首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
At present, reliable ambiguity resolution in real-time GPS precise point positioning (PPP) can only be achieved after an initial observation period of a few tens of minutes. In this study, we propose a method where the incoming triple-frequency GPS signals are exploited to enable rapid convergences to ambiguity-fixed solutions in real-time PPP. Specifically, extra-wide-lane ambiguity resolution can be first achieved almost instantaneously with the Melbourne-Wübbena combination observable on L2 and L5. Then the resultant unambiguous extra-wide-lane carrier-phase is combined with the wide-lane carrier-phase on L1 and L2 to form an ionosphere-free observable with a wavelength of about 3.4 m. Although the noise of this observable is around 100 times the raw carrier-phase noise, its wide-lane ambiguity can still be resolved very efficiently, and the resultant ambiguity-fixed observable can assist much better than pseudorange in speeding up succeeding narrow-lane ambiguity resolution. To validate this method, we use an advanced hardware simulator to generate triple-frequency signals and a high-grade receiver to collect 1-Hz data. When the carrier-phase precisions on L1, L2 and L5 are as poor as 1.5, 6.3 and 1.5 mm, respectively, wide-lane ambiguity resolution can still reach a correctness rate of over 99 % within 20 s. As a result, the correctness rate of narrow-lane ambiguity resolution achieves 99 % within 65 s, in contrast to only 64 % within 150 s in dual-frequency PPP. In addition, we also simulate a multipath-contaminated data set and introduce new ambiguities for all satellites every 120 s. We find that when multipath effects are strong, ambiguity-fixed solutions are achieved at 78 % of all epochs in triple-frequency PPP whilst almost no ambiguities are resolved in dual-frequency PPP. Therefore, we demonstrate that triple-frequency PPP has the potential to achieve ambiguity-fixed solutions within a few minutes, or even shorter if raw carrier-phase precisions are around 1 mm. In either case, we conclude that the efficiency of ambiguity resolution in triple-frequency PPP is much higher than that in dual-frequency PPP.  相似文献   

2.
3.
Integer ambiguity resolution in precise point positioning: method comparison   总被引:14,自引:10,他引:14  
Integer ambiguity resolution at a single receiver can be implemented by applying improved satellite products where the fractional-cycle biases (FCBs) have been separated from the integer ambiguities in a network solution. One method to achieve these products is to estimate the FCBs by averaging the fractional parts of the float ambiguity estimates, and the other is to estimate the integer-recovery clocks by fixing the undifferenced ambiguities to integers in advance. In this paper, we theoretically prove the equivalence of the ambiguity-fixed position estimates derived from these two methods by assuming that the FCBs are hardware-dependent and only they are assimilated into the clocks and ambiguities. To verify this equivalence, we implement both methods in the Position and Navigation Data Analyst software to process 1 year of GPS data from a global network of about 350 stations. The mean biases between all daily position estimates derived from these two methods are only 0.2, 0.1 and 0.0 mm, whereas the standard deviations of all position differences are only 1.3, 0.8 and 2.0 mm for the East, North and Up components, respectively. Moreover, the differences of the position repeatabilities are below 0.2 mm on average for all three components. The RMS of the position estimates minus those from the International GNSS Service weekly solutions for the former method differs by below 0.1 mm on average for each component from that for the latter method. Therefore, considering the recognized millimeter-level precision of current GPS-derived daily positions, these statistics empirically demonstrate the theoretical equivalence of the ambiguity-fixed position estimates derived from these two methods. In practice, we note that the former method is compatible with current official clock-generation methods, whereas the latter method is not, but can potentially lead to slightly better positioning quality.  相似文献   

4.
曹新运 《测绘学报》2020,49(8):1068-1068
正精密单点定位(precise point positioning,PPP)技术能够在全球区域获取用户在国际地球参考框架下的精确三维坐标,打破了以往只能够使用差分定位技术才能够实现高精度定位的局面,是继RTK/NRTK技术之后出现的又一次技术革命。论文旨在构建实时GNSS PPP服务系统,围绕GNSS卫星钟差估计、多系统融合PPP、卫星姿态、GPS未校准相位延迟(uncalibrated phase delays,UPD)估计、PPP模糊度固定等展开研究,为用户获取实时、高精度和高可靠性的GNSS PPP服务奠定理论和实践基础。本文的主要工作和贡献如下:  相似文献   

5.
针对BDS单系统未校准相位延迟(UPD)估计以及不同时长精密单点定位(PPP)模糊度固定对定位精度影响的问题,该文选取56个测站估计UPD,利用未参与UPD计算的8个测站进行不同时长BDS静态PPP模糊度固定实验。结果表明:BDS星间单差宽巷和窄巷UPD在连续时段内具有一定的稳定性,其估计精度满足用于PPP模糊度固定要求。时长越短模糊度固定率越低。以IGS周解为参考值,不同时长模糊度固定解较浮点解三维定位精度均提高12%以上,时长越短模糊度固定解精度提高越显著。因此,模糊度固定是提高BDSPPP定位精度的重要手段。  相似文献   

6.
基于国际GNSS服务(IGS)提供的MGEX (Multi-GNSS Experiment)的观测数据,对北斗三号卫星导航系统(BDS-3)相位小数偏差(UPD)进行估计,进一步开展基于精密单点定位(PPP)的浮点/固定解试验,分析评估其定位性能. 结果表明:北斗卫星导航系统(BDS)定位精度与GPS大致相当; BDS-3 PPP在东(E)、北(N)、天顶(U)三个方向上浮点解的平均均方根(RMS)分别为1.4 cm、1.0 cm、1.6 cm;通过模糊度固定算法,可将三个方向的定位精度提升至0.9 cm、0.7 cm、1.4 cm.   相似文献   

7.
Integer ambiguity fixing can significantly shorten the initialization time and improve the accuracy of precise point positioning (PPP), but it still takes approximate 15 min of time to achieve reliable integer ambiguity solutions. In this contribution, we present a new strategy to augment PPP estimation with a regional reference network, so that instantaneous ambiguity fixing is achievable for users within the network coverage. In the proposed method, precise zero-differenced atmospheric delays are derived from the PPP fixed solution of the reference stations, which are disseminated to, and interpolated at user stations to correct for L1, L2 phase observations or their combinations. With the corrected observations, instantaneous ambiguity resolution can be carried out within the user PPP software, thus achieving the position solutions equivalent to the network real-time kinematic positioning (NRTK). The strategy is validated experimentally. The derived atmospheric delays and the interpolated corrections are investigated. The ambiguity fixing performance and the resulted position accuracy are assessed. The validation confirms that the new strategy can provide comparable service with NRTK. Therefore, with this new processing strategy, it is possible to integrate PPP and NRTK into a seamless positioning service, which can provide an accuracy of about 10 cm anywhere, and upgrade to a few centimeters within a regional network.  相似文献   

8.
All BeiDou navigation satellite system (BDS) satellites are transmitting signals on three frequencies, which brings new opportunity and challenges for high-accuracy precise point positioning (PPP) with ambiguity resolution (AR). This paper proposes an effective uncalibrated phase delay (UPD) estimation and AR strategy which is based on a raw PPP model. First, triple-frequency raw PPP models are developed. The observation model and stochastic model are designed and extended to accommodate the third frequency. Then, the UPD is parameterized in raw frequency form while estimating with the high-precision and low-noise integer linear combination of float ambiguity which are derived by ambiguity decorrelation. Third, with UPD corrected, the LAMBDA method is used for resolving full or partial ambiguities which can be fixed. This method can be easily and flexibly extended for dual-, triple- or even more frequency. To verify the effectiveness and performance of triple-frequency PPP AR, tests with real BDS data from 90 stations lasting for 21 days were performed in static mode. Data were processed with three strategies: BDS triple-frequency ambiguity-float PPP, BDS triple-frequency PPP with dual-frequency (B1/B2) and three-frequency AR, respectively. Numerous experiment results showed that compared with the ambiguity-float solution, the performance in terms of convergence time and positioning biases can be significantly improved by AR. Among three groups of solutions, the triple-frequency PPP AR achieved the best performance. Compared with dual-frequency AR, additional the third frequency could apparently improve the position estimations during the initialization phase and under constraint environments when the dual-frequency PPP AR is limited by few satellite numbers.  相似文献   

9.
10.
Precise GPS positioning relies on tracking the carrier-phase. The fractional part of carrier-phase can be measured directly using a standard phase-locked loop, but the integer part is ambiguous and the ambiguity must be resolved based on sequential carrier-phase measurements to ensure the required positioning precision. In the presence of large phase-measurement noise, as can be expected in a jamming environment for example, the amount of data required to resolve the integer ambiguity can be large, which requires a long time for any generic integer parameter estimation algorithm to converge. A key question of interest in significant applications of GPS where fast and accurate positioning is desired is then how the convergence time depends on the noise amplitude. Here we address this question by investigating integer least-sqaures estimation algorithms. Our theoretical derivation and numerical experiments indicate that the convergence time increases linearly with the noise variance, suggesting a less stringent requirement for the convergence time than intuitively expected, even in a jamming environment where the phase noise amplitude is large. This finding can be useful for practical design of GPS-based systems in a jamming environment, for which the ambiguity resolution time for precise positioning may be critical.  相似文献   

11.
Ambiguity resolution dedicated to a single global positioning system (GPS) station can improve the accuracy of precise point positioning. In this process, the estimation accuracy of the narrow-lane fractional-cycle biases (FCBs), which destroy the integer nature of undifferenced ambiguities, is crucial to the ambiguity-fixed positioning accuracy. In this study, we hence propose the improved narrow-lane FCBs derived from an ambiguity-fixed GPS network solution, rather than the original (i.e. previously proposed) FCBs derived from an ambiguity-float network solution. The improved FCBs outperform the original FCBs by ensuring that the resulting ambiguity-fixed daily positions coincide in nature with the state-of-the-art positions generated by the International GNSS Service (IGS). To verify this improvement, 1?year of GPS measurements from about 350 globally distributed stations were processed. We find that the original FCBs differ more from the improved FCBs when fewer stations are involved in the FCB estimation, especially when the number of stations is less than 20. Moreover, when comparing the ambiguity-fixed daily positions with the IGS weekly positions for 248 stations through a Helmert transformation, for the East component, we find that on 359 days of the year the daily RMS of the transformed residuals based on the improved FCBs is smaller by up to 0.8?mm than those based on the original FCBs, and the mean RMS over the year falls evidently from 2.6 to 2.2?mm. Meanwhile, when using the improved rather than the original FCBs, the RMS of the transformed residuals for the East component of 239 stations (i.e. 96.4% of all 248 stations) is clearly reduced by up to 1.6?mm, especially for stations located within a sparse GPS network. Therefore, we suggest that narrow-lane FCBs should be determined with ambiguity-fixed, rather than ambiguity-float, GPS network solutions.  相似文献   

12.
Recent research has demonstrated that the undifferenced integer ambiguities can be recovered using products from a network solution. The standard dual-frequency PPP integer ambiguity resolution consists of two aspects: Hatch-Melbourne-Wübbena wide-lane (WL) and ionosphere-free narrow-lane (NL) integer ambiguity resolution. A major issue affecting the performance of dual-frequency PPP applications is the time it takes to fix these two types of integer ambiguities, especially if the WL integer ambiguity resolution suffers from the noisy pseudorange measurements and strong multipath effects. With modernized Global Navigation Satellite Systems, triple-frequency measurements will be available to global users and an extra WL (EWL) model with very long wavelength can be formulated. Then, the easily resolved EWL integer ambiguities can be used to construct linear combinations to accelerate the PPP WL integer ambiguity resolution. Therefore, we propose a new reliable procedure for the modeling and quality control of triple-frequency PPP WL and NL integer ambiguity resolution. First, we analyze a WL integer ambiguity resolution model based on triple-frequency measurements. Then, an optimal pseudorange linear combination which is ionosphere-free and has minimum measurement noise is developed and used as constraint in the WL and the NL integer ambiguity resolution. Based on simulations, we have investigated the inefficiency of dual-frequency WL integer ambiguity resolution and the performance of EWL integer ambiguity resolution. Using almanacs of GPS, Galileo and BeiDou, the performances of the proposed triple-frequency WL and NL models have been evaluated in terms of success rate. Comparing with dual-frequency PPP, numerical results indicate that the proposed triple-frequency models can outperform the dual-frequency PPP WL and NL integer ambiguity resolution. With 1 s sampling rate, generally, only several minutes of data are required for reliable triple-frequency PPP WL and NL integer ambiguity resolution. Under benign observation situations and good geometries, the integer ambiguity can be reliably resolved even within 10 s.  相似文献   

13.
吕伟才  高井祥  刘天骏 《测绘科学》2019,44(11):195-204
针对提高多频模糊度固定解的GNSS精密单点定位的可靠性与稳定性的问题,该文基于实时非组合相位偏差产品,对三频非差非组合GPS/Galileo PPP的浮点解、固定解模型进行深入研究,并设计了3种定位策略,选取了17个MGEX跟踪站7d的实测数据,分析了三频非差模糊度固定解对静态、仿动态PPP定位精度与滤波收敛时间的影响。结果表明,滤波收敛后,与浮点解策略相比较,固定三频模糊度对高程、水平方向定位精度均有提高,在静态定位模式中提升幅度分别约为20.45%和37.50%,在仿动态定位模式中提升幅度分别约为22.41%和33.33%。在滤波收敛时间方面,相较于浮点解策略的收敛时间,静态与仿动态定位中模糊度固定策略的收敛时间分别提升了约12.57%和6.41%。  相似文献   

14.
Ambiguity resolved precise point positioning with GPS and BeiDou   总被引:1,自引:1,他引:1  
This paper focuses on the contribution of the global positioning system (GPS) and BeiDou navigation satellite system (BDS) observations to precise point positioning (PPP) ambiguity resolution (AR). A GPS + BDS fractional cycle bias (FCB) estimation method and a PPP AR model were developed using integrated GPS and BDS observations. For FCB estimation, the GPS + BDS combined PPP float solutions of the globally distributed IGS MGEX were first performed. When integrating GPS observations, the BDS ambiguities can be precisely estimated with less than four tracked BDS satellites. The FCBs of both GPS and BDS satellites can then be estimated from these precise ambiguities. For the GPS + BDS combined AR, one GPS and one BDS IGSO or MEO satellite were first chosen as the reference satellite for GPS and BDS, respectively, to form inner-system single-differenced ambiguities. The single-differenced GPS and BDS ambiguities were then fused by partial ambiguity resolution to increase the possibility of fixing a subset of decorrelated ambiguities with high confidence. To verify the correctness of the FCB estimation and the effectiveness of the GPS + BDS PPP AR, data recorded from about 75 IGS MGEX stations during the period of DOY 123-151 (May 3 to May 31) in 2015 were used for validation. Data were processed with three strategies: BDS-only AR, GPS-only AR and GPS + BDS AR. Numerous experimental results show that the time to first fix (TTFF) is longer than 6 h for the BDS AR in general and that the fixing rate is usually less than 35 % for both static and kinematic PPP. An average TTFF of 21.7 min and 33.6 min together with a fixing rate of 98.6 and 97.0 % in static and kinematic PPP, respectively, can be achieved for GPS-only ambiguity fixing. For the combined GPS + BDS AR, the average TTFF can be shortened to 16.9 min and 24.6 min and the fixing rate can be increased to 99.5 and 99.0 % in static and kinematic PPP, respectively. Results also show that GPS + BDS PPP AR outperforms single-system PPP AR in terms of convergence time and position accuracy.  相似文献   

15.
Ambiguity resolution in precise point positioning with hourly data   总被引:12,自引:7,他引:12  
Precise point positioning (PPP) has become a powerful tool for the scientific analysis of Global Positioning System (GPS) measurements. Until recently, ambiguity resolution at a single station in PPP has been considered difficult, due to the receiver- and satellite-dependent uncalibrated hardware delays (UHD). However, recent studies show that if these UHD can be determined accurately in advance within a network of stations, then ambiguity resolution at a single station becomes possible. In this study, the method proposed by Ge et al. J Geod 82(7):389–399, 2007 is adopted with a refinement in which only one single-difference narrow-lane UHD between a pair of satellites is determined within each full pass over a regional network. This study uses the EUREF (European Reference Frame) Permanent Network (EPN) to determine the UHD from Day 245 to 251 in 2007. Then 12 International GNSS Service stations inside the EPN and 15 outside the EPN are used to conduct ambiguity resolution in hourly PPP. It is found that the mean positioning accuracy in all hourly solutions for the stations inside the EPN is improved from (3.8, 1.5, 2.8) centimeters to (0.5, 0.5, 1.4) centimeters for the East, North and Up components, respectively. For the stations outside the EPN, some of which are over 2,000 km away from the nearest EPN stations, the mean positioning accuracy in the East, North and Up directions still achieves (0.6, 0.6, 2.0) centimeters, respectively, when the EPN-based UHD are applied to these stations. These results demonstrate that ambiguity resolution at a single station can significantly improve the positioning accuracy in hourly PPP. Particularly, UHD can be even applied to a station which is up to thousands of kilometers from the UHD-determination network, potentially showing a great advantage over current network-based GPS augmentation systems. Therefore, it is feasible and beneficial for the operators of GPS regional networks and providers of PPP-based online services to provide these UHD estimates as an additional product.  相似文献   

16.
Ambiguity resolution (AR) for a single receiver has been a popular topic in Global Positioning System (GPS) recently. Ambiguity-resolution methods for precise point positioning (PPP) have been well documented in recent years, demonstrating that it can improve the accuracy of PPP. However, users are often concerned about the reliability of ambiguity-fixed PPP solution in practical applications. If ambiguities are fixed to wrong integers, large errors would be introduced into position estimates. In this paper, we aim to assess the correct fixing rate (CFR), i.e., number of ambiguities correctly fixing to the total number of ambiguities correctly and incorrectly fixing, for PPP user ambiguity resolution on a global scale. A practical procedure is presented to evaluate the CFR of PPP user ambiguity resolution. GPS data of the first 3 days in each month of 2010 from about 390 IGS stations are used for experiments. Firstly, we use GPS data collected from about 320 IGS stations to estimate global single-differenced (SD) wide-lane and narrow-lane satellite uncalibrated phase delays (UPDs). The quality of UPDs is evaluated. We found that wide-lane UPD estimates have a rather small standard deviation (Std) between 0.003 and 0.004 cycles while most of Std of narrow-lane estimates are from 0.01 to 0.02 cycles. Secondly, many experiments have been conducted to investigate the CFR of integer ambiguity resolution we can achieve under different conditions, including reference station density, observation session length and the ionospheric activity. The results show that the CFR of PPP can exceed 98.0 % with only 1 h of observations for most user stations. No obvious correlation between the CFR and the reference station density is found. Therefore, nearly homogeneous CFR can be achieved in PPP AR for global users. At user end, higher CFR could be achieved with longer observations. The average CFR for 30-min, 1-h, 2-h and 4-h observation is 92.3, 98.2, 99.5 and 99.7 %, respectively. In order to get acceptable CFR, 1 h is a recommended minimum observation time. Furthermore, the CFR of PPP can be affected by diurnal variation and geomagnetic latitude variation in the ionosphere. During one day at the hours when rapid ionospheric variations occur or in low geomagnetic latitude regions where equatorial electron density irregularities are produced relatively frequently, a significant degradation of the CFR is demonstrated.  相似文献   

17.
18.
S. Han 《Journal of Geodesy》1997,71(6):351-361
An integrated method for the instantaneous ambiguity resolution using dual-frequency precise pseudo-range and carrier-phase observations is suggested in this paper. The algorithm combines the search procedures in the coordinate domain, the observation domain and the estimated ambiguity domain (and therefore benefits from the integration of their most positive elements). A three-step procedure is then proposed to enhance the reliability of the ambiguity resolution by: (1) improving the stochastic model for the double-differenced functional model in real time; (2) refining the criteria which distinguish the integer ambiguity set that generates the minimum quadratic form of residuals from that corresponding to the second minimum one; and (3) developing a fault detection and adaptation procedure. Three test scenarios were considered, one static baseline (11.3 km) and two kinematic experiments (baseline lengths from 5.2 to 13.7 km). These showed that the mean computation time for one epoch is less than 0.1 s, and that the success rate reaches 98.4% (compared to just 68.4% using standard ratio tests). Received: 5 June 1996; Accepted: 16 January 1997  相似文献   

19.
袁运斌  刘帅  潭冰峰 《测绘学报》2022,51(8):1669-1679
精密单点定位模糊度固定可以显著提升定位精度,钟差解耦模型作为一种重要的模糊度固定模型,却鲜有文献对其进行研究。本文首先给出了基于钟差解耦模型的用于模糊度固定的产品估计策略,分析了传统的消电离层模型和钟差解耦模型钟差重构形式的差异,导出了提取卫星码偏差的钟差估计模型。然后,深入研究了钟差解耦模型在钟差估计收敛速度等方面的优势。不同于其他模型将宽巷模糊度偏差视为天内常数,钟差解耦模型逐历元估计该偏差项,基于此展开对宽巷模糊度偏差天内时变特性的研究。最后,评价了解耦钟差的精度,并利用解耦钟差产品进行精密单点定位模糊度固定试验。结果表明,相比于提取卫星码偏差的卫星钟差估计模型,钟差解耦模型在钟差估计中的收敛速度更快,钟差产品更加稳定;宽巷模糊度偏差在天内较为稳定;解耦钟差产品具有较高的精度,相比于传统消电离层组合模型,基于该产品的精密单点定位模糊度固定可显著提升定位精度。  相似文献   

20.
GPS星历精度对精密单点定位的影响   总被引:3,自引:2,他引:3  
李鹏  熊永良  黄育龙  楚亮 《测绘科学》2009,34(2):15-17,42
精密单点定位的实质就是利用精密星历和精密卫星钟改正来实现单机精密定位。本文简要地介绍了精密单点定位的原理及技术关键,在此基础上,分析了IGS目前提供的3种精密星历(IGF、IGR、IGU)的精度和时延性。根据实验数据进一步分析了3种精密星历对精密单点定位精度的影响。通过精度分析,得出利用IGS的超快星历也可以达到厘米级定位精度,为全球厘米级单站RTK提供了有益的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号