首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Upper mantle xenoliths from Wikieup, AZ, provide abundant evidence for magmatic modification of the uppermost mantle beneath the Transition Zone between the Colorado Plateau and the southern Basin and Range province. Upper mantle lithologies in this xenolith suite are represented by spinel peridotite, wehrlite, plagioclase peridotite, and Al-augite group pyroxenites. Isotopic data for these xenoliths yield relatively uniform values and suggest a common petrogenesis. Al-augite-bearing gabbro and pyroxenite xenoliths from this locality are interpreted to have formed by crystal fractionation processes from parent alkali basalts similar to the Wikieup host basalt. Mineral and whole rock compositions show consistent trends of increasing incompatible element contents (Fe, Al, Ca, Na, K, LIL, and LREE), and decreasing compatible element contents (Mg, Cr, Ni) from spinel peridotite to wehrlite to plagioclase peridotite to the host basalt composition. These compositional trends are interpreted as resulting from varying degrees of magma-mantle wall rock interaction as ascending mafic magmas infiltrated upper mantle peridotite. Small degrees of melt infiltration resulted in slightly modified spinel peridotite compositions while moderate degrees metasomatized spinel peridotite to wehrlite, and the highest degrees metasomatized it to plagioclase peridotite. Whole rock compositions and clinopyroxene, plagioclase, and whole rock isotopic data suggest that the infiltrating magmas were the same as those from which the gabbros and pyroxenites crystallized, and that they were alkalic in composition, similar to the Wikieup host alkali olivine basalts. Relatively uniform 143Nd/144Nd for the mineral separates and whole rocks in spite of the significantly wide range in their 147Sm/144Nd (0.71–0.23 in clinopyroxene) suggests that the Wikieup xenoliths including gabbro, pyroxenite, peridotite, wehrlite, and plagioclase peridotite, are all relatively young rocks formed or metasomatized by a relatively recent magmatic episode. Received: 21 May 1996 / Accepted: 23 December 1996  相似文献   

2.
Ultramafic xenoliths comprising harzburgite, lherzolite (reacted harzburgite) and spinel-rich dunite, occur in alkali olivine basalts (M series) of Grenada in the Lesser Antilles island arc. Textures are protogranular, porphyroclastic and granular; the latter are restricted to dunites and areas of the harzburgites/lherzolites where interaction with host magma has occurred. Primary mineralogy comprises olivine, orthopyroxene, clinopyroxene, and spinel. Harzburgites are residual from a fractional partial melting event totaling ~22%. Infiltration of harzburgite by (and reaction with) basalt has produced: a wehrlite, with partial dissolution of primary spinel, an increase in the oxygen fugacity (ƒO2) from primary values 1–2 log ƒO2 units above the fayalite-magnetite-quartz (FMQ) buffer, to 2–2.5 log units above the buffer; reaction of orthopyroxene to form patches of intergrown olivine and clinopyroxene, and bronzite andesite glass (60 wt%, SiO2 18–20 wt% Al2O3 and 3–4 wt% Na2O) with flat to light rare earth element-depleted, chondrite-normalized abundances. Refertilisation of the mantle by reacting melts, producing a clinopyroxene-rich lithology, may form a source of ankaramitic (high-Ca) arc basalts.Editorial responsibility: T.L. Grove  相似文献   

3.
This work reports the results of noble gas (Ne, Ar, Kr, Xe) analyses of accidental mantle xenoliths from San Carlos, Arizona. Except for the addition of radiogenic 40Ar and mass fractionation effects, the isotopic structures of these gases are indistinguishable from atmospheric composition. The absence of 129Xe excesses in these rocks may reflect indirect mixing of atmospheric gases with the source region of the xenoliths. The dominant influence on the noble gas abundances in the San Carlos xenoliths appears to have been diffusive gas loss, which may have occurred in a mantle metamorphic event or during contact with the host basanite magma. Evidence is presented for the partitioning of significant amounts of the heavy noble gases into fluid inclusions in the xenolith minerals; the proportion of each gas in the inclusions increases with increasing atomic weight of the gas, possibly reflecting solubility effects. The noble gases are present in greater concentration in pyroxenes than in olivine, similar to the behavior of other incompatible elements.  相似文献   

4.
The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar albite components that reacted evolved to 0.92 as the reaction progressed. Much of the alkali feldspar albite component in the proximal facies reacted while the, primary plagioclase was still unreacted, but the ratio for these assemblages increased to 1.51 when the plagioclase entered the reaction paragenesis. Plagioclase reaction during distal propylitic alteration resulted in pseudomorphic albite mixed with illite and a loss of Na2O. CaO is lost in the distal facies as hornblende reacts to chlorite, although some calcium may be fixed in calcite. CaO is added to the proximal facies as the quantity of chlorite replacing hornblende increases and epidote and calcite are produced.  相似文献   

5.
 Three chlorite-rich and one garnet-pyroxenite xenolith from the diatreme at Moses Rock, Utah, document storage and transport of water and consequent metasomatism in the mantle within the stability field of garnet peridotite, probably at depths of at least 75 km. Three mineral assemblages are present in zones in one chlorite-rich xenolith: in that xenolith, an assemblage of chlorite+enstatite+diopside+ ilmenite+titanian chondrodite is separated by diop- side+“talc” from an assemblage of chlorite+diopside+ilmenite+pyrite. Euhedral grains of enstatite (0.02% Al2O3, 0.05% CaO)+diopside record low temperatures, and high Mn/Fe in these pyroxenes was caused by growth in chlorite-dominated rock. Derivation from garnet lherzolite is established by relict pyrope (Py71Gr11Alm18). The “talc” has Fe/Mg unusually high relative to that of associated chlorite, and electron probe analyses of the “talc” sum low, consistent with excess water; the unusual composition may be due solely to alteration and consequent submicroscopic intergrowths of other phases, but the “talc” could be an analogue of the high-pressure synthetic 10-Å phase. Garnet pyroxenite has a retrograde assemblage of chlorite-garnet-omphacite. The chlorite-rich rocks formed at contacts between garnet peridotite and other mantle rock in response to fluid flow. Pressures ≥2.2 GPa are consistent with stability of enstatite + aqueous fluid and of diopside + talc, with the occurrence of titanian chondrodite, and with the stability of garnet lherzolite. A chlorite separate has δ18O=6.9, consistent with mantle hydration. The small-scale reaction zones could have formed in a geologically brief time, plausibly just before eruption at about 25 Ma, and the responsible fluids probably also catalyzed recrystallization of associated eclogites. The hydration may have been restricted to shear zones that traversed the lower crust and the mantle to at least 75 km depth. The chlorite-rich rocks may be from the deepest part of the mantle that was sampled by the diatreme eruption. Chlorite-garnet pairs in garnet pyroxenites and pyrope megacrysts yield temperatures in the range 410–510° C. Low temperatures in the mantle of the Colorado Plateau are consistent with an unusually low mantle heat flux and with cooling of lithosphere by an underlying subducted slab. Received: 14 April 1994/Accepted: 23 December 1994  相似文献   

6.
Peridotite xenoliths containing primary phlogopite with or without potassic richterites as major constituent (up to 12 vol. %) are rarely found in kimberlite from the Bultfontein Floors. Chemically, these rocks are similar in compositions with those of the granular type garnet peridotite xenoliths from South Africa and Lesotho, except for an abnormally high content of K2O in the former. Phlogopite and potassic richterite are thought to have the following genesis: garnet peridotites at a depth from 170 to 100 km suffered local introduction of a potash-rich fluid, and garnet and enstatite reacted with this fluid to form phlogopite and diopside. Potassic richterite may have been produced by the reaction between diopside and fluid at the same time as crystallization of phlogopite at depths shallower than 120 km.  相似文献   

7.
大兴安岭北部诺敏河地幔金云母及钾质地幔熔体研究   总被引:1,自引:1,他引:1  
隋建立  李霓  樊祺诚  徐义刚 《岩石学报》2014,30(12):3587-3594
在大兴安岭北部诺敏河第四纪钾质火山岩携带的地幔捕虏体中,发现少量金云母矿物和富钾地幔熔体。金云母颗粒大小1~5mm,呈网脉状充填在橄榄石和辉石、石榴子石等地幔矿物间隙。电子探针研究表明地幔橄榄石、单斜辉石、斜方辉石和石榴石等矿物几乎不含钾质成分(K2O0.01%),而金云母矿物成分具有高钾(K2O~10%)、高钛(Ti O25.41%~7.74%)的特点,暗示区域地幔钾的富集与金云母矿物有密切关系。地幔金云母的成因往往与富钾地幔流体/熔体的交代作用有关,在地幔捕虏体矿物反应边的硅酸盐熔体(囊体)中,发现富硅、富钾的熔体,K2O 4%~8%。结合前人地幔熔体研究,认为区域地幔经历了多期、不同成分地幔熔体的富集作用,其中富钾熔体对地幔钾质成分的富集起到重要作用。诺敏钾质火山正是富钾地幔部分熔融的产物,钾质熔体成分的来源可能与俯冲再循环的壳源物质有关。  相似文献   

8.
Ultramafic and mafic xenoliths of magmatic origin, sampled in the Beaunit vent (northern French Massif Central), derive from the Permian (257 Ma) Beaunit layered complex (BLC) that was emplaced at the crust-mantle transition zone (∼1 GPa). These plutonic xenoliths are linked to a single fractional crystallisation process in four steps: peridotitic cumulates; websteritic cumulates; Al-rich mafic cumulates (plagioclase, pyroxenes, garnet, amphibole and spinel) and finally low-Al mafic cumulates. This sequence of cumulates can be related to the compositional evolution of hydrous Mg basaltic magma that evolved to high-Al basalt and finally to andesitic basalt. Sr and Nd isotopic compositions confirm the co-genetic character of the various magmatic xenoliths and argue for an enriched upper mantle source comparable to present mantle wedges above subduction zones. LILE, LREE and Pb enrichment are a common feature of all xenoliths and argue for an enriched sub-alkaline transitional parental magma. The existence of a Permian magma chamber at 30 km depth suggests that the low-velocity zone observed locally beneath the Moho probably does not represent an anomalous mantle but rather a sequence of mafic/ultramafic cumulates with densities close to those of mantle rocks.  相似文献   

9.
10.
Sixty packrat middens were collected in Canyonlands and Grand Canyon National Parks, and these series include sites north of areas that produced previous detailed series from the Colorado Plateau. The exceptionally long time series obtained from each of three sites (> 48,000 14C yr BP to present) include some of the oldest middens yet discovered. Most middens contain a typical late-Wisconsinan glaciation mixture of mesic and xeric taxa, evidence that plant species responded to climate change by range adjustments of elevational distribution based on individual criteria. Differences in elevational range from today for trees and shrubs ranged from no apparent change to as much as 1200 m difference. The oldest middens from Canyonlands NP, however, differ in containing strictly xeric assemblages, including middens incorporating needles of Arizona single-leaf pinyon, far north of its current distribution. Similar-aged middens from the eastern end of Grand Canyon NP contain plants more typical of glacial climates, but also contain fossils of one-seed juniper near its current northern limit in Arizona. Holocene middens reveal the development of modern vegetation assemblages on the Colorado Plateau, recording departures of mesic taxa from low elevation sites, and the arrival of modern dominant components much later.  相似文献   

11.
Two spinel harzburgite xenoliths from a Pleistocene alkali basalt unit erupted at the northwestern corner of the Tertiary Kishb Plateau (Saudi Arabia) are characterized by an incipient transition from protogranular to porphyroclastic texture. Vermicular and interstitial spinels are closely associated with neoblasts of olivine, enstatite, and diopside. Sparse exsolution lamellae of high-Ca pyroxene occur in all the enstatite porphyroblasts. Olivine neoblasts are, in many cases, in contact with one another, with the triple grain junctions rarely approaching 120°. Chemical zoning is undetectable by microprobe in spinel and olivine, whereas zoning of Al in enstatite and diopside indicates that chemical equilibrium was not attained. Clear, palegreen glasses occur as veinlets about 10 microns or less in width along grain boundaries and cracks. Consistent counting rates for Na in these glasses were obtained only at 5 kV with a sample current of about 6 namps and counting time of less than 7 s. These glasses are chemically homogeneous and are characterized by relatively high contents of SiO2 (55.8–58.7 wt%), Na2O (6.4–7.6 wt%), and Al2O3 (20.0–21.6 wt%), with inferred volatile contents of less than 1 wt%. The glass is suggested to be of upper mantle origin rather than having developed from the host basalt or by decompressional melting upon ascent.Geothermometry and geobarometry indicate that the lithospheric upper mantle beneath the Arabian Shield had been locally heated to higher than 1,050° C during Miocene/ Pliocene, resulting in some degree of partial melting. Spinel was formed by reaction between aluminous pyroxenes and olivine during subsequent cooling, and intercrystalline Mg-Fe exchange reached a steady state at about 800° C. The geotherm beneath the Arabian Shield since Miocene is estimated to be somewhat lower than that representing the present oceanic upper mantle. The thermal history established is consistent with the tectonic history of the Red Sea area and indicates a two-stage magmatism in the Arabian Shield since Miocene.  相似文献   

12.
The Classic Period Migration Project involves the analysis of archaeological sites at Perry Mesa in central Arizona and resulted in the discovery of several small marekanite1 obsidian artifacts that signaled a previously unlocated source. The source was eventually located in the Topaz Basin area of the upper Cienega Creek stream basin, southwest of Camp Verde, Arizona.2 While this locality solves the “unknown” sources in the Perry Mesa archaeological assemblage, it has not appeared in the archaeological record of Arizona with any frequency. The glass itself is an excellent medium for tool production, so its near absence in the archaeological record is likely attributable to social/territorial causes as well as limited secondary deposition, and along with other “minor” sources points to the archaeological utility of understanding these smaller sources. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
宁维坤  迟效国  刘建峰  赵芝  李才 《地质通报》2009,28(09):1355-1360
昆仑岩带新生代钾质火山活动是青藏高原北缘深部动力学过程的重要记录。有关岩浆源区的性质和岩浆产生的机制一直存在较大的认识分歧。阐述了昆仑岩带黑石北湖钾质火山岩的岩石学和地球化学特征,并与西昆仑康西瓦和泉水沟新生代火山岩进行了成因对比分析。研究表明,昆仑火山岩带玄武质岩石的K2O和Na2O含量变化较大,从钠质过渡到钾质,硅碱图显示玄武质初始岩浆向钾质安粗岩方向演化。黑石北湖火山岩的高场强元素和Sr、Nd同位素组成显示岩浆源区具有EMⅡ的性质。岩石LREE的强烈富集和HREE的强烈分馏指示岩浆来自富集型含石榴子石地幔源区。不相容元素K/Nb、Ba/La等比值具有岛弧火山岩与OIB型玄武岩的过渡特征,指示源区为曾遭受软流圈流(熔)体交代的古俯冲地幔楔。  相似文献   

14.
Summary One fresh (green), one altered (black) and one composite (green/black) peridotite xenolith from the Neogene-Quaternary basalts of the Dariganga Plateau, SE Mongolia, were studied by electron microprobe, X-ray fluorescence, wet chemical and instrumental neutron activation analysis. The history of the upper mantle underneath the Dariganga Plateau has been complex and is characterised by elemental depletions and enrichments processes. The rocks investigated appear to have been processed in several steps, have been moderately depleted (relative to the primitive upper mantle composition) in incompatible elements and subsequently metasomatically enriched in alkalis, Fe, Ca, LREE, Th and U. As a result, most peridotites are moderately depleted in Si, Cr, Ti, HREE and Hf, are slightly enriched in LREE and have elevated Th and U abundances. The minerals in all rocks are out of chemical equilibrium. In the green peridotites disequilibrium is modest but it is severe in the blackened lherzolites. The latter have experienced strong Fe metasomatism accompanied by strong oxidation. As a result, Mg-rich olivines formed by oxidation and precipitation of Fe oxides in the primary olivines (blackening) and Fe-rich olivines formed in the Fe metasomatic event. The latter could only have taken place after the oxidising event, otherwise the Fe-rich olivines would also have been affected by it. Three of the four rocks show negative anomalies (relative to the Ce abundance) of Hf and Ti, one is enriched in these elements, which is considered an indication of the action of carbonatitic melts/fluids in the upper mantle. Enrichment of U over Th in some of our samples seems also to indicate the presence of water in the fluid phase, however, the lack of (OH)-bearing minerals in the Dariganga xenoliths suggests a low activity of water in these fluids. The latest of the metasomatic events probably took place shortly before entrapment of the rocks by the basaltic lava that carried them to the earth’s surface. The composite sample consisting of a green harzburgite and a black lherzolite suggests that blackening took place at the original location of the rock rather than in the basaltic tuff because the latter should have altered the whole xenolith. It also demonstrates that metasomatic processes in the upper mantle can be confined to rather restricted locations with sharp boundaries towards the wall rocks. Blackening as well as the metasomatic events apparently took place because of a better permeability in one part of the rock as compared to the other, probably the result of tectonisation. Received May 28, 1999; revised version accepted February 24, 2001  相似文献   

15.
Analyses of major element and volatile components of amphiboles from Vulcan's Throne, a Recent volcano on the north rim of the Grand Canyon, Arizona, USA, have been performed by using the electron microprobe and high temperature mass spectrometry. The amphiboles occur as megacrysts, as oikocrysts in peridotite and pyroxenite xenoliths, in amphibole-rich selvages on lherzolite xenoliths, and as grains in hornblendite xenoliths. Total volatiles range from 1.27 to 1.75 wt.%. In all samples, H2O is the principal volatile species. Lesser amounts of structurally bound fluorine, chlorine, and oxygen were also released. The amphiboles studied are hydroxyl-deficient. The O(3) site is probably partially occupied by O2?, which was detected as O2 during degassing of the amphibole. Ti shows a strong positive correlation with the amount of hydroxyl deficiency in the amphiboles except for one oxidized sample. Thus, Ti probably is significant in charge balancing the substitution of O2? for OH? and the substitution probably occurred during crystallization rather than by dehydrogenation. Small amounts of both oxidized and reduced carbon and sulfur-bearing volatile species (e.g., CO2, CO, CH4, SO2, H2S) were detected in all samples. The observation of reduced carbon species supports the hypothesis that the oxygen fugacity of at least portions of the upper mantle is probably less than the quartz-fayalite-magnetite buffer.  相似文献   

16.
青藏高原北部黑石北湖新生代钾质火山岩的成因   总被引:1,自引:2,他引:1  
宁维坤  迟效国  刘建峰  赵芝  李才 《地质通报》2009,28(9):1355-1360
昆仑岩带新生代钾质火山活动是青藏高原北缘深部动力学过程的重要记录。有关岩浆源区的性质和岩浆产生的机制一直存在较大的认识分歧。阐述了昆仑岩带黑石北湖钾质火山岩的岩石学和地球化学特征,并与西昆仑康西瓦和泉水沟新生代火山岩进行了成因对比分析。研究表明,昆仑火山岩带玄武质岩石的K2O和Na2O含量变化较大,从钠质过渡到钾质,硅碱图显示玄武质初始岩浆向钾质安粗岩方向演化。黑石北湖火山岩的高场强元素和Sr、Nd同位素组成显示岩浆源区具有EMⅡ的性质。岩石LREE的强烈富集和HREE的强烈分馏指示岩浆来自富集型含石榴子石地幔源区。不相容元素K/Nb、Ba/La等比值具有岛弧火山岩与OIB型玄武岩的过渡特征,指示源区为曾遭受软流圈流(熔)体交代的古俯冲地幔楔。  相似文献   

17.
Abundant spinel peridotite xenoliths occur in late Cenozoic alkali basaltic rocks in the Sikhote-Alin region at the Pacific margin of the Asian continent. Major- and trace-element compositions of representative peridotite xenolith are documented for four occurrences located in different structural units of the continental margin. In each locality, the majority of xenoliths have distinctive microstructures, modal and chemical compositions that are typical for a given xenolith suite. Significant textural and compositional differences between the four xenolith suites suggest that the upper mantle beneath the Sikhote-Alin consists of distinct domains with contrasting composition. The inferred large-scale mantle heterogeneities may be due to juxtaposition of lithospheric blocks of different provenance during accretion of the Sikhote-Alin to the Asian continent.

Trace-element patterns of the xenoliths and their minerals obtained ICP-MS technique provide evidence of depletion and enrichment events and indicate contrasting behaviour of REE, HFSE and other incompatible trace elements. The HFSE behave non-concordantly, in particular, some xenoliths have highly fractionated Zr/Hf, Ti/Zr, Nb/Ta, La/Nb and U/Th ratios relative to their values in the primitive mantle. The fractionated compositions may be related to the interaction of evolved subduction-related fluids and melts with lithospheric mantle at the Mesozoic-early Cenozoic active continental margin or to metasomatism during later continental rifting.  相似文献   


18.
Organic material exposed within a small swale fill in Pit 6 of the Wedron Silica Sand Co. near Wedron in LaSalle County, Illinois, includes well-preserved pollen, plant macrofossils, and insect remains. This material occurs in slackwater sediment in the lower part of the Peddicord Formation, which was deposited as existing valleys were dammed by fluvial aggradation during the initial late Wisconsinan advance of Laurentide ice into the Wedron area. Wood from the organic horizon has a radiocarbon age of 21,460 ± 470 yr B.P. (ISGS-1486). The pollen spectrum is dominated by Picea, Pinus, and Cyperaceae. Plant macrofossils comprise a mix of boreal-forest taxa, including Picea, Larix laricina, and the moss Campylium stellatum; subarctic species including Betula glandulosa, Empetrum nigrum, and Selaginella selaginoides; along with the predominantly arctic Vaccinium uliginosum var. alpinum, Dryas integrifolia, and Rhododendron lapponicum. The insect fauna contains the western montane ground beetle Opisthius richardsoni; several arctic-subarctic ground beetles including Diacheila polita, Helophorus sibiricus, and Pterostichus (Cryobius) caribou; and a diverse assemblage of insects that today inhabit the boreal forest. We interpret the biotic record to record a phase in the transition from closed boreal forest to open tundra as climatic conditions deteriorated in advance of continental glaciation.  相似文献   

19.
20.
Granular xenoliths (ejecta) from pyroclastic deposits emplaced during the latest stages of activity of the Alban Hills volcano range from ultramafic to salic. Ultramafic types consist of various proportions of olivine, spinel, clinopyroxene and phlogopite. They show low SiO2, alkalies and incompatible element abundances and very high MgO. However, Cr, Co and Sc are anomalously low, at a few ppm level. Olivine is highly magnesian (up to Fo%=96) and has rather high CaO (1% Ca) and very low Ni (around a few tens ppm) contents. These characteristics indicate a genesis of ultramafic ejecta by thermal metamorphism of a siliceous dolomitic limestone, probably with input of chemical components from potassic magma. The other xenoliths have textures and compositional characteristics which indicate that they represent either intrusive equivalents of lavas or cumulates crystallized from variably evolved ultrapotassic magmas. One sample of the former group has major element composition resembling ultrapotassic rocks with kamafugitic affinity. Some cumulitic rocks have exceedingly high abundances of Th (81–84 ppm) and light rare-earth elements (LREE) (La+Ce=421–498 ppm) and extreme REE fractionation (La/Yb=288–1393), not justified by their modal mineralogy which is dominated by sanidine, leucite and nepheline. Finegrained phases are dispersed through the fractures and within the interstices of the main minerals. Semiquantitative EDS analyses show that Th and LREE occur at concentration levels of several tens of percent in these phases, indicating that their presence is responsible for the high concentration of incompatible trace elements in the whole rocks. The interstitial position of these phases and their association with fluorite support a secondary origin by deposition from fluorine-rich fluids separated from a highly evolved potassic liquid. The Nd isotopic ratios of the cjecta range from 0.51182 to 0.51217. 87Sr/86Sr ratios range from 0.70900 to 0.71036. With the exception of one sample, these values are lower than those of the outcropping lavas, which cluster around 0.7105±3. This indicates either the occurrence of several isotopically distinct potassic magmas or a variable interaction between magmas and wall rocks. However, this latter hypothesis requires selective assimilation of host rocks in order to explain isotopic and geochemical characteristics of lavas and xenoliths. The new data indicate that the evolutionary processes in the potassic magmas of the Alban Hills were much more complex than envisaged by previous studies. Interaction of magmas with wall rocks may be an important process during magmatic evolution. Element migration by gaseous transfer, often invoked but rarely constrained by sound data, is shown to have occurred during the latest stages of magmatic evolution. Such a process was able to produce selective enrichment of Th, U, LREE and, to a minor degree, Ta and Hf in the wall rocks of potassic magma chamber. Finally, the occurrence of xenoliths with kamafugitic composition points to the existence of this type of ultrapotassic magma at the Alban Hills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号