首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Many natural porous geological rock formations, as well as engineered porous structures, have fractal properties, i.e., they are self-similar over several length scales. While there have been many experimental and theoretical studies on how to quantify a fractal porous medium and on how to determine its fractal dimension, the numerical generation of a fractal pore structure with predefined statistical and scaling properties is somewhat scarcer. In the present paper a new numerical method for generating a three-dimensional porous medium with any desired probability density function (PDF) and autocorrelation function (ACF) is presented. The well-known Turning Bands Method (TBM) is modified to generate three-dimensional synthetic isotropic and anisotropic porous media with a Gaussian PDF and exponential-decay ACF. Porous media with other PDF's and ACF's are constructed with a nonlinear, iterative PDF and ACF transformation, whereby the arbitrary PDF is converted to an equivalent Gaussian PDF which is then simulated with the classical TBM. Employing a new method for the estimation of the surface area for a given porosity, the fractal dimensions of the surface area of the synthetic porous media generated in this way are then measured by classical fractal perimeter/area relationships. Different 3D porous media are simulated by varying the porosity and the correlation structure of the random field. The performance of the simulations is evaluated by checking the ensemble statistics, the mean, variance and ACF of the simulated random field. For a porous medium with Gaussian PDF, an average fractal dimension of approximately 2.76 is obtained which is in the range of values of actually measured fractal dimensions of molecular surfaces. For a porous medium with a non-Gaussian quadratic PDF the calculated fractal dimension appears to be consistently higher and averages 2.82. The results also show that the fractal dimension is neither strongly dependent of the porosity nor of the degree of anisotropy assumed.  相似文献   

2.
An analytical expression is derived for the starting pressure gradient for Bingham fluids in porous media embedded with randomly distributed fractal-like tree networks based on fractal theory and technique. The proposed model relates the flow rate and the starting pressure gradient to the structural parameters of porous media and microstructural parameters of fractal-like tree networks, the yield stress and fractal dimensions of porous media and maximum mother diameter of randomly distributed fractal-like tree networks. The results show that the starting pressure gradient decreases with the increase of porosity of matrix material, fractal dimension for mother diameters, diameter ratio and permeability, and the starting pressure gradient increases with the increase of the length ratio and the yield stress. The model predictions from the present model for the starting pressure gradient are in good agreement with the available expression.  相似文献   

3.
The semi-empirical Kozeny–Carman (KC) equation is the most famous permeability–porosity relation, which is widely used in the field of flow in porous media and is the starting point for many other permeability models. However, this relation has many limitations from its inception, and the KC constant is an empirical parameter which was proved to be not a constant. In this paper, we briefly reviewed the KC equation, its modifications and various models for the KC constant. We then derived an analytical expression for the permeability in homogeneous porous media based on the fractal characters of porous media and capillary model. The proposed model is expressed as a function of fractal dimensions, porosity and maximum pore size. The analytical KC constant with no empirical constant is obtained from the assumption of square geometrical model. Furthermore, a distinct linear scaling law between the dimensionless permeability and porosity is found. It is also shown that our analytical permeability is more closely related to the microstructures (fractal dimensions, porosity and maximum pore size), compared to those obtained from conventional methods and models.  相似文献   

4.
Streaming potential is the result of coupling between a fluid flow and an electric current in porous rocks. The modified Helmholtz–Smoluchowski equation derived for capillary tubes is mostly used to determine the streaming potential coefficient of porous media. However, to the best of our knowledge, the fractal geometry theory is not yet applied to analyse the streaming potential in porous media. In this article, a fractal model for the streaming potential coefficient in porous media is developed based on the fractal theory of porous media and on the streaming potential in a capillary. The proposed model is expressed in terms of the zeta potential at the solid?liquid interface, the minimum and maximum pore/capillary radii, the fractal dimension, and the porosity of porous media. The model is also examined by using another capillary size distribution available in published articles. The results obtained from the model using two different capillary size distributions are in good agreement with each other. The model predictions are then compared with experimental data in the literature and those based on the modified Helmholtz–Smoluchowski equation. It is shown that the predictions from the proposed fractal model are in good agreement with experimental data. In addition, the proposed model is able to reproduce the same result as the Helmholtz–Smoluchowski equation, particularly for high fluid conductivity or large grain diameters. Other factors influencing the streaming potential coefficient in porous media are also analysed.  相似文献   

5.
 A stochastic simulation is performed to study multiphase flow and contaminant transport in fractal porous media with evolving scales of heterogeneity. Numerical simulations of residual NAPL mass transfer and subsequent transport of dissolved and/or volatilized NAPL mass in variably saturated media are carried out in conjunction with Monte Carlo techniques. The impact of fractal dimension, plume scale and anisotropy (stratification) of fractal media on relative dispersivities is investigated and discussed. The results indicate the significance of evolving scale of porous media heterogeneity to the NAPL transport in the subsurface. In general, the fractal porous media enhance the dispersivities of NAPL mass plume transport in both the water phase and the gas phase while the influence on the water phase is more significant. The porous media with larger fractal dimension have larger relative dispersivities. The aqueous horizontal dispersivity exhibits a most significant increase against the plume scale.  相似文献   

6.
Traditional analysis methods used to determine hydraulic properties from pumping tests work well in many porous media aquifers, but they often do not work in heterogeneous and fractured‐rock aquifers, producing non‐plausible and erroneous results. The generalized radial flow model developed by Barker (1988) can reveal information about heterogeneity characteristics and aquifer geometry from pumping test data by way of a flow dimension parameter. The physical meaning of non‐integer flow dimensions has long been a subject of debate and research. We focus on understanding and interpreting non‐radial flow through high permeability conduits within fractured aquifers. We develop and simulate flow within idealized non‐radial flow conduits and expand on this concept by simulating pumping in non‐fractal random fields with specific properties that mimic persistent sub‐radial flow responses. Our results demonstrate that non‐integer flow dimensions can arise from non‐fractal geometries within aquifers. We expand on these geometric concepts and successfully simulate pumping in random fields that mimic well‐test responses seen in the Culebra Dolomite above the Waste Isolation Pilot Plant.  相似文献   

7.
复杂孔隙储层往往同时发育孔缝洞等多种孔隙类型,这种孔隙结构的复杂性使得岩石的速度与孔隙度之间的相关性很差.经典的二维岩石物理模版只研究弹性参数与孔隙度和饱和度之间的定量关系,而不考虑孔隙结构的影响,用这样的模版来预测复杂孔隙储层的物性参数时带来很大偏差.本文首先证明多重孔隙岩石的干骨架弹性参数可以用一个等效孔隙纵横比的单重孔隙岩石物理模型来模拟;进而基于等效介质岩石物理理论和Gassmann方程,建立一个全新的三维岩石物理模版,用它来建立复杂孔隙岩石的弹性性质与孔隙扁度及孔隙度和饱和度之间的定量关系;在此基础上,预测复杂储层的孔隙扁度、孔隙度以及孔隙中所包含的流体饱和度.实际测井和地震反演数据试验表明,三维岩石物理模版可有效提高复杂孔隙储层参数的预测精度.  相似文献   

8.
台湾地区地震的空间关联维特征与构造环境研究   总被引:2,自引:0,他引:2       下载免费PDF全文
采用关联维方法对台湾地区地震活动的空间特征进行了研究。先利用 10 0a来台湾的地震目录计算各个地震区、带的关联维数 ,将地震空间分布的分形特征定量表达出来 ,然后综合分析地震空间分布的关联维数和孕震构造环境之间的关系 ,得出了以下结论 :1)台湾东、西部地震区由于地震属于不同的大地构造单元 ,因此关联维数有较大的差异 ;2 )在各地震区内部的各个地震带由于板块构造、地壳结构、活断层分布上的差异 ,而具有与其构造特征相对应的关联维数 ;3)各地震带内部的各个不同的部位又由于不同的构造应力场 ,而导致地震分布上出现不同的丛集性 ,表现为不同的关联维数。这些结论充分说明通过关联维分析所得到的地震活动的空间图像与地震活动所代表的不同地质构造背景有着良好的对应关系  相似文献   

9.
FeaturesoffractaldimensionanomalyofradoncontentinundergroundwaterinNorthChinabeforeandafterthe1976TangshanearthquakeChang-Chu...  相似文献   

10.
Wavefields in porous media saturated by two immiscible fluids are simulated in this paper. Based on the sealed system theory, the medium model considers both the relative motion between the fluids and the solid skeleton and the relaxation mechanisms of porosity and saturation (capillary pressure). So it accurately simulates the numerical attenuation property of the wavefields and is much closer to actual earth media in exploration than the equivalent liquid model and the unsaturated porous medium model on the basis of open system theory. The velocity and attenuation for different wave modes in this medium have been discussed in previous literature but studies of the complete wave-field have not been reported. In our work, wave equations with the relaxation mechanisms of capillary pressure and the porosity are derived. Furthermore, the wavefield and its characteristics are studied using the numerical finite element method. The results show that the slow P3-wave in the non-wetting phase can be observed clearly in the seismic band. The relaxation of capillary pressure and the porosity greatly affect the displacement of the non-wetting phase. More specifically, the displacement decreases with increasing relaxation coefficient.  相似文献   

11.
The travel time and amplitude of ground-penetrating radar (GPR) waves are closely related to medium parameters such as water content, porosity, and dielectric permittivity. However, conventional estimation methods, which are mostly based on wave velocity, are not suitable for real complex media because of limited resolution. Impedance inversion uses the reflection coefficient of radar waves to directly calculate GPR impedance and other parameters of subsurface media. We construct a 3D multiscale stochastic medium model and use the mixed Gaussian and exponential autocorrelation function to describe the distribution of parameters in real subsurface media. We introduce an elliptical Gaussian function to describe local random anomalies. The tapering function is also introduced to reduce calculation errors caused by the numerical simulation of discrete grids. We derive the impedance inversion workflow and test the calculation precision in complex media. Finally, we use impedance inversion to process GPR field data in a polluted site in Mongolia. The inversion results were constrained using borehole data and validated by resistivity data.  相似文献   

12.
基于临界孔隙度模型的地震波传播   总被引:1,自引:1,他引:0       下载免费PDF全文
基于岩石物里学中临界孔隙度模型,建立一种简洁的均匀弹性流体饱和孔隙介质模型,进行地震波传播研究.首先定义了构建目标模型的基本力学模型:介绍了全孔隙度区间内基本力学模型和目标孔隙介质的含义,其中基本力学模型除了完全弹性固体模型S和完全弹性流体模型F还包括临界孔隙模型C.然后通过等效力学模型推出了目标力学模型介质本构关系的组分表达形式.文中分别通过直接求取弹性参数的表达形式和运用应力应变关系两种方法得到介质模型的本构关系,进而得到该模型波动方程的组分表达形式.最后对这种介质模型进行了地震波传播的数值模拟,结合模拟结果分析孔隙对地震波传播的影响.  相似文献   

13.
考虑非饱和特性的黄土湿陷性与微观结构分析   总被引:2,自引:0,他引:2  
利用扫描电子显微镜测试技术对3个场地16个土样的微观结构进行观测,并使用图像处理软件对微观图像进行处理、对土样孔隙的几何特征参数和分维数进行了提取,土样孔隙分布分维数为1.816~1.936。利用分形几何学原理建立非饱和土的孔隙分布函数,对天然湿度下黄土中水分分布进行分析,运用回归分析的方法对孔隙的分维数、非饱和孔隙孔隙率和湿陷性的关系进行了分析。结果表明:孔隙分维数越大,孔隙结构越复杂;天然湿度下处于非饱和状态的黄土孔隙孔径均大于40μm,黄土的湿陷系数随着孔隙分维数、非饱和孔隙孔隙率的增大而增大,非饱和孔隙是造成黄土湿陷的主要原因。  相似文献   

14.
The dynamics of porosity evolution are explored during mineral precipitation that is induced by the mixing of two fluids of different compositions. During mineral precipitation in geological formations, the physical parameters that characterize the porous matrix, such as porosity and specific surface area, can change significantly. A series of coupled equations that determine the changes in porosity is outlined and solved for a 2D model domain using a finite element scheme. Using model parameters equivalent to those for calcite precipitation in a saline system, the evolution of porosity is examined for two types of porous media: (1) an initially homogeneous system and (2) a heterogeneous system containing high porosity regions that serve initially as preferential flow paths. In addition, the influence of two different expressions that relate specific surface area to porosity is explored. The simulations in both domains indicated that porosity was reduced primarily in the regions in which significant degrees of mixing occurred. Although an effective barrier was created in these regions, the fluids bypassed the clogged areas allowing precipitation to continue farther “downstream”. Furthermore, mixing-induced precipitation can account for systems in which some high porosity regions are filled while others remain almost unchanged. Thus, mixing-induced precipitation represents a viable mechanism for the infilling of pores in fractured and porous rocks. The simulations also demonstrate that the choice of functional form for specific surface area plays an important role in controlling porosity patterns by influencing both the kinetics of precipitation and the permeability of the porous medium. As specific surface area is currently one of the least constrained parameters in models of porosity evolution, this result highlights the need for future experimental studies in this field of research.  相似文献   

15.
孔隙介质弹性波传播理论在地球物理勘探、地震工程和岩土动力学等领域有着广泛的应用.而孔隙介质中的弹性波受孔隙度、渗透率、流体黏滞系数等参数的影响,因此研究波场的传播特征将有助于分析和提取这些信息.本文在Biot理论的基础上,针对三维层状孔隙介质模型,利用在合成理论地震图的研究中已经被证实具有稳定、高效且适用范围较广的Luco-Apsel-Chen(LAC)广义反透射方法,给出了弹性波场的一种积分形式的半解析解,可通过数值方法高效、准确地计算层状孔隙介质中的理论波场,所以该积分形式的半解析解可为三维层状孔隙介质波场传播特征的理论数值模拟研究提供一种新的途径和手段.  相似文献   

16.
—Within the fractal approach to studying the distribution of seismic event locations, different fractal dimension definitions and estimation algorithms are in use. Although one expects that for the same data set, values of different dimensions will be different, it is usually anticipated that the direction of fractal dimension changes among different data sets will be the same for every fractal dimension.¶Mutual relations between the three most popular fractal dimensions, namely the capacity, cluster and correlation dimensions, have been investigated in the present work. The studies were performed on the Monte Carlo generated data sets. The analysis has shown that dependence of the fractal dimensions on epicenter distribution, and relations among the fractal dimensions, are complex and variable. Neither values nor even inequalities among dimension estimates are preserved when different fractal dimensions are used. The correlation and the capacity dimensions seem to be good tools to trace collinear tendencies of eipicenters while the cluster dimension is more appropriate to studying uniform clustering of points.  相似文献   

17.
A systematic numerical method has been presented to investigate the constitutive relationships between two-phase flow properties of horizontal fractures and aperture distributions. Based on fractal geometry, single rough-walled fractures are generated numerically by modified successive random addition (SRA) method and then aperture distributions with truncated Gaussian distribution are formed by shear displacement between lower and upper surfaces. (The truncated Gaussian distribution is used to describe aperture evolution under different normal stresses.) According to the assumption of two-dimensional porous media and local parallel plate model, invasion percolation approach is employed to model the two-phase flow displacement (imbibition) in generated horizontal fractures, in which capillary forces are dominant over viscous and gravity forces. For truncated Gaussian distributions, constitutive relationships from numerical simulation are compared to closed-form relationships and a good agreement is obtained. The simulation results indicate strong phase interference with the sum of two phase relative permeability values being less than one in the intermediate saturations. It is found that fracture properties related to residual saturations depend on spatial correlation of aperture distributions. Based on the simulation results, we proposed an empirical relationship between the fracture residual-saturation-rated parameters and the corresponding aperture distributions.  相似文献   

18.
刘财  兰慧田  郭智奇  冯晅  鹿琪 《地球物理学报》2013,56(10):3461-3473
改进BISQ(Biot-Squirt)机制在不引入特征喷流长度的情况下,将含流体孔隙介质中Biot流动和喷射流动两种重要的力学机制有机地结合起来,且各相关参数具有明确物理意义和可实现性.本文将改进BISQ机制一维孔隙流体压力公式推广到三维具有水平对称轴横向各向同性介质(HTI介质)情况,结合裂缝各向异性理论,给出了基于改进BISQ机制的双相HTI介质模型及其二维三分量波传播方程,采用伪谱法求解该方程,进行了不同相界、不同频率以及双层地质结构情况下该类介质中波场的数值模拟与特征分析.数值模拟结果表明:伪谱法模拟精度高,压制网格频散效果好,可以得到高精度的波场快照和合成记录;基于改进BISQ机制的双相HTI介质模型兼具裂缝各向异性特征和孔隙弹性特征,其为从双相各向异性理论角度深入研究裂缝性储层的地震响应奠定了理论基础.  相似文献   

19.
In order to implement secondary and enhanced oil recovery processes in complex terrigenous formations as is usual in turbidite deposits, a precise knowledge of the spatial distribution of shale grains is a crucial element for the fluid flow prediction. The reason of this is that the interaction of water with shale grains can significantly modify their size and/or shape, which in turn would cause porous space sealing with the subsequent impact in the flow. In this work, a methodology for stochastic simulations of spatial grains distributions obtained from scanning electron microscopy images of siliciclastic rock samples is proposed. The aim of the methodology is to obtain stochastic models would let us investigate the shale grain behavior under various physico-chemical interactions and flux regimes, which in turn, will help us get effective petrophysical properties (porosity and permeability) at core scale. For stochastic spatial grains simulations a plurigaussian method is applied, which is based on the truncation of several standard Gaussian random functions. This approach is very flexible, since it allows to simultaneously manage the proportions of each grain category in a very general manner and to rigorously handle their spatial dependency relationships in the case of two or more grain categories. The obtained results show that the stochastically simulated porous media using the plurigaussian method adequately reproduces the proportions, basic statistics and sizes of the pore structures present in the studied reference images.  相似文献   

20.
本文提出了一种弹性波一次散射波场的正演方法——弹性波高斯束Born正演.该方法以线性散射理论为基础,通过Born近似建立起地下散射点处不同波型的反射率同弹性波主分量波场之间的数据映射关系,利用高斯束所包含的走时、振幅和极性信息进行不同波型的局部平面波的合成,进而通过逆倾斜叠加将所合成的局部平面波转化为时空域的多分量地震记录.该方法不但保持了射线类方法高效的优点,还具备了处理多次走时波场的能力,从而保证了复杂构造的波场模拟的精度.文中两个数值模型的应用效果表明,本文所提出的弹性波高斯束Born正演算法具有近似于波动方程有限差分法的波场模拟精度以及高得多的计算效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号