首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We investigate the internal structure of clusters of galaxies in high-resolution N -body simulations of four different cosmologies. There is a higher proportion of disordered clusters in critical-density than in low-density universes, although the structure of relaxed clusters is very similar in each case. Crude measures of substructure, such as the shift in the position of the centre-of-mass as the density threshold is varied, can distinguish the two in a sample of just 20 or so clusters; it is harder to differentiate between clusters in open and flat models with the same density parameter. Most clusters are in a quasi-steady state within the virial radius and are well-described by the density profile of Navarro, Frenk & White.  相似文献   

2.
3.
4.
The aim of this work is to show that, contrary to popular belief, galaxy clusters are not expected to be self-similar, even when the only energy sources available are gravity and shock-wave heating. In particular, we investigate the scaling relations between mass, luminosity and temperature of galaxy groups and clusters in the absence of radiative processes. Theoretical expectations are derived from a polytropic model of the intracluster medium and compared with the results of high-resolution adiabatic gasdynamical simulations. It is shown that, in addition to the well-known relation between the mass and concentration of the dark matter halo, the effective polytropic index of the gas also varies systematically with cluster mass, and therefore neither the dark matter nor the gas profiles are exactly self-similar. It is remarkable, though, that the effects of concentration and polytropic index tend to cancel each other, leading to scaling relations whose logarithmic slopes roughly match the predictions of the most-basic self-similar models. We provide a phenomenological fit to the relation between polytropic index and concentration, as well as a self-consistent scheme to derive the non-linear scaling relations expected for any cosmology and the best-fitting normalizations of the M – T , L – T and F – T relations appropriate for a Λ cold dark matter universe. The predicted scaling relations reproduce observational data reasonably well for massive clusters, where the effects of cooling and star formation are expected to play a minor role.  相似文献   

5.
6.
7.
8.
We present 83 new galaxy radial velocities in the field of 18 APM clusters with redshifts between 0.06 and 0.13. The clusters have Abell identifications and the galaxies were selected within 0.75  h −1 Mpc in projection from their centres. We derive new cluster velocity dispersions for 13 clusters using our data and published radial velocities.
We analyse correlations between cluster velocity dispersions and cluster richness counts as defined in Abell and APM catalogues. The correlations show a statistically significant trend although with a large scatter, suggesting that richness is a poor estimator of cluster mass irrespectively of cluster selection criteria and richness definition. We find systematically lower velocity dispersions in the sample of Abell clusters that do not fulfil APM cluster selection criteria, suggesting artificially higher Abell richness counts owing to contamination by projection effects in this subsample.  相似文献   

9.
10.
11.
We propose a method to remove the mass-sheet degeneracy that arises when the mass of galaxy clusters is inferred from gravitational shear. The method utilizes high-redshift standard candles that undergo weak lensing. Natural candidates for such standard candles are type Ia supernovae (SNe Ia).
When corrected with the light-curve shape (LCS), the peak magnitude of SNe Ia provides a standard candle with an uncertainty in apparent magnitude of Δ m ≃0.1–0.2. Gravitational magnification of a background SN Ia by an intervening cluster would cause a mismatch between the observed SN Ia peak magnitude compared with that expected from its LCS and redshift. The average detection rate for SNe Ia with a significant mismatch of ≥2Δ m behind a cluster at z ≃0.05–0.15 is about 1–2 supernovae per cluster per year at J , I , R ≲25–26.
Since SNe are point-like sources for a limited period, they can experience significant microlensing by massive compact halo objects (MACHOs) in the intracluster medium. Microlensing events caused by MACHOs of ∼10−4 M⊙ are expected to have time-scales similar to that of the SN light curve. Both the magnification curve by a MACHO and the light curve of a SN Ia have characteristic shapes that allow us to separate them. Microlensing events caused by MACHOs of smaller mass can unambiguously be identified in the SN light curve if the latter is continuously monitored. The average number of identifiable microlensing events per nearby cluster ( z ≲0.05) per year is ∼0.02 ( f /0.01), where f is the fraction of the cluster mass in MACHOs of masses 10−7< M macho/M⊙<10−4.  相似文献   

12.
The universal baryonic mass fraction  (Ωbm)  can be sensitively constrained using X-ray observations of galaxy clusters. In this paper, we compare the baryonic mass fraction inferred from measurements of the cosmic microwave background with the gas mass fractions ( f gas) of a large sample of clusters taken from the recent literature. In systems cooler than 4 keV, f gas declines as the system temperature decreases. However, in higher temperature systems, f gas( r 500) converges to  ≈(0.12 ± 0.02)( h /0.72)−1.5  , where the uncertainty reflects the systematic variations between clusters at r 500. This is significantly lower than the maximum-likelihood value of the baryon fraction from the recently released Wilkinson Microwave Anisotropy Probe ( WMAP ) 3-yr results. We investigate possible reasons for this discrepancy, including the effects of radiative cooling and non-gravitational heating, and conclude that the most likely solution is that Ωm is higher than the best-fitting WMAP value (we find  Ωm= 0.36+0.11−0.08  ), but consistent at the 2σ level. Degeneracies within the WMAP data require that σ8 must also be greater than the maximum likelihood value for consistency between the data sets.  相似文献   

13.
14.
15.
16.
17.
18.
We predict the biasing and clustering properties of galaxy clusters that are expected to be observed in the catalogues produced by two forthcoming X-ray and Sunyaev–Zel'dovich effect surveys. We study a set of flat cosmological models where the primordial density probability distribution shows deviations from Gaussianity in agreement with current observational bounds form the background radiation. We consider both local and equilateral shapes for the primordial bispectrum in non-Gaussian models. The two catalogues investigated are those produced by the e ROSITA wide survey and from a survey based on South Pole Telescope observations. It turns out that both the bias and observed power spectrum of galaxy clusters are severely affected in non-Gaussian models with local shape of the primordial bispectrum, especially at large scales. On the other hand, models with equilateral shape of the primordial bispectrum show only a mild effect at all scales, that is difficult to be detected with clustering observations. Between the two catalogues, the one performing better is the e ROSITA one, since it contains only the largest masses that are more sensitive to primordial non-Gaussianity.  相似文献   

19.
Cosmic rays produced in cluster accretion and merger shocks provide pressure to the intracluster medium (ICM) and affect the mass estimates of galaxy clusters. Although direct evidence for cosmic ray ions in the ICM is still lacking, they produce γ-ray emission through the decay of neutral pions produced in their collisions with ICM nucleons. We investigate the capability of the Gamma-ray Large Area Space Telescope ( GLAST ) and imaging atmospheric Čerenkov telescopes (IACTs) for constraining the cosmic ray pressure contribution to the ICM. We show that GLAST can be used to place stringent upper limits, a few per cent for individual nearby rich clusters, on the ratio of pressures of the cosmic rays and thermal gas. We further show that it is possible to place tight (≲10 per cent) constraints for distant  ( z ≲ 0.25)  clusters in the case of hard spectrum, by stacking signals from samples of known clusters. The GLAST limits could be made more precise with the constraint on the cosmic ray spectrum potentially provided by IACTs. Future γ-ray observations of clusters can constrain the evolution of cosmic ray energy density, which would have important implications for cosmological tests with upcoming X-ray and Sunyaev–Zel'dovich effect cluster surveys.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号