首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.

Innovation efforts in developing soft computing models (SCMs) of researchers and scholars are significant in recent years, especially for problems in the mining industry. So far, many SCMs have been proposed and applied to practical engineering to predict ground vibration intensity (BIGV) induced by mine blasting with high accuracy and reliability. These models significantly contributed to mitigate the adverse effects of blasting operations in mines. Despite the fact that many SCMs have been introduced with promising results, but ambitious goals of researchers are still novel SCMs with the accuracy improved. They aim to prevent the damages caused by blasting operations to the surrounding environment. This study, therefore, proposed a novel SCM based on a robust meta-heuristic algorithm, namely Hunger Games Search (HGS) and artificial neural network (ANN), abbreviated as HGS–ANN model, for predicting BIGV. Three benchmark models based on three other meta-heuristic algorithms (i.e., particle swarm optimization (PSO), firefly algorithm (FFA), and grasshopper optimization algorithm (GOA)) and ANN, named as PSO–ANN, FFA–ANN, and GOA–ANN, were also examined to have a comprehensive evaluation of the HGS–ANN model. A set of data with 252 blasting operations was collected to evaluate the effects of BIGV through the mentioned models. The data were then preprocessed and normalized before splitting into individual parts for training and validating the models. In the training phase, the HGS algorithm with the optimal parameters was fine-tuned to train the ANN model to optimize the ANN model's weights. Based on the statistical criteria, the HGS–ANN model showed its best performance with an MAE of 1.153, RMSE of 1.761, R2 of 0.922, and MAPE of 0.156, followed by the GOA–ANN, FFA–ANN and PSO–ANN models with the lower performances (i.e., MAE?=?1.186, 1.528, 1.505; RMSE?=?1.772, 2.085, 2.153; R2?=?0.921, 0.899, 0.893; MAPE?=?0.231, 0.215, 0.225, respectively). Based on the outstanding performance, the HGS–ANN model should be applied broadly and across a swath of open-pit mines to predict BIGV, aiming to optimize blast patterns and reduce the environmental effects.

  相似文献   

2.
The complexity of hydrological processes and lack of data for modeling require the use of specific tools for non-linear natural phenomenon. In this paper, an effort has been made to develop a conjunction model – wavelet transformation, data-driven models, and genetic algorithm (GA) – for forecasting the daily flow of a river in northern Algeria using the time series of runoff. This catchment has a semi-arid climate and strong variability in runoff. The original time series was decomposed into multi-frequency time series by wavelet transform algorithm and used as inputs to artificial neural networks (ANN) and adaptive neuro-fuzzy inference system (ANFIS) models. Several factors must be optimized to determine the best model structures. Wavelet-based data-driven models using a GA are designed to optimize model structure. The performances of wavelet-based data-driven models (i.e. WANFIS and WANN) were superior to those of conventional models. WANFIS (RMSE = 12.15 m3/s, EC = 87.32%, R = .934) and WANN (RMSE = 15.73 m3/s, EC = 78.83%, R = .888) models improved the performances of ANFIS (RMSE = 23.13 m3/s, EC = 54.11%, R = .748) and ANN (RMSE = 22.43 m3/s, EC = 56.90%, R = .755) during the test period.  相似文献   

3.

In the present work, blast-induced air overpressure is estimated by an innovative intelligence system based on the cubist algorithm (CA) and genetic algorithm (GA) with high accuracy, called GA–CA model. Herein, CA initialization model was developed first and the hyper-parameters of the CA model were selected randomly. Subsequently, the GA procedure was applied to perform a global search for the optimized values of the hyper-factors of the CA model. Root-mean-square error (RMSE) is utilized as a compatibility function to determine the optimal CA model with the lowest RMSE. Gaussian process (GP), conditional inference tree (CIT), principal component analysis (PCA), hybrid neural fuzzy inference system (HYFIS) and k-nearest neighbor (k-NN) models are also developed as the benchmark models in order to compare and analyze the quality of the proposed GA–CA algorithm; 164 blasting works were investigated at a quarry mine of Vietnam for this aim. The results revealed that GA significantly improved the performance of the CA model. Based on the statistical indices used for model assessment, the proposed GA–CA model was confirmed as the most superior model as compared to the other models (i.e., GP, CIT, HYFIS, PCA, k-NN). It can be applied as a robust soft computing tool for estimating blast-induced air overpressure.

  相似文献   

4.
Bui  Xuan-Nam  Nguyen  Hoang  Le  Hai-An  Bui  Hoang-Bac  Do  Ngoc-Hoan 《Natural Resources Research》2020,29(2):571-591

Air over-pressure (AOp) is one of the products of blasting operations for rock fragmentation in open-pit mines. It can cause structural vibration, smash glass doors, adversely affect the surrounding environment, and even be fatal to humans. To assess its dangerous effects, seven artificial intelligence (AI) methods for predicting specific blast-induced AOp have been applied and compared in this study. The seven methods include random forest, support vector regression, Gaussian process, Bayesian additive regression trees, boosted regression trees, k-nearest neighbors, and artificial neural network (ANN). An empirical technique was also used to compare with AI models. The degree of complexity and the performance of the models were compared with each other to find the optimal model for predicting blast-induced AOp. The Deo Nai open-pit coal mine (Vietnam) was selected as a case study where 113 blasting events have been recorded. Indicators used for evaluating model performances include the root-mean-square error (RMSE), determination coefficient (R2), and mean absolute error (MAE). The results indicate that AI techniques provide better performance than the empirical method. Although the relevance of the empirical approach was acceptable (R2?=?0.930) in this study, its error (RMSE?=?7.514) is highly significant to guarantee the safety of the surrounding environment. In contrast, the AI models offer much higher accuracies. Of the seven AI models, ANN was the most dominant model based on RMSE, R2, and MAE. This study demonstrated that AI techniques are excellent for predicting blast-induced AOp in open-pit mines. These techniques are useful for blasters and managers in controlling undesirable effects of blasting operations on the surrounding environment.

  相似文献   

5.
Landscape metrics have been widely used to characterize geographical patterns which are important for many geographical and ecological analyses. Cellular automata (CA) are attractive for simulating settlement development, landscape evolution, urban dynamics, and land-use changes. Although various methods have been developed to calibrate CA, landscape metrics have not been explicitly used to ensure the simulated pattern best fitted to the actual one. This article presents a pattern-calibrated method which is based on a number of landscape metrics for implementing CA by using genetic algorithms (GAs). A Pattern-calibrated GA–CA is proposed by incorporating percentage of landscape (PLAND), patch metric (LPI), and landscape division (D) into the fitness function of GA. The sensitivity analysis can allow the users to explore various combinations of weights and examine their effects. The comparison between Logistic- CA, Cell-calibrated GA–CA, and Pattern-calibrated GA–CA indicates that the last method can yield the best results for calibrating CA, according to both the training and validation data. For example, Logistic-CA has the average simulation error of 27.7%, but Pattern-calibrated GA–CA (the proposed method) can reduce this error to only 7.2% by using the training data set in 2003. The validation is further carried out by using new validation data in 2008 and additional landscape metrics (e.g., Landscape shape index, edge density, and aggregation index) which have not been incorporated for calibrating CA models. The comparison shows that this pattern-calibrated CA has better performance than the other two conventional models.  相似文献   

6.
XiaoDuo Pan  Xin Li 《寒旱区科学》2011,3(4):0344-0357
The research of coupling WRF (Weather Research and Forecasting Model) with a land surface model is enhanced to explore the interaction of the atmosphere and land surface; however, regional applicability of WRF model is questioned. In order to do the validation of WRF model on simulating forcing data for the Heihe River Basin, daily meteorological observation data from 15 stations of CMA (China Meteorological Administration) and hourly meteorological observation data from seven sites of WATER (Watershed Airborne Telemetry Experimental Research) are used to compare with WRF simulations, with a time range of a whole year for 2008. Results show that the average MBE (Mean Bias Error) of daily 2-m surface temperature, surface pressure, 2-m relative humidity and 10-m wind speed were ?0.19 °C, ?4.49 hPa, 4.08% and 0.92 m/s, the average RMSE (Root Mean Square Error) of them were 2.11 °C, 5.37 hPa, 9.55% and 1.73 m/s, and the average R (correlation coefficient) of them were 0.99, 0.98, 0.80 and 0.55, respectively. The average MBE of hourly 2-m surface temperature, surface pressure, 2-m relative humidity, 10-m wind speed, downward shortwave radiation and downward longwave were ?0.16 °C, ?6.62 hPa, ?5.14%, 0.26 m/s, 33.0 W/m2 and ?6.44 W/m2, the average RMSE of them were 2.62 °C, 17.10 hPa, 20.71%, 2.46 m/s, 152.9 W/m2 and 53.5 W/m2, and the average R of them were 0.96, 0.97, 0.70, 0.26, 0.91 and 0.60, respectively. Thus, the following conclusions were obtained: (1) regardless of daily or hourly validation, WRF model simulations of 2-m surface temperature, surface pressure and relative humidity are more reliable, especially for 2-m surface air temperature and surface pressure, the values of MBE were small and R were more than 0.96; (2) the WRF simulating downward shortwave radiation was relatively good, the average R between WRF simulation and hourly observation data was above 0.9, and the average R of downward longwave radiation was 0.6; (3) both wind speed and rainfall simulated from WRF model did not agree well with observation data.  相似文献   

7.
Artificial neural networks were applied to simulate runoff from the glacierized part of the Waldemar River catchment (Svalbard) based on hydrometeorological data collected in the summer seasons of 2010, 2011 and 2012. Continuous discharge monitoring was performed at about 1 km from the glacier snout, in the place where the river leaves the marginal zone. Averaged daily values of discharge and selected meteorological variables in a number of combinations were used to create several models based on the feed‐forward multilayer perceptron architecture. Due to specific conditions of melt water storing and releasing, two groups of models were established: the first is based on meteorological inputs only, while second includes the preceding day's mean discharge. Analysis of the multilayer perceptron simulation performance was done in comparison to the other black‐box model type, a multivariate regression method based on the following efficiency criteria: coefficient of determination (R2) and its adjusted form (adj. R2), weighted coefficient of determination (wR2), Nash–Sutcliffe coefficient of efficiency, mean absolute error, and error analysis. Moreover, the predictors' importance analysis for both multilayer perceptron and multivariate regression models was done. The performed study showed that the nonlinear estimation realized by the multilayer perceptron gives more accurate results than the multivariate regression approach in both groups of models.  相似文献   

8.
Due to highly erodible volcanic soils and a harsh climate, livestock grazing in Iceland has led to serious soil erosion on about 40% of the country's surface. Over the last 100 years, various revegetation and restoration measures were taken on large areas distributed all over Iceland in an attempt to counteract this problem. The present research aimed to develop models for estimating percent vegetation cover (VC) and aboveground biomass (AGB) based on satellite data, as this would make it possible to assess and monitor the effectiveness of restoration measures over large areas at a fairly low cost. Models were developed based on 203 vegetation cover samples and 114 aboveground biomass samples distributed over five SPOT satellite datasets. All satellite datasets were atmospherically corrected, and digital numbers were converted into ground reflectance. Then a selection of vegetation indices (VIs) was calculated, followed by simple and multiple linear regression analysis of the relations between the field data and the calculated VIs.Best results were achieved using multiple linear regression models for both %VC and AGB. The model calibration and validation results showed that R2 and RMSE values for most VIs do not vary very much. For percent VC, R2 values range between 0.789 and 0.822, leading to RMSEs ranging between 15.89% and 16.72%. For AGB, R2 values for low-biomass areas (AGB < 800 g/m2) range between 0.607 and 0.650, leading to RMSEs ranging between 126.08 g/m2 and 136.38 g/m2. The AGB model developed for all areas, including those with high biomass coverage (AGB > 800 g/m2), achieved R2 values between 0.487 and 0.510, resulting in RMSEs ranging from 234 g/m2 to 259.20 g/m2. The models predicting percent VC generally overestimate observed low percent VC and slightly underestimate observed high percent VC. The estimation models for AGB behave in a similar way, but over- and underestimation are much more pronounced.These results show that it is possible to estimate percent VC with high accuracy based on various VIs derived from SPOT satellite data. AGB of restoration areas with low-biomass values of up to 800 g/m2 can likewise be estimated with high accuracy based on various VIs derived from SPOT satellite data, whereas in the case of high biomass coverage, estimation accuracy decreases with increasing biomass values. Accordingly, percent VC can be estimated with high accuracy anywhere in Iceland, whereas AGB is much more difficult to estimate, particularly for areas with high-AGB variability.  相似文献   

9.
We explored the possibility of using artificial neural networks (ANN) to develop quantitative inference models in paleolimnology. ANNs are dynamic computer systems able to learn the relations between input and output data. We developed ANN models to infer pH from fossil diatom assemblages using a calibration data set of 76 lakes in Quebec. We evaluated the predictive power of these models in comparison with the two most commonly methods used in paleolimnology: Weighted Averaging (WA) and Weighted Averaging Partial Least Squares (WA-PLS). Results show that the relationship between species assemblages and environmental variables of interest can be modelled by a 3-layer back-propagation network, with apparent R2 and RMSE of 0.9 and 0.24 pH units, respectively. Leave-one-out cross-validation was used to access the reliabilities of the WA, WA-PLS and ANN models. Validation results show that the ANN model (R2 jackknife = 0.63, RMSEjackknife = 0.45, mean bias = 0.14, maximum bias = 1.13) gives a better predictive power than the WA model (R2 jackknife = 0.56, RMSEjackknife = 0.5, mean bias = –0.09, maximum bias = –1.07) or WA-PLS model (R2 jackknife = 0.58, RMSEjackknife = 0.48, mean bias = –0.15, maximum bias = –1.08). We also evaluated whether the removal of certain taxa according to their tolerance changed the performance of the models. Overall, we found that the removal of taxa with high tolerances for pH improved the predictive power of WA-PLS models whereas the removal of low tolerance taxa lowered its performance. However, ANN models were generally much less affected by the removal of taxa of either low or high pH tolerance. Moreover, the best model was obtained by averaging the predictions of WA-PLS and ANN models. This implies that the two modelling approaches capture and extract complementary information from diatom assemblages. We suggest that future modelling efforts might achieve better results using analogous multi-model strategies.  相似文献   

10.
Based on the static opaque chamber method,the respiration rates of soil microbial respiration,soil respiration,and ecosystem respiration were measured through continuous in-situ experiments during rapid growth season in semiarid Leymus chinensis steppe in the Xilin River Basin of Inner Mongolia,China. Soil temperature and moisture were the main factor affecting respiration rates. Soil temperature can explain most CO2 efflux variations (R2=0.376-0.655) excluding data of low soil water conditions. Soil moisture can also effectively explain most of the variations of soil and ecosystem respiration (R2=0.314-0.583),but it can not explain much of the variation of microbial respiration (R2=0.063). Low soil water content (≤5%) inhibited CO2 efflux though the soil temperature was high. Rewetting the soil after a long drought resulted in substantial increases in CO2 flux at high temperature. Bi-variable models based on soil temperature at 5 cm depth and soil moisture at 0-10 cm depth can explain about 70% of the variations of CO2 effluxes. The contribution of soil respiration to ecosystem respiration averaged 59.4%,ranging from 47.3% to 72.4%; the contribution of root respiration to soil respiration averaged 20.5%,ranging from 11.7% to 51.7%. The contribution of soil to ecosystem respiration was a little overestimated and root to soil respiration little underestimated because of the increased soil water content that occurred as a result of plant removal.  相似文献   

11.
A principal task of evaluating large wildfires is to assess fire's effect on the soil in order to predict the potential watershed response. Two types of soil water repellency tests, the water drop penetration time (WDPT) test and the mini-disk infiltrometer (MDI) test, were performed after the Hayman Fire in Colorado, in the summer of 2002 to assess the infiltration potential of the soil. Remotely sensed hyperspectral imagery was also collected to map post-wildfire ground cover and soil condition. Detailed ground cover measurements were collected to validate the remotely sensed imagery and to examine the relationship between ground cover and soil water repellency. Percent ash cover measured on the ground was significantly correlated to WDPT (r = 0.42; p-value < 0.0001), and the MDI test (r = − 0.37; p-value < 0.0001). A Mixture Tuned Matched Filter (MTMF) spectral unmixing algorithm was applied to the hyperspectral imagery, which produced fractional cover maps of ash, soil, and scorched and green vegetation. The remotely sensed ash image had significant correlations to the water repellency tests, WDPT (r = 0.24; p-value = 0.001), and the MDI test (r = − 0.21; p-value = 0.005). An iterative threshold analysis was also applied to the ash and water repellency data to evaluate the relationship at increasingly higher levels of ash cover. Regression analysis between the means of grouped data: MDI time vs. ash cover data (R2 =0.75) and vs. Ash MTMF scores (R2 = 0.63) yielded significantly stronger relationships. From these results we found on-the-ground ash cover greater than 49% and remotely sensed ash cover greater than 33% to be indicative of strongly water repellent soils. Combining these results with geostatistical analyses indicated a spatial autocorrelation range of 15 to 40 m. Image pixels with high ash cover (> 33%), including pixels within 15 m of these pixel patches, were used to create a likelihood map of soil water repellency. This map is a good indicator of areas where soil experienced severe fire effects—areas that likely have strong water repellent soil conditions and higher potential for post-fire erosion.  相似文献   

12.
ABSTRACT

One of the major challenges in conducting epidemiological studies of air pollution and health is the difficulty of estimating the degree of exposure accurately. Fine particulate matter (PM2.5) concentrations vary in space and time, which are difficult to estimate in rural, suburban and smaller urban areas due to the sparsity of the ground monitoring network. Satellite retrieved aerosol optical depth (AOD) has been increasingly used as a proxy of ground PM2.5 observations, although it suffers from non-trivial missing data problems. To address these issues, we developed a multi-stage statistical model in which daily PM2.5 concentrations can be obtained with complete spatial coverage. The model consists of three stages – an inverse probability weighting scheme to correct non-random missing patterns of AOD values, a spatio-temporal linear mixed effect model to account for the spatially and temporally varying PM2.5-AOD relationships, and a gap-filling model based on the integrated nested Laplace approximation-stochastic partial differential equations (INLA-SPDE). Good model performance was achieved from out-of-sample validation as shown in R2 of 0.93 and root mean square error of 9.64 μg/m3. The results indicated that the multi-stage PM2.5 prediction model proposed in the present study yielded highly accurate predictions, while gaining computational efficiency from the INLA-SPDE.  相似文献   

13.
GIS-based proximity models are one of the key tools for the assessment of exposure to air pollution when the density of spatial monitoring stations is sparse. Central to exposure assessment that utilizes proximity models is the ‘exposure intensity–distance’ hypothesis. A major weakness in the application of this hypothesis is that it does not account for the Gaussian processes that are at the core of the physical mechanisms inherent in the dispersion of air pollutants.

Building upon the utility of spatial proximity models and the theoretical reliability of Gaussian dispersion processes of air pollutants, this study puts forward a novel Gaussian weighting function-aided proximity model (GWFPM). The study area and data set for this work consisted of transport-related emission sources of PM2.5 in the Houston-Baytown-Sugar Land metropolitan area. Performance of the GWFPM was validated by comparing on-site observed PM2.5 concentrations with results from classical ordinary kriging (OK) interpolation and a robust emission-weighted proximity model (EWPM). Results show that the fitting R2 between possible exposure intensity calculated by GWFPM and observed PM2.5 concentrations was 0.67. A variety of statistical evidence (i.e., bias, root mean square error [RMSE], mean absolute error [MAE], and correlation coefficient) confirmed that GWFPM outperformed OK and EWPM in estimating annual PM2.5 concentrations for all monitoring sites. These results indicate that a GWFPM utilizing the physical dispersing mechanisms integrated may more effectively characterize annual-scale exposure than traditional models. Using GWFPM, receptors’ exposure to air pollution can be assessed with sufficient accuracy, even in those areas with a low density of monitoring sites. These results may be of use to public health and planning officials in a more accurate assessment of the annual exposure risk to a population, especially in areas where monitoring sites are sparse.  相似文献   


14.
The Sachette rock glacier is an active rock glacier located between 2660 and 2480 m a.s.l. in the Vanoise Massif, Northern French Alps (45° 29′ N, 6° 52′ E). In order to characterize its status as permafrost feature, shallow ground temperatures were monitored and the surface velocity measured by photogrammetry. The rock glacier exhibits near‐surface thermal regimes suggesting permafrost occurrence and also displays significant surface horizontal displacements (0.6–1.3 ± 0.6 m yr–1). In order to investigate its internal structure, a ground‐penetrating radar (GPR) survey was performed. Four constant‐offset GPR profiles were performed and analyzed to reconstruct the stratigraphy and model the radar wave velocity in two dimensions. Integration of the morphology, the velocity models and the stratigraphy revealed, in the upper half of the rock glacier, the good correspondence between widespread high radar wave velocities (>0.15–0.16 m ns–1) and strongly concave reflector structures. High radar wave velocity (0.165–0.170 m ns–1) is confirmed with the analysis of two punctual common mid‐point measurements in areas of exposed shallow pure ice. These evidences point towards the existence of a large buried body of ice in the upper part of the rock glacier. The rock glacier was interpreted to result from the former advance and decay of a glacier onto pre‐existing deposits, and from subsequent creep of the whole assemblage. Our study of the Sachette rock glacier thus highlights the rock glacier as a transitional landform involving the incorporation and preservation of glacier ice in permafrost environments with subsequent evolution arising from periglacial processes.  相似文献   

15.
We investigated relationships among modern diatom species composition and physical and chemical characteristics of high-elevation lakes of the Sierra Nevada (California), to develop transfer functions that can be used to infer historic lake conditions. Data were collected from 50 lakes in National Parks and Forests of the central and southern Sierra Nevada. Multivariate statistical methods revealed that acid neutralizing capacity (ANC) and nitrate accounted for significant variation in diatom taxa. A training set with 242 modern diatom taxa from a subset of 41 lakes was used to develop transfer functions for ANC and nitrate using weighted averaging techniques. ANC and nitrate calibration ranges were 23.0–137 μEq/L and 0.18–9.5 μM, respectively. Coefficients of determination for the models were: ANC: R2 = 0.76, and R jackknife 2  = 0.44; NO3: R2 = 0.67, and R jackknife 2  = 0.27. The ANC model was applied to the top 50 cm of sediments in Moat Lake to reconstruct ANC from ca. AD 350 to 2005. The reconstruction suggests that ANC declined by about 40 % (101–60 μEq/L) between the 1920s and the 1960s and then recovered to pre-1920s levels during 1980–2000. The magnitude of this ANC excursion was the largest observed during the past 1,600 years. We hypothesize that temporal variations in ANC were influenced by: (1) changes in rates of acid deposition, especially nitric acid and (2) variations in the timing and magnitude of snowmelt runoff.  相似文献   

16.
栾福明  张小雷  熊黑钢  王芳  张芳 《中国沙漠》2014,34(4):1080-1086
选取Landsat TM影像的光谱反射率(R)、反射率之倒数(1/R)、反射率倒数之对数(lg(1/R))、反射率一阶导数(FDR)、波段深度(D)等5种光谱指标,分别建立了奇台县土壤有机质(SOM)含量的反演模型,并利用F检验来验证模型的显著性。结果表明:用各光谱指标建立的土壤各层和不同深度SOM含量的反演模型精度值由低到高的顺序均为lg(1/R)<R<1/R<FDR<D,以D反演SOM含量的模型效果最好,且对10~20 cm的SOM含量的反演精度最高,适用于对研究区SOM含量的反演,FDR的反演效果次之,1/RR的模型精度一般,而lg(1/R)的模型精度最差;各层拟合模型的反演精准度由低到高的顺序为50~60 cm <40~50 cm <30~40 cm <20~30 cm <0~10 cm <10~20 cm,不同深度反演模型的优劣为0~60 cm <0~50 cm <0~40 cm <0~30 cm <0~10 cm <0~20 cm。  相似文献   

17.
Effects of spatial autocorrelation (SAC), or spatial structure, have often been neglected in the conventional models of pedogeomorphological processes. Based on soil, vegetation, and topographic data collected in a coastal dunefield in western Korea, this research developed three soil moisture–landscape models, each incorporating SAC at fine, broad, and multiple scales, respectively, into a non-spatial ordinary least squares (OLS) model. All of these spatially explicit models showed better performance than the OLS model, as consistently indicated by R2, Akaike’s information criterion, and Moran’s I. In particular, the best model was proved to be the one using spatial eigenvector mapping, a technique that accounts for spatial structure at multiple scales simultaneously. After including SAC, predictor variables with greater inherent spatial structure underwent more reduction in their predictive power than those with less structure. This finding implies that the environmental variables pedogeomorphologists have perceived important in the conventional regression modeling may have a reduced predictive power in reality, in cases where they possess a significant amount of SAC. This research demonstrates that accounting for spatial structure not only helps to avoid the violation of statistical assumptions, but also allows a better understanding of dynamic soil hydrological processes occurring at different spatial scales.  相似文献   

18.
基于MERSI和MODIS的太湖水体叶绿素a含量反演   总被引:5,自引:2,他引:3  
韩秀珍  郑伟  刘诚  安思颖 《地理研究》2011,30(2):291-300
水体叶绿素a含量的遥感反演是监测水体光学特性、评价水体污染的一个重要指标.本文以FY-3A/MERSI和AQUA/MODIS遥感影像为数据源,结合水体实测的叶绿索a含量,利用两类反射率模型,研究星载数据遥感反演叶绿素a的可行性.研究表明:基于FY-3A/MERSI和AQUA/MODIS可见光-近红外通道的光谱反演模型(...  相似文献   

19.
We set up an automatic weather station over a playa (the flat floor of an undrained desert basin that becomes at times a shallow lake), approximately 65 km east–west by 130 km north–south, located at the U.S. Army Dugway Proving Ground (40°08′N, 113°27′W, 1124 m above mean sea level) in north-western Utah, U.S.A., in 1999. This station measured the incoming (Rsi) and outgoing (Rso) solar or shortwave radiation using two CM21 Kipp & Zonen pyranometers (one inverted), the incoming (Rli or atmospheric) and outgoing (Rlo or terrestrial) longwave radiation, using two CG1 KippZonen pyrgeometers (one inverted), and the net (Rn) radiation using a Q*7 net radiometer (Radiation Energy Balance System, REBS). We also measured the 10-m wind speed (U10) and direction (R.M. Young wind monitor) and precipitation (Campbell Sci., Inc.). The measurements were taken every 2 s, averaged into 20-min, continuously, throughout the year. The annual (August 1999 – August 2000) comparisons of global or solar radiation and windiness with two other stations in central (Hunter) and northern (Logan) Utah, indicate higher solar radiation (Rsi,Dugway=7797 MJ m−2 period−1vs. Rsi, Hunter=7021 MJ m−2 period−1 and Rsi, Logan=6865 MJ m−2 period−1) and much higher annual mean windiness (UDugway=387 km day−1vs. UHunter=275 km day−1 and ULogan=174 km day−1) throughout the period over the playa. These data reveal the possibility of simultaneously harvesting these two sources of clean energies at this vast and uniform playa.  相似文献   

20.
Physical, chemical, and biological data were collected from a suite of 57 lakes that span an elevational gradient of 1360 m (2115 to 3475 m a.s.l.) in the eastern Sierra Nevada, California, USA as part of a multiproxy study aimed at developing transfer functions from which to infer past drought events. Multivariate statistical techniques, including canonical correspondence analysis (CCA), were used to determine the main environmental variables influencing diatom distributions in the study lakes. Lakewater depth, surface-water temperature, salinity, total Kjeldahl nitrogen, and total phosphorus were important variables in explaining variance in the diatom distributions. Weighted-averaging (WA) and weighted-averaging partial least squares (WA-PLS) were used to develop diatom-based surface-water temperature and salinity inference models. The two best diatom-inference models for surface-water temperature were developed using simple WA and inverse deshrinking. One model covered a larger surface-water temperature gradient (13.7 °C) and performed slightly poorer (r2 = 0.72, RMSE = 1.4 °C, RMSEPjack = 2.1 °C) than a second model, which covered a smaller gradient (9.5 °C) and performed slightly better (r2 = 0.89, RMSE = 0.7 °C, RMSEPjack = 1.5 °C). The best diatom-inference model for salinity was developed using WA-PLS with three components (r2 = 0.96, RMSE = 4.06 mg L–1, RMSEPjack = 11.13 mg L–1). These are presently the only diatom-based inference models for surface-water temperature and salinity developed for the southwestern United States. Application of these models to fossil-diatom assemblages preserved in Sierra Nevada lake sediments offers great potential for reconstructing a high-resolution time-series of Holocene and late Pleistocene climate and drought for California.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号