首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Liu  Zhen  Zhou  Cuiying  Li  Batong  Zhang  Lihai  Liang  Yanhao 《Acta Geotechnica》2020,15(5):1219-1229
Acta Geotechnica - The creep deformation behaviour of soft rocks is one of the most important research fields in geotechnical engineering. In this study, a theoretical model was developed to...  相似文献   

2.
《Applied Geochemistry》2001,16(2):161-181
Thermodynamic properties of water, in various families of hydroxides, oxihydroxides and hydrates (chlorides, chlorates, sulfates and sulfites …), have been calculated by using a large number of data available in the literature. A phase diagram of water has been used to find the first complete set of thermodynamic properties at 298 K, 1 bar of 8 ice polymorphs, from Ih (hexagonal ice, the common polymorph) to IX (very low temperature and high pressure polymorph). These results are used to illustrate the concept of ‘ice-like water’ available for a very large number of hydrated phases (noted X.H2O) in which water is attached to the corresponding anhydrous substrate (noted X) within a large spectrum of different enthalpies (ΔfH°) or Gibbs free energies (ΔfG°), but within a relatively small range of others properties. Heat capacity (Cp°), entropy (S°), and volume (V°) of hydration water (X.H2O−X=H2O) appeared to be very close to those characterizing ice polymorphs such as ice II or ice VIII. This concept allows the authors to propose a classification of minerals in terms of affinity for water and to predict the relative stability of hydrated and dehydrated phases under climatic variations.  相似文献   

3.
4.
The premise of the Wilson et al. comment is that the Ti-in-quartz solubility calibration (Thomas et al. in Contrib Mineral Petrol 160:743–759, 2010) is fundamentally flawed. They reach this conclusion because PT estimates using the Ti-in-quartz calibration differ from their previous interpretations for crystallization conditions of the Bishop and Oruanui rhyolites. If correct, this assertion has far-reaching implications, so a careful assessment of the Wilson et al. reasoning is warranted. Application of the Ti-in-quartz calibration as a thermobarometer in rutile-free rocks requires an estimation of TiO2 activity in the liquid ( (liquid–rutile); referenced to rutile saturation) and an independent constraint on either P or T to obtain the crystallization temperature or pressure, respectively. The foundation of Wilson et al.’s argument is that temperature estimates obtained from Fe–Ti oxide thermometry accurately reflect crystallization conditions of quartz in the two rhyolites discussed. We maintain that our experimental approach is sound, the thermodynamic basis of the Ti-in-quartz calibration is fundamentally correct, and our experimental results are robust and reproducible. We suggest that the reason Wilson et al. obtain implausible pressure estimates is because estimates for T and they used as input values for the Ti-in-quartz calibration are demonstrably too high. Numerous studies show that Fe–Ti oxide temperature estimates of some rhyolites are substantially higher than those predicted by well-constrained phase equilibria. In this reply, we show that when reasonable input values for T and (liquid–rutile) are used, pressure estimates obtained from the Ti-in-quartz calibration are well aligned with phase equilibria and essentially identical to melt inclusion volatile saturation pressures.  相似文献   

5.
The Qilian Mountains water conservation forest in Gansu province is an important ecological barrier surrounding the oasis in China’s Hexi Corridor. The water they provide is the basis for the existence and sustainable socioeconomic development of those oases. As a result of unsustainable use of the water conservation forest until the 1980s, the oasis ecosystems of the Hexi region were seriously damaged, and the oasis areas experienced deterioration of their ecological environment. In this paper, Landsat images were used to monitor the temporal and spatial changes in area of water conservation in Qilian Mountains of China’s Gansu province and to assess the effect on water conservation by analyzed relationship between water conservation forest area, climatic data and hydrological data. The results showed that the forest covered 15.1% of the study area in 2007 and has followed different trends during the study period. From 1978 to 1990, the forest area decreased; however, from 1990 to 2007, the forest area increased, with a faster rate of increase from 1990 to 2000, and the rate of increase averaged 2,733.89 ha per year since 1990. The water conservation forest appears to play an important role in flood control, runoff regulation, the prevention of soil erosion, and water conservation; and these benefits increase with an increasing area of forest.  相似文献   

6.
石灰土作为路基填料代替宕渣是一种较为经济的方案,但灰土初始强度低、硬化速率慢、碳化时间长,不利于快速施工,需要进行改良研究。利用偏高岭土与石灰发生火山灰反应的原理改良灰土,通过单轴压缩试验和三轴压缩试验,分析改良灰土冻融循环条件下力学参数变化规律,利用图像处理技术提取改良灰土图像表面孔隙,建立孔隙率与强度的关系,并通过研究龄期、石灰含量和含水率变化规律,分析偏高岭土改良灰土的机制。结果表明:偏高岭土能够有效提高灰土材料反应速率,改善灰土力学特性;偏高岭土在一定程度上能够恢复冻融循环导致的灰土力学性能损失,降低冰晶体产生的孔隙;灰土强度达到最优后,其强度随着石灰的增加而降低,而经偏高岭土改良后其强度将继续增加;火山灰反应比灰土碳化过程消耗更多的水分,有效提高了灰土的抗冻性能。  相似文献   

7.
Chen  Yong-Gui  Cai  Ye-Qing  Pan  Kan  Ye  Wei-Min  Wang  Qiong 《Acta Geotechnica》2022,17(5):1879-1896
Acta Geotechnica - Compacted Gaomiaozi bentonite–sand mixtures are regarded as attractive buffer/backfill materials for nuclear waste deep geological disposal. When the mixture blocks are...  相似文献   

8.
Since industrial revolution, the “greenhouse effect” is one of the most important global environmental issues. Of all the greenhouse gases, CO2 is responsible for about 64% of the enhanced “greenhouse effect”, making it the target for mitigation, so r…  相似文献   

9.
Since industrial revolution, the "greenhouse effect" is one of the most important global environmental issues. Of all the greenhouse gases, CO2 is responsible for about 64% of the enhanced "greenhouse effect", making it the target for mitigation, so reducing anthropogenic discharge of carbon dioxide attracts more and more attention. Geological sequestration of CO2 in deep saline aquifers is one of the most promising options. But because unknown fractures and faults may exist in the caprock layers which can prevent the leakage of CO2, CO2 will leak upward into upper potable aquifers, and lead to adverse impacts on the shallow potable aquifers. In order to assess the potential effect of CO2 leakage from underground storage reservoirs on fractures and water quality of potable aquifers, this study used the non-isothermal reactive geochemical transport code TOUGHREACT developed by Xu et al to establish a simplified 2-D model of CO2 underground sequestration system, which includes deep saline aquifers, caprock layers, and shallow potable aquifers, and study and analyze the changes of mineral and aqueous components. The simulation results indicated that the minerals of deep saline aquifers and fractures should be mainly composed of aluminosilicate and silicate minerals, which not only enhance the mass of CO2 sequestrated by mineral trapping, but also decrease the porosity and permeability of caprock layers and fractures to prevent and reduce CO2 leakage. The results from deep saline aquifers showed that the mass of carbon dioxide trapped by minerals and solution phases is limited, the rest remained as a supercritical phase, and so once the caprock aquifers have some unknown fractures, the free carbon dioxide phase may leak from CO2 geologic sequestration reservoirs by buoyancy.  相似文献   

10.
11.
12.
The complex study of the river water and pore solutions from the bottom sediments in the lower reaches of the Razdol’naya River was conducted in February 2010. The major ion composition of the waters indicates the submarine origin of the near-bottom and pore waters in the lower reaches of the Razdol’naya River in the winter. The river estuary extends upstream for more than 20 km. It was established that the studied sediments are reduced oozes containing pyrite, hydrotroilite, and iron monosulfide, which is direct evidence for sulfate-reduction in the sediments. The diagenesis of organic matter is the main reason for the considerable decrease in the amount of sulfates and the increase in the alkalinity of the sediment pore water. The sedimentary pore water sampled from the deep river pits is characterized by excess alkalinity that cannot be explained by sulfate-reduction and methane genesis. It was suggested that the chemical weathering of silicate minerals and the bacterial mineralization of salts of organic acids could result in the excess alkalinity of the sediment pore water.  相似文献   

13.
We investigated major ions, stable isotopes, and radiocarbon dates in a Quaternary aquifer in semi-arid northwestern China to gain insights into groundwater recharge and evolution. Most deep and shallow groundwater in the Helan Mountains was fresh, with total dissolved solids <1,000 mg L?1 and Cl? <250 mg L?1. The relationships of major ions with Cl? suggest strong dissolution of evaporites. However, dissolution of carbonates, albite weathering, and ion exchange are also the major groundwater process in Jilantai basin. The shallow desert groundwater is enriched in δ18O and intercepts the local meteoric water line at δ18O = ?13.4 ‰, indicating that direct infiltration is a minor recharge source. The isotope compositions in intermediate confined aquifers resemble those of shallow unconfined groundwater, revealing that upward recharge from intermediate formations is a major source of shallow groundwater in the plains and desert. The estimated residence time of 10.0 kyr at one desert site, indicating that some replenishment of desert aquifers occurred in the late Pleistocene and early Holocene with a wetter and colder climate than at present.  相似文献   

14.
Han  Ziqiang  Lu  Xiaoli  Hörhager  Elisa I.  Yan  Jubo 《Natural Hazards》2017,85(1):437-452
Natural Hazards - The accumulation of volatile organic compounds (VOCs) in ambient air affects air quality through the generation of surface level ozone and secondary organic aerosol. A study of...  相似文献   

15.
Environmental controls on stone decay processes are rapidly changing as a result of changing climate. UKCP09 projections for the 2020s (2010–2039) indicate that over much of the UK seasonality of precipitation will increase. Summer dryness and winter wetness are both set to increase, the latter linked to projected precipitation increases in autumn and spring months. If so, this could increase the time that stone structures remain wet and possibly the depth of moisture penetration, and it appears that building stone in Northern Ireland has already responded through an increased incidence of algal ‘greening’. This paper highlights the need for understanding the effects of climate change through a series of studies of largely sandstone structures. Current and projected climatic trends are therefore considered to have aesthetic, physical and chemical implications that are not currently built into our models of sandstone decay, especially with respect to the role played by deep-seated wetness on sandstone deterioration and decay progression and the feedbacks associated with, for example surface algal growth. In particular, it is proposed that algal biofilms will aid moisture retention and further facilitate moisture and dissolved salt penetration to depth. Thus, whilst the outer surface of stone may continue to experience frequent wetting and drying associated with individual precipitation events, the latter is less likely to be complete, and the interiors of building blocks may only experience wetting/drying in response to seasonal cycling. A possible consequence of deeper salt penetration could be a delay in the onset of surface deterioration, but more rapid and effective retreat once it commences as decay mechanisms ‘tap into a reservoir of deep salt’.  相似文献   

16.
Trace concentrations of Ti in quartz are used to indicate the pressure and temperature conditions of crystallization in the ‘TitaniQ’ geothermobarometer of Thomas et al. (Contrib Miner Petrol 160:743–759, 2010). It utilises the partitioning of Ti into quartz as an indicator of the pressures and/or temperatures of crystal growth. For a given value of TiO2 activity in the system, if temperatures are inferred to ±20 °C, pressure is constrained to ±1 kbar and vice versa. There are significant contrasts, however, between the conclusions from TitaniQ and those for natural quartz (as well as other mineral phases) in volcanic rocks. Application of the TitaniQ model to quartz from the 27 ka Oruanui and 760 ka Bishop high-silica rhyolites, where the values of T, P and TiO2 activity are constrained by other means (Fe–Ti oxide equilibria, melt inclusion entrapment pressures in gas-saturated melts, melt and amphibole compositions), yields inconsistent results. If realistic values are given to any two of these three parameters, then the value of the third is wholly unrealistic. The model yields growth temperatures at or below the granite solidus, pressures in the lower crust or upper mantle, or TiO2 activities inconsistent with the mineralogical and chemical compositions of the magmas. CL imagery and measurements of Ti (and other elements) in quartz are of great value in showing the growth histories and changes in conditions experienced by crystals, but direct linkages to P, T conditions during crystal growth cannot be achieved.  相似文献   

17.
18.
Singh et al (2005) examined the potential of the ANN and neuro-fuzzy systems application for the prediction of dynamic constant of rockmass. However, the model proposed by them has some drawbacks according to fuzzy logic principles. This discussion will focus on the main fuzzy logic principles which authors and potential readers should take into consideration.  相似文献   

19.
20.
This study describes the adsorption features of cadmium on Fe2O3 and MnO2 in alkaline saline conditions. The adsorption reached equilibrium in 6 hours under alkaline conditions. The absorption of cadmium on Fe2O3 and MnO2 was consistent with Freundlich absorption isotherms, and the corresponding adsorption capacities were 16.3 and 16.7 mg·g-1, respectively. Moreover, the adsorption quantity of cadmium on Fe2O3 and MnO2 rose with increasing pH from acidic to neutral, and reached the maximum at pH= 9. The coexisting chlorides reduced the adsorption capacity of Fe2O3 and MnO2. The influence intensities of different cations follow the order of CaCl2>>KCl>NaCl. However, the influence of sodium salts on the capacities of Fe2O3 and MnO2 to adsorb cadmium appeared more complicated: the relatively low concentrations of sodium salts could reduce the adsorption capacity; with increasing concentrations of sodium salts, e.g. NaCl and NaNO3. The adsorption capacity decreased continually. Moreover, due to the competition adsorption and precipitation effects, the adsorption capabilities of Na2CO3, NaH2PO4 and Na2HSO4 could also be reduced and cadmium concentrations in the solution were reduced as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号