首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
开采沉陷区埋地管道力学反应分析   总被引:2,自引:0,他引:2  
王晓霖  帅健  张建强 《岩土力学》2011,32(11):3373-3378
开采沉陷引发地表变形,导致埋地管道大范围弯曲变形,对管道安全运行构成严重威胁。采用概率积分法预测沉陷区地表三维变形,考虑管-土间的轴向作用和管材非线性等因素,推导管道物理伸长和几何伸长的变形协调方程,迭代求解管道轴心应力和应变。通过实例分析了开采沉陷区埋地管道的应力-应变分布。结果表明,管道除了发生空间弯曲变形外,管-土间的摩擦力还导致管道产生轴向拉、压变形。解析方法计算结果与有限元方法吻合较好,适于以任意角度穿越沉陷区埋地管道的应力-应变计算。分析了开采参数、管道参数以及回填土性质等对管道的变形和应力影响,提出沉陷区埋地管道最大应力与应变的简化评定公式  相似文献   

2.
朱春生  朱庆杰  贾西法 《岩土力学》2006,27(Z1):997-1001
地下管道破坏受到场地岩土条件和断层的制约,如何分析场地条件对地下管道地震破坏的影响,是城市地下管道建设中面临的突出问题。采用ADINA建模的定义体操作,选定合适的体类型,应用布尔操作实现了管道与土体和断层之间的融合,得到地下管道破坏分析的几何模型。通过模型参数选择,确定了岩土性质、管道特性、断层等模型参数,定义了管土摩擦、地震荷载时间函数、断层荷载和约束条件。依据计算结果,分析了管土摩擦、埋深、断层参数以及断层活动性等场地条件对地下管道地震破坏的影响,并给出了结论和工程建议。  相似文献   

3.
李小军  侯春林  赵雷  刘爱文 《岩土力学》2008,29(5):1210-1216
在断层错动下跨断层埋地管道反应模拟方法中,壳模型有限元方法较简化索模型解析方法能更好地反映管道壳体反应特性,而目前国内外规范仍多采用便于应用的简化索模型解析方法。基于壳模型有限元方法,与索模型解析方法的对比计算分析,探讨了两类方法的管道轴向拉伸应变计算值差异及引起差异的主要因素,并在管道跨断层交角较小(小于70°)的情况下,提出了基于管道埋藏土层波速值和断层错动量两个参数的改进Newmark方法。进一步地计算分析表明,对于不同的管道跨断层交角和管材特性情况,改进的Newmark方法对壳模型方法计算结果的拟合度达到了0.87。  相似文献   

4.
地埋非圆形管道与土相互作用的分析计算   总被引:2,自引:2,他引:0  
刘全林  陈希鲜  王宝泉 《岩土力学》2005,26(11):1717-1721
对地埋箱形涵道和蛋形管道结构的设计计算,现行的方法是给定作用荷载值和分布,按结构力学方法求解。实际上作用于管道上荷载是随管土的相对刚度而变化的。为此,采用管土相互作用的Winkler模型和传递矩阵法,提出地埋箱形和蛋形管道结构计算的新方法。通过对箱形和蛋形管道与土相互作用的分析计算表明,即使是“刚性”的箱形管道也应考虑与土的相互作用。最后讨论了模型参数、埋深以及管道结构尺寸的变化对管道受力与变形的影响,说明了考虑地埋管道与土的相互作用,对地埋箱形和蛋形管道结构的设计计算才更符合实际。  相似文献   

5.
6.
地埋管道与土相互作用平面分析与计算方法   总被引:1,自引:0,他引:1  
刘全林 《岩土力学》2007,28(1):83-88
地埋管道上实测的土压力并不是按现行计算方法假定形状分布的,其分布形式与管土的相对刚度及施工埋设方式密切相关。为此,依据现场实测和模型试验得到的地埋管道受力特征,在平面应变条件下,采用建立的管-土相互作用分析Vlazov模型来模拟管-土之间的相互作用,考虑管道不同的埋设条件、管周的不同充填介质及管-土相互作用引起的土压力状态等情况,建立了地埋管与土相互作用平面问题的传递矩阵分析法。并设计了可视化计算机软件,实现了计算手段的创新。运用此软件对现场埋管工程作了分析计算,并与实测结果进行比较,验证了所建立的计算方法的正确性。  相似文献   

7.
季节冻土区埋地管道水温的变化规律及其影响因素分析   总被引:2,自引:0,他引:2  
陈继  李昆  盛煜  冯子亮 《冰川冻土》2014,36(4):836-844
埋地管道是减少寒冷地区冬季冻害的常用铺设方式,深入认识埋地管道的水温变化规律可以为减小管道埋设深度、降低管道冻害提供理论依据,对当前季节冻土区农牧民集中式供水工程的推进具有指导意义. 采用仿三维数值方法建立了管道水温的计算模型,讨论了含水量、地表温度、管道埋深等6个主要因素对埋地管道最不利水温的影响. 分析结果表明,无论上述因素如何变化,管道最不利水温均随输送距离的增加而下降. 首先,随着含水量的增加、地表温度的升高以及管道埋深的加深,管道的降温速率不断减小并具有先快后慢的特点;其次,随着管径的减小、流速的降低,管道降温速率增大,且降温速率和流速之间具有近似的倒数关系. 另外,随着入口温度的升高,管道降温速率将呈指数形式不断增加.  相似文献   

8.
陈昌富  吴晓寒  王陈栋 《探矿工程》2009,36(10):42-44,48
在阐明地源热泵系统的基本原理及国内外发展现状的基础上,分析了地埋管地源热泵系统在推广宣传、设计施工以及后期管理运行阶段中存在的一些主要问题,最后就在保持地埋管地源热泵系统可持续发展的前提提出了几点建议。  相似文献   

9.
10.
针对长输埋地管道系统的特点,建立了管道系统的结构模型和地震波作用下管道的破坏概率模型,以概率论、系统论的方法和可靠性原理为基础,分别对失效相互独立和失效相关两种情况下的系统可靠度进行了分析与讨论.实例结果表明:对于地震波作用下的长输埋地管道工程系统,当各单元管段所处场地类别和地震烈度相同时,考虑失效相关性对系统可靠度分析是十分必要的.  相似文献   

11.
断层、滑坡、液化等地质灾害引起的场地大变形对埋地管道结构安全产生严重的威胁。开展了中密砂中埋地管道−砂土水平横向相互作用的系列三维数值模拟,根据数值模拟的结果探讨了不同深径比下管−砂土横向相互作用时土体的破坏模式,研究了深径比对砂土极限承载力的影响。基于管周土体的破坏模式建立了简化计算模型,根据极限平衡理论推导了管道水平横向运动时砂土极限承载力计算公式。研究结果表明:极限状态下,浅埋管道周围土体形成延伸到地表的破裂面,轮廓线近似对数螺线;砂土的极限承载力随着深径比增加,最终在临界深径比处达到稳定;随着深径比的增加,土体发生剪切滑动破坏所需的管道位移也逐渐增大;由于横向承载力系数取值依据不同,国内外规范计算所得土体极限承载力差异较大;得到的解析解能够较好地预测中密砂土中浅埋管道水平横向运动时土体的极限承载力。  相似文献   

12.
城市地铁隧道施工对管线的影响研究   总被引:22,自引:4,他引:22  
结合深圳地铁大剧院-科学馆区间隧道非降水施工对管线的影响问题,阐明了该工程的施工方案,给出了管线安全性的评价标准。在此基础上,首先利用土工离心模型试验,模拟了隧道开挖对管线的影响,然后,利用三维弹塑性有限元法模拟了隧道施工过程中管线的动态响应。通过离心模型试验、数值模拟分析、现场量测的地表沉降值的对比分析可知,三者的数据基本吻合,论证了分析结果的合理性和可靠性,并对施工期间管线的安全性做出了评价,为该工程顺利实施提供了理论依据和指导作用,并取得了一些有意义的成果。  相似文献   

13.
蔡忠祥  张陈蓉  黄茂松 《岩土力学》2011,32(Z1):408-0412
地埋管线在市政建设中容易损坏,基于Winkler地基模型,将地埋管线简化为变刚度Euler-Bernoulli梁,根据梁单元微分方程,采用传递矩阵法求解梁截面处位移、转角、弯矩及剪力,给出变刚度梁的一般分析方法。通过算例验证方法的合理性和适用性,分析了接头刚度变化对管线位移、内力的影响,为市政建设中地埋管线保护提供理论指导。  相似文献   

14.
由于生产工艺的要求,开采的原油经常需要在一定的温度和压力下才能顺利输送,而输油过程中的高温和高压会导致海底管线中产生较大的附加应力。管线受到地基土的约束作用后无法自由变形,附加应力的不断累积,造成管线发生整体屈曲变形,埋地的海底管线通常会产生竖直向的整体屈曲变形而影响使用甚至破坏。基于点支撑初始缺陷形式的海底管线,给出了管线竖直向整体屈曲分析的解析解,结合实际工程中铺设的高温高压输油管线进行了整体屈曲分析,揭示了不同温度条件下埋地管线发生竖直向整体屈曲的规律性,提出挖沟掩埋可以有效地防止管线发生温度应力下的整体屈曲  相似文献   

15.
16.
在电力工程地埋管线探测中,GPR 是一种行之有效的方法。为提高管线探测的精度,降低工程施工风险,笔者从探地雷达野外数据采集开始,详细探讨了探地雷达应用于管线探测时的数据采集方法 ( 包括测线的布设、干扰因素的避让等) 和室内后续数据处理的策略。针对管线探测这一目标,采用预测反褶积技术压制多次波和非线性颜色分级的剖面显示方式是提高数据解释精度的关键,并结合电力隧道地下管线探测实例验证了本文所提方法的有效性。  相似文献   

17.
易门-罗茨断裂带是多期活动的大规模断裂带,以易门-罗茨断裂为主断裂。在禄劝县皎西一带,断裂带控制了南北向的串珠状第四系盆地,盆地内第四纪沉积物厚数米至数十米,主要的控盆隐伏断裂位置、特征难以确定。采用地质调查与土壤氡测量相结合的方法,查明了区内控盆隐伏断裂的位置、产状、宽度等。调查结果与地貌和区域构造特征吻合较好,因此认为,土壤氡测量适用于山间盆地内隐伏活动断裂的调查。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号