed.  相似文献   

9.
We propose a method of constructing numerical theories of comet motion that cover long time intervals. The method involves the determination of individual values of the constants A 1, A 2, and A 3 (radial, transversal, and normal components of nongravitational acceleration) and photocenter shifts for each appearance with the presence of a sufficient quantity of observations. Moreover, in the case of close planetary approaches, bursts of brightness, or heavy shifts in the cometary gas production maxima against the perihelion when standard models of nongravitational acceleration cannot provide an accurate presentation of the observations, we propose the use of instant velocity measurements. This method was used to construct a unified numerical theory of motion of the Kopff comet in the interval of 1906–2002. The theory encompassed 16 appearances of the comet with the mean error of unit weight σ = 1.40.  相似文献   

10.
The study presents the results of numerical simulations of mass-transfer processes in the near-surface layer of the cometary nucleus and in the inner part of the cometary atmosphere, which is formed under the action of solar radiation. The gas-kinetic model of the inner part of the cometary atmosphere surrounding a spherical nucleus (Skorov et al., 2004) is extended to the case of a nonspherical nucleus with axial symmetry. After high-resolution images of comets 19P/Borrelly and Wild 2 have been obtained by Deep Space 1 and Stardust spacecraft, such an extension seems to be vital and important. The nucleus and the inner part of the coma are closely related to each other because of the permanent exchange of energy and mass; therefore, they are modeled consistently. As in the first part of our study, the boundary conditions at the inner boundary of the simulation domain, which are necessary for gas-kinetic simulations, were determined from the self-consistent model of heat and mass transfer in a porous cometary nucleus that was developed earlier by the authors. The model took into account the volumetric character of the radiation absorption in a porous sublimating medium, the kinetic regime of the transport of sublimation products in the pores, and the backward gas fluxes from the coma due to intermolecular collisions. We considered different models of the nucleus structure that determined the effective gas production. Using the direct simulation Monte Carlo method, we computed the two-dimensional gas flow from a heterogeneous nonspherical cometary nucleus. The simulations were performed using the SMILE software. The parallel computer implementation of the software made it possible to calculate the spatial structure of the gas flow for the entire circumnucleus zone.  相似文献   

11.
12.
In several previous papers we had investigated the orbits of the stars that make up galactic satellites, finding that many of them were chaotic. Most of the models studied in those works were not self-consistent, the single exception being the Heggie and Ramamani (1995) models; nevertheless, these ones are built from a distribution function that depends on the energy (actually, the Jacobi integral) only, what makes them rather special. Here we built up two self-consistent models of galactic satellites, freezed theirs potential in order to have smooth and stationary fields, and investigated the spatial structure of orbits whose initial positions and velocities were those of the bodies in the self-consistent models. We distinguished between partially chaotic (only one non-zero Lyapunov exponent) and fully chaotic (two non-zero Lyapunov exponents) orbits and showed that, as could be expected from the fact that the former obey an additional local isolating integral, besides the global Jacobi integral, they have different spatial distributions. Moreover, since Lyapunov exponents are computed over finite time intervals, their values reflect the properties of the part of the chaotic sea they are navigating during those intervals and, as a result, when the chaotic orbits are separated in groups of low- and high-valued exponents, significant differences can also be recognized between their spatial distributions. The structure of the satellites can, therefore, be understood as a superposition of several separate subsystems, with different degrees of concentration and trixiality, that can be recognized from the analysis of the Lyapunov exponents of their orbits.  相似文献   

13.
Abstract— Arguments in favor of the cometary origin of the Tunguska meteorite are adduced along with reasons against the asteroidal hypothesis. A critical analysis is given for the hypotheses by Sekanina (1983) and Chyba et al. (1993). On the basis of the azimuth and inclination of the trajectory of the Tunguska body with plausible values of the geocentric velocity, the semimajor axis of the orbit and its inclination to the ecliptic plane are calculated for this body. It is noted that the theory of the disintegration of large bodies in the atmosphere put forward by Chyba et al. (1993) is crude. Applying more accurate theories (Grigoryan, 1979; Hills and Goda, 1993) as well as taking into account the realistic shape of the body yield for the cometary body lower disruption heights than obtained by Chyba et al. Numerical simulations carried out by Svettsov et al. agree well with the cometary hypothesis and the analytical calculations based on Grigoryan's theory. The asteroidal hypothesis is shown not to be tenable: the complete lack of stony fragments in the region of the catastrophe, cosmochemical data (in particular, the results of an isotope analysis), and some other information contradict this hypothesis. It is shown that stony fragments that would have originated in the explosive disruption of the Tunguska body would not be vaporized by the radiation of the vapor cloud nor as a result of their fall to the Earth's surface.  相似文献   

14.
This paper considers the evolution of a flat svarm of cometary bodies (under the effect of the passage of stars), initially moving in one direction along the circular orbits with radii 1.4×104<r<2×104 AU and along elliptic orbits with semi-major axes 5×103<a<1×104 AU and with perihelia within 50<q<100 AU. Numerical simulation shows that the original flat belt of comets is thermalizing. Its root-mean-squarez-coordinate grows withr. A cometary cloud forms with a dense flattened inner core and a rarefied halo (the Oort cloud proper). The value =N core/N halo varies within a wide range (up to the order of magnitude) depending on the model used (N core andN halo are the numbers of comets in the core and the halo, respectively).The hypothesis of a massive Oort cloud (Marochniket al., 1988) implies that the Oort cloud should have a large angular momentum. This paper employs numerical simulation to calculate Oort cloud models to which the initially flat located at the periphery of the solar nebula rotating cometary swarms is evolving in time. The loss of the initial angular momentum over the time of the Oort cloud evolution is not large.  相似文献   

15.
We present near infrared reflectance spectra from 0.8 to 2.5 μm of two asteroids with low Tisserand invariant, 1373 Cincinnati and 2906 Caltech. We compare our spectra with cometary nuclei and other asteroids in their class. Asteroids Cincinnati and Caltech have Tisserand invariant values of 2.72 and 2.97, respectively, values less than 3 are considered suggestive of cometary origin. The observed spectral slopes in the near-infrared are consistent with both the spectra of cometary nuclei and of primitive asteroids. However, both asteroids have features in the near-infrared that are not seen in cometary nuclei, but are present in other X-type asteroids. 1373 Cincinnati has a sharp slope change between 0.75 and 1.0 μm and 2906 Caltech has a broad and shallow absorption between 1.35 and 2.2 μm. Our attempts to model the visible and near-infrared spectrum of these two objects, with the components successfully used by Emery and Brown (2004, Icarus 164, 104–121) to fit Trojan asteroids, did not yield acceptable fits.Visiting Astronomer at the Infrared Telescope Facility, which is operated by the University of Hawaii under contract to the National Aeronautics and Space Administration.  相似文献   

16.
Difference imaging is a technique for obtaining precise relative photometry of variable sources in crowded stellar fields and, as such, constitutes a crucial part of the data reduction pipeline in surveys for microlensing events or transiting extrasolar planets. The Optimal Image Subtraction (OIS) algorithm of Alard & Lupton (1998) permits the accurate differencing of images by determining convolution kernels which, when applied to reference images with particularly good seeing and signal‐to‐noise (S/N), provide excellent matches to the point‐spread functions (PSF) in other images of the time series to be analysed. The convolution kernels are built as linear combinations of a set of basis functions, conventionally bivariate Gaussians modulated by polynomials. The kernel parameters, mainly the widths and maximal degrees of the basis function model, must be supplied by the user. Ideally, the parameters should be matched to the PSF, pixel‐sampling, and S/N of the data set or individual images to be analysed. We have studied the dependence of the reduction outcome as a function of the kernel parameters using our new implementation of OIS within the IDL‐based TRIPP package. From the analysis of noise‐free PSF simulations of both single objects and crowded fields, as well as the test images in the ISIS OIS software package, we derive qualitative and quantitative relations between the kernel parameters and the success of the subtraction as a function of the PSF widths and sampling in reference and data images and compare the results to those of other implementations found in the literature. On the basis of these simulations, we provide recommended parameters for data sets with different S/N and sampling. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
《Planetary and Space Science》1999,47(6-7):855-872
From the current understanding we know that comet nuclei have heterogeneous compositions and complex structures. It is believed that cometary activity is the result of a combination of physical processes in the nucleus, like sublimation and recondensation of volatile ices, dust grains release, phase transition of water ice, depletion of the most volatile components in the outer layers and interior differentiation.The evolution of the comet depends on the sublimation of ices and the release of different gases and dust grains: the formation of a dust crust, the surface erosion and the development of the coma are related to the gas fluxes escaping from the nucleus. New observations, laboratory experiments and numerical simulations suggest that the gas and dust emissions are locally generated, in the so-called active regions. This localized activity is probably superimposed to the global nucleus activity. The differences between active and inactive regions can be attributed to differences in texture and refractory material content of the different areas.In this paper we present the results of numerical models of cometary nucleus evolution, developed in order to understand which are the processes leading to the formation of active and non-active regions on the cometary surface. The used numerical code solves the equations of heat transport and gas diffusion within a porous nucleus composed of different ices—such as water (the dominant constituent), CO2, CO- and of dust grains embedded in the ice matrix.By varying the set of physical parameters describing the initial properties of comet P/Wirtanen, the different behaviour of the icy and dusty areas can be followed.Comet P/Wirtanen is the target of the international ROSETTA mission, the cornerstone ESA mission to a cometary nucleus. The successful design of ROSETTA requires some knowledge of comet status and activity: surface temperatures, amount of active and inactive surface areas, gas production rate and dust flux.  相似文献   

18.
HR 5235, better known as η Bootis, is a bright and well-known star for which very accurate observations have recently enabled Kjeldsen et al. (2003) and Carrier, Bouchy, and Eggenberger (2003) not only to confirm the presence of solar-like oscillations, but also to identify the excitation in the oscillation spectrum of several p-mode frequencies with harmonic degrees l = 0 – 2. Here we show how such observational success, through the calculation and the investigation of theoretical structure models and the comparison of the observed oscillation spectra with the predicted p-mode frequencies of oscillations, permits one to draw conclusions about the actual evolutionary state of this star and on the physical properties of its internal structure. The computation of the structure models is based on the use of updated global parameters and includes overshooting from the convective core. In particular, we consider the effect on the stellar structure, and hence on the theoretical frequencies, of employing different equations of state and different formalisms to describe the convective energy transport.  相似文献   

19.
In this paper we study the time evolution of the non-gravitational forces (NGF) along with the observational bias, during the 1986 return of comet Halley. First, evidence is presented which shows that a NGF model with constant coefficients along the radial and transverse directions (A1 andA2), and a constant coefficient radial-only observation bias model fails to represent the observations within the conservative optical measurement noise of one second of arc. Second, we present a stochastic approach to the problem, where coefficients for the radial, transverse and normal components of both the NGF and the observation bias, are allowed to vary in time as three statistically independent Gauss-Markov processes. Finally, an orbit is estimated with this model, to fit observations made during the last apparition, employing a stochastic optimal smoother.Results are given in terms of time histories of the coefficient estimates along with their smoother computed uncertainties. A plot of the observation residuals is also included, showing a uniform and unbiased behavior. The analysis of the results confirms some of the assumptions often made when modelling cometary motion, but questions others. In particular, the normal bias coefficient shows an unexpected pre-perihelion peak (–1200±250 km) which proves that a radial-only observation bias model may lead to biased orbital estimates and unrealistic computed uncertainties.  相似文献   

20.
We investigate the properties of motion, using the distribution of the values of a new dynamical parameter, in two different galactic potentials. The first is a potential made up of harmonic oscillators while the second is a logarithmic potential. We call the distribution functions of the new parameter the S(r) dynamical spectrum. A comparison between the spectrum of stretching numbers S(α) and the new spectrum is made. The results of our numerical calculations suggest that the S(r) spectrum is a better discriminant between different types of orbits while requiring considerable less computation time. An application of the new dynamical spectrum to barred galaxy models is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号