首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Based on satellite observations of Earth’s time variable gravity field from the Gravity Recovery and Climate Experiment (GRACE), it is possible to derive variations in terrestrial water storage, which includes groundwater, soil moisture, and snow. Given auxiliary information on the latter two, one can estimate groundwater storage variations. GRACE may be the only hope for groundwater depletion assessments in data-poor regions of the world. In this study, soil moisture and snow were simulated by the Global Land Data Assimilation System (GLDAS) and used to isolate groundwater storage anomalies from GRACE water storage data for the Mississippi River basin and its four major sub-basins. Results were evaluated using water level records from 58 wells set in the unconfined aquifers of the basin. Uncertainty in the technique was also assessed. The GRACE-GLDAS estimates compared favorably with the well based time series for the Mississippi River basin and the two sub-basins that are larger than 900,000 km2. The technique performed poorly for the two sub-basins that have areas of approximately 500,000 km2. Continuing enhancement of the GRACE processing methods is likely to improve the skill of the technique in the future, while also increasing the temporal resolution.  相似文献   

5.
Finding the location of groundwater dependent ecosystems (GDEs) is important in determining the extent of restrictions that need to be placed upon the abstraction of groundwater. Remote sensing was combined with geographical information system (GIS) modelling to produce a GDE probability rating map for the Sandveld region, South Africa. Landsat TM imagery identified the areas indicating the probable presence of GDEs and GIS assisted in their delineation. Three GIS models were generated: a GIS model predicting landscape wetness potential (LWP model) based on terrain morphological features; the LWP model was modified to highlight groundwater generated landscape wetness potential (the resulting GglWP model); and a groundwater elevation model was interpolated, combining groundwater level measurements in boreholes in the region with digital elevation model data. Biomass indicators generated from Landsat were classified and combined with the GIS models, followed by field verification of riverine and wetland GDEs. The LWP model provided the most accurate results of the three models tested for GDEs in this region.
Zahn MünchEmail:
  相似文献   

6.
The Jiloca basin is a NNW–SSE trending, Neogene-Quaternary graben in NE Spain, bounded by normal faults with measurable hectometre-scale throws. Its overall trend truncates previous NW–SE folds. The sedimentary infilling includes Neogene and Quaternary deposits, exceeding 80 m in thickness. The stratigraphical and structural setting controls hydrogeology of the basin. Neogene marls constitute an aquiclude that separates a main Jurassic karstic, confined aquifer from a shallow, unconfined Plio-Quaternary aquifer. The Jurassic aquifer is laterally compartmented by impervious Upper Triassic anticline cores, though its piezometric surface usually lies 30–60 m higher than the Mesozoic-Neogene boundary. The geological, and specifically the hydrogeological features are not significantly compatible with a previously published hypothesis that considers the Jiloca depression as a polje (in which the final topography is the result of suballuvial karstic corrosion) for three reasons. First, the hypothetical corrosion front shows neither a specific relationship with the epiphreatic zone, nor control by the local presence of impervious Triassic rocks. Second, chemistry of groundwater at the underlying Jurassic aquifer would not allow limestone dissolution at rates necessary for producing the supposed erosion deepening of 300 m since the late Pliocene. Finally, no evidence of swallow holes or ponors has been found.  相似文献   

7.
Substantial progress has been made within central Arizona in moving towards a more sustainable water future, particularly in transitioning the urban demand from a primarily nonrenewable groundwater-based supply to increasing dependence on the Colorado River, Salt River and effluent. Management efforts include a wide range of regulatory and voluntary programs which have had mixed success. The Department of Water Resources has learned a number of key lessons throughout the years, and this paper attempts to establish the water management context and identify those lessons for the benefit of others who may want to evaluate alternative approaches to groundwater management. Themes to be discussed include evaluating water management approaches in a public policy context, the effectiveness of alternative management approaches and the relative merits of regulatory vs. nonregulatory efforts, and the importance of high-quality data in making management decisions.
James M. HolwayEmail:
  相似文献   

8.
 Research into the patterns of natural underground water effluents has been conducted in a small catchment basin (Wierzbanówka) that is representative of the Carpathian foothills. The aim of this study was to understand the long-term dynamics of the effluents and their responses to natural and artificial factors in order to estimate groundwater resources. High variability of the effluent patterns in the Carpathian foothills is a result of precipitation fluctuations, low ground retention capacity, a low rate of absorption in the flysch rock formation areas, and of the Quaternary covers. In addition, the dominance of agricultural land use, low forest coverage, and poor hydrological management are the main causes of this variability. Any local increase in underground water resources would only be possible if forests were planted on some of the agricultural land and changes were made to water management. Received: 16 August 1999 · Accepted: 12 January 2000  相似文献   

9.
10.
In the city of Ouro Preto (MG), water catchment for public supply originates from superficial drainage, springs, old abandoned mines and some driven wells. In the rocks of the region, As is originally found in gold-enriched sulphide-bearing mineral deposits. The weathering process introduces As into the hydrological system by dissolution of this element into the leachate. Measurement of the As content in the groundwater of some catchments was carried out during 1 year and these measurements demonstrated high As content—up to 224 μg L−1 of As(V)—during the rainy season (the maximum concentration limit according to World Health Organization is 10 μg L−1). Lower values were observed during the dry season and in some sampling stations, As was not even detected. The As concentration variability during 1 year shows a strict and direct relationship to seasonal and hydrological conditions. For city authorities, responsible for public water supply, it is necessary to perform a complete inventory of the water sources used and constantly monitor the As content in the water.  相似文献   

11.
A three-dimensional GIS-based groundwater flow model for the Nubian Sandstone Aquifer in the eastern Sahara was developed and calibrated under steady-state and transient conditions. The model was used to simulate the response of the aquifer to climatic changes that occurred during the last 25,000 years. The simulation results indicated that the groundwater in this aquifer was formed by infiltration during the wet periods 20,000 and 5,000 years b.p. The recharge of groundwater due to regional groundwater flow from more humid areas in the south was excluded. It also indicates that the Nubian Aquifer System is a fossil aquifer, which had been in an unsteady state condition for the last 3,000 years.
Resumen Fue desarrollado un modelo de flujo de agua subterránea en tres dimensiones, basado en un SIG, para el Acuífero Arenisca Nubian en el Sahara Oriental, el cual fue calibrado para condiciones de estado estacionario y transitorio. El modelo se usó para simular la respuesta del acuífero a los cambios climáticos que ocurrieron durante los últimos 25000 años. Los resultados de esta simulación indicaron que el agua subterránea en este acuífero, se formó por infiltración, durante los períodos húmedos que hubo hace 20000 y 5000 años, antes del presente. Fue excluida la recarga del acuífero debida a un flujo regional de agua subterránea proveniente de áreas con un clima más húmedo en el sur. El modelo también muestra, que el Sistema Acuífero Nubian es un acuífero fósil, el cual ha permanecido en una condición de estado no estacionario, durante los últimos tres mil años.

Résumé Pour laquifère gréseux Nubien de Sahara -Est on a mis au points un modèle tridimensionnel, basé sur GIS. Le modèle a été calibré tant pour lécoulement stationnaire que pour lécoulement transitoire. On a simulé après la réponse de laquifère aux changements climatiques des derniers 25000 ans. Les résultats des simulations indiquent que la nappe a été rechargée par des infiltrations pendant une période humide qui sétend 5000 et 20000 ans, dès temps actuel. On na pas pris en compte la recharge de laquifère par la zone plus humide située dans sa partie sud. Le modèle indique aussi que leau de laquifère Nubien est une eau fossile qui a eu un écoulement transitoire pendant les derniers 3000 ans.
  相似文献   

12.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.An erratum to this article can be found at  相似文献   

13.
Remote sensing, evaluation of digital elevation models (DEM), geographic information systems (GIS) and fieldwork techniques were combined to study the groundwater conditions in Eritrea. Remote sensing data were interpreted to produce lithological and lineament maps. DEM was used for lineament and geomorphologic mapping. Field studies permitted the study of structures and correlated them with lineament interpretations. Hydrogeological setting of springs and wells were investigated in the field, from well logs and pumping test data. All thematic layers were integrated and analysed in a GIS. Results show that groundwater occurrence is controlled by lithology, structures and landforms. Highest yields occur in basaltic rocks and are due to primary and secondary porosities. High yielding wells and springs are often related to large lineaments, lineament intersections and corresponding structural features. In metamorphic and igneous intrusive rocks with rugged landforms, groundwater occurs mainly in drainage channels with valley fill deposits. Zones of very good groundwater potential are characteristic for basaltic layers overlying lateritized crystalline rocks, flat topography with dense lineaments and structurally controlled drainage channels with valley fill deposits. The overall results demonstrate that the use of remote sensing and GIS provide potentially powerful tools to study groundwater resources and design a suitable exploration plan.The online version of the original article can be found at  相似文献   

14.
Anthropogenic damage of geoheritage is documented widely, but natural processes can also lead to geoheritage loss. For instance, sand dune migration causes submergence of unique geological and palaeontological sites in desert environments of the Sahara. The Siwa Oasis in the Western Desert of Egypt boasts rich geoheritage, which is represented in many localities. Three of them in the southern part of the oasis are outcrops of highly-fossiliferous limestones. Palaeontological, sedimentary, palaeogeographical, and geomorphological types of geoheritage are recognized there. Sand dune activity on the study area is registered both visually and with remote sensing techniques. Denudation and destruction of naturally-exposed rocks is documented. Evidence of outcrop submergence with sand is found in all cases. The localities are situated in the pathway of rapid (up to ?10 m/yr) dune migration. One locality may disappear within one–two years. Sand dune migration has to be considered as a factor of geoheritage loss in the Siwa Oasis, and the relevant protection of the studied localities is necessary. Geopark creation and improvement of water use in the oasis can also help significantly, as well as the reference to archaeological experience of excavation and protection of heritage sites submerged by sands. More generally, geoheritage conservation should be integrated with a program for sustainable oasis development.  相似文献   

15.
This research is located at the intersection of three canals in periurban Gurugram. Two of these canals were built to provide water for the growing city of Gurugram and one of them carries the wastewater of the city back to the villages. These canals cut through periurban villages that are excluded in principle from taking benefit of these canals. They are meant to be at their receiving end, as recipients of these waters. The paper, using a socio-technical lens, explores the mixed impacts of these canals on the villages through which they traverse. The paper further describes the strategies that periurban communities devise to circumvent the situation of exclusion. Using a qualitative, ethnographic research design, the paper describes the socio-technical mediation of periurban water insecurity, focusing on the mix of technologies and institutions that spring up around these canals that shape the periurban water users’ access to water. The paper concludes that approaches for promoting community resilience and periurban water security need to start from an understanding of the strategies devised by periurban communities to improve their access to water. In the larger discourse on building community resilience in the face of urbanization and climate change it is important to pay attention to local norms of cooperation that enable periurban communities to access water, rather than start from a premise that water insecurity caused by urbanization and climate change will lead to conflicts or necessitate capacity-building to promote avoid conflict and promote cooperation.  相似文献   

16.
An innovative approach to solve the problem of lowering water table was carried out in a quarry lake south of the city of Milan (northern Italy): the project, based upon pumping out water at a rate of 1,000 L/s can be considered a strategic medium to long-term solution to hinder the rise of groundwater level interfering with underground structures (foundation, construction, subway) in urban areas. The basic idea is to pump a high groundwater rate as close as possible to the stagnation point of the piezometric depression located in the city. After a pilot-test was carried out in November 1998, experimental activities started in July 2001 and lasted one year; water withdrawal was discharged into artificial channels used in agricultural practice. Maximum drawdowns measured in the quarry lake by the monitoring network resulted in more than 5 m, and a significant drawdown was registered up to 1.5 km of distance from the quarry in the important historical site of Chiaravalle Abbey, threatened by groundwater rise. The results of this pumping activity confirm the importance of the project, its lower cost compared with traditional solutions (such as drainage by wells) and remarkable effects on the improvement of surface water quality. A groundwater model was implemented to evaluate further scenarios of discharge rate and pumping location, too.  相似文献   

17.
With the increased demand for groundwater resulting from fast demographic growth, accelerated urbanization, economic and agricultural activity diversification, and the increase of per capita consumption, ground water resources, in particular in coastal regions, remain relatively low, compared to demand. The groundwater quality and piezometric variations result mainly from intensive exploitation, agricultural activities and the intrusion of seawater. This phenomenon is observed mostly in semi-arid areas, such as the oriental Sahel of Tunisia, where an apparent reduction in rainfall in recent years can be seen. Groundwater becomes overexploited especially as its natural recharge by rainwater does not succeed in maintaining the hydrologic balance. The imbalance between water demand and resources induces the degradation of the water quality. In such a case, the artificial recharge of water-table aquifers by water from dams is a credible alternative to improve the hydrodynamic and physicochemical conditions of the groundwater. Like most coastal aquifers, the Teboulba water-table aquifer is threatened by overexploitation for at least three decades. This threat appears by a considerable piezometric level drop and by water salinisation, due to seawater intrusion. Given this alarming situation, since 1971, artificial recharge through wells with surface water from a dam was tested in order to restore the water levels and to improve water quality. The piezometric and chemical surveys of the Teboulba aquifer permitted one to describe the temporal and spatial piezometric and geochemical conditions of the aquifer and to show the effect of the artificial recharge. Indeed, the artificial recharge undertaken since 1971 made the geochemical and piezometric conditions of the Teboulba aquifer improve. This example is a rare, well-documented case-study of the benefits of artificial recharge in a coastal aquifer, over the long term.  相似文献   

18.
Identification of water potential areas in arid regions is a crucial element for the enhancement of their water resources and socio-economic development. In fact, water resources system-planning can be used to make various decisions and implement management of water resources policies. The purpose of this study is to identify groundwater storage areas in the high Guir Basin by implementing Geographic Information System (GIS) and Remote Sensing methods. The required data for this study can be summarized into five critical factors: Topography (slope), lithology, rainfall, rock fracture and drainage. These critical factors have been converted by the GIS into thematic maps. For each critical parameter, a coefficient with weight was attributed according to its importance. The map of potential groundwater storage areas is obtained by adding the products (coefficient × weight) of the five parameters. The results show that 50% to 64% of the total area of the High Guir Basin is potentially rich in groundwater, where most of fracture systems are intensely developed. The obtained results are validated with specific yield of the aquifer in the study area. It is noted that there is a strong positive correlation between excellent groundwater potential zones with high flows of water points and it diminishes with low specific yield with poor potential zones.  相似文献   

19.
20.
A quantitative analysis is presented of the scaling properties of faults within the exceptionally well-exposed Kino Sogo Fault Belt (KSFB) from the eastern part of the 200-km-wide Turkana rift, Northern Kenya. The KSFB comprises a series of horsts and grabens within an arcuate 40-km-wide zone that dissects Miocene–Pliocene lavas overlying an earlier asymmetric fault block. The fault belt is 150 km long and is bounded to the north and south by transverse (N50°E and N140°E) fault zones. An unusual feature of the fault system is that it accommodates very low strains (<1%) and since it is no older than 3 Ma, it could be characterised by extension rates and strain rates that are as low as 0.1 mm/yr and 10−16 s−1, respectively. Despite its immaturity, the fault system comprises segmented fault arrays with lengths of up to 40 km, with individual fault segments ranging up to 9 km in length. Fault length distributions subscribe to a negative exponential scaling law, as opposed to the power law scaling typical of other fault systems. The relatively long faults and segments are, however, characterised by maximum throws of no more than 100 m, providing displacement/length ratios that are significantly below those of other fault systems. The under-displaced nature of the fault system is attributed to early stage rapid fault propagation possibly arising from reactivation of earlier underlying basement fabrics/faults or magmatic-related fractures. Combined with the structural control exercised by pre-existing transverse structures, the KSFB demonstrates the strong influence of older structures on rift fault system growth and the relatively rapid development of under-displaced fault geometries at low strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号