首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we investigated the spatial and temporal distribution of heavy metals and nutrients in Gyeonggi Bay, Korea, to determine their present statu  相似文献   

2.
《Marine Chemistry》2002,78(1):29-45
The distribution of several trace metals has been studied in the surface waters of Galveston Bay, Texas, in order to assess the impact of complexation with organic and reduced sulfur species on the partitioning of trace metals between particulate and aqueous species. The distribution of trace metals in the filter-passing fraction (<0.45 μm) showed two apparent trends: (1) the carrier phase metals (i.e., Fe and Mn) were largely removed in the Anahuac Channel region, which was dominated by direct Trinity River inputs; (2) the other metals (Cd, Cu, Ni, Pb, and Zn) showed non-conservative mixing behaviour, with mid-salinity maxima, within the estuarine regions of Galveston Bay. The average percentage of metal in the filter-passing fraction, as compared to the total metal load, decreased in that region from 95% to 9% in the order Ni>Cu>Cd>Zn>Pb>Mn>Fe, while an increasing trend was found in the same sequence for the acid-leachable fractions. The average values of Kd1, the particle-water partition coefficient, expressed as the ratio of weak acid-leachable particulate fractions to the filter-passing fractions, increased in the order Ni<Cu<Cd<Zn<Mn<Pb<Fe. This sequence is consistent with the relative importance of particulate transport of these trace metals from estuaries to coastal oceans. The observed decrease of Kd1 of Cu with increasing concentrations of suspended particulate matter (SPM), also called the “particle concentration effect” (PCE), can be eliminated when the free ionic, rather than the total concentration of Cu in the filter-passing fraction is used for calculating this ratio. A particle concentration effect would be expected if the binding of these trace metals by particles is mediated by solution (i.e., filter-passing) phase ligands. Complexation of Cd, Cu, Ni, Pb, and Zn with reduced sulfur species could be one of the causes for the observed linear correlations between metals and reduced sulfur species in both the filter-passing and filter-retained fractions. Significant correlations between Cu in the weak acid-leachable fraction and chlorophyll a (Chl a) concentrations suggest biological mediation of Cu uptake into the particulate fraction.  相似文献   

3.
A central theme of the ongoing GEOTRACES program is to improve the understanding of processes occurring at ocean interfaces with continents, sediments, and ocean crust. In this context, we studied the distributions of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb around the Juan de Fuca Ridge (JdFR) in total dissolvable (td), dissolved (d), and labile particulate (lp) fractions, which represent a fraction in unfiltered samples, filtered samples through an AcroPak capsule filter, and the difference between td and d, respectively. Al and Fe were dominated by lp-species, while Ni, Zn, and Cd were dominated by d-species with undetectable amounts of lp-species. Major findings in this study are as follows: (1) The continental margin (CM) provided large sources of Al, Mn, Fe, and Co from the surface to ~2000 m in depth. The supply from CM caused high surface concentrations of dMn and dCo, a subsurface (100–300 m depth) maximum of dCo, and intermediate (500–2000 m depth) maxima of lpAl and lpFe. The supply of dFe from CM was ~10 times that from the high-temperature hydrothermal activity at station BD21, which is located at ~3 km from the Middle Valley venting site and ~ 200 km from Vancouver Island. (2) DPb was maximum at the top layer of North Pacific Intermediate Water, probably owing to isopycnal transport of anthropogenic Pb via advection of subducted surface waters. Although dCo and dPb had different sources in the upper water, they showed a strong linearity below 300 m (r 2 = 0.95, n = 38), indicating concurrent scavenging. (3) A high-temperature hydrothermal plume occurred at a depth of 2300 m at BD21, accounting for maxima of dAl, dMn, dFe, lpCu, and lpPb and a minimum of dCu. (4) Strong bottom maxima of lpAl, lpMn, lpFe, lpCo, and lpPb occurred above the abyssal plain at the western foot of the JdFR, indicating resuspension of sediments. However, bottom maxima of d-species were apparent only for dAl and dCu.  相似文献   

4.
In order to identify the major sources of trace metals (TM) in the Portuguese coastal waters, 58 surface water samples were collected during September 1988. The area sampled extended from the Tagus Estuary (down to a salinity of 25) to cape Ste Marie on the southern coast of Portugal. Dissolved metal concentrations in the fully marine waters ranged from 30 to 250 pM for Cd, 0.7–15 nM for Cu, 0.9–20 nM for Zn and 1.8–4.5 nM for Ni. Within the Tagus Estuary (salinity 25), concentrations increased to 3400 pM for Cd, 26 nM for Cu, 14 nM for Ni and 230 nM for Zn.The large-scale distribution of these metals is dominated by two strong continental sources, both probably linked to the exploitation of pyrite ores. In the Tagus Estuary, TM enrichments can be mostly attributed to a pyrite roasting plant located on the shore in front of Lisbon. Concerning the south Portuguese shelf waters, several hypotheses are proposed to explain their elevated metal concentrations. We particularly discussed the likely influence of the Tinto/Odiel rivers located 100 km eastward, an influence well known in the shelf waters of the Gulf of Cadiz. These rivers are extremely metal-rich because of acid mine tailings originating from their catchment. Between these two regions, upwelling of relatively metal-poor water largely contributes to the dilution of the continental inputs. Indeed, water exchanges on the shelf linked to the upwelling involve water fluxes 500 times higher than the Tagus River flow, and renew the coastal waters that are thus cleaned from terrestrial contamination. Contrary to many other upwelling systems in non-contaminated areas, the Portuguese upwelling does not act as a source of trace-metal enrichment of the continental margin waters.  相似文献   

5.
南海表层水中的溶解态Cu,Pb, Zn,Cd   总被引:9,自引:0,他引:9  
于1998年“南海海洋环境调查”外业工作期间在南海的各个站位,按照严格的防沾污措施采集了106个表层海水样品.采用溶剂萃取-石墨炉原子吸收法对样品中的痕量重金属Cu,Pb,Zn,Cd含量进行了分析测试.测得各重金属的平均值如下:Cu 0.100 μg/dm3,Pb 0.060μg/dm3,Zn 0.086 μg/dm3,Cd 0.007μg/dm3,接近世界大洋水的浓度水平.各重金属的空间分布呈现出海区周边含量高于中央,浓度有自近岸向远海逐渐减小的趋势.相关分析的结果表明各重金属夏季相关性优于冬季,Cu与Cd存在良好的正相关关系,并且首次在南海表层水发现Cu,Cd与营养盐的相关关系.将重金属浓度值作数理统计分析,得到它们在南海的基线值.  相似文献   

6.
The understanding of the distribution of trace heavy metals in the world ocean has greatlyimProved in the past decades. But most of the data are of vertical profiles of certain stations(Bruland, l980; Paul et al., l992; RObert et al., l990) and large--scale study of temporaland spatial variability of trace heaVy metals in the ocean is rather few. In fact, affected by ver-tical mixing by upwelling or convection, biogenic removal, atmospheric fallout and continentalinput frorn rivers, the dist…  相似文献   

7.
In June 1981, dissolved Zn, Cd, Cu, Ni, Co, Fe, and Mn were determined from two detailed profiles in anoxic Baltic waters (with extra data for Fe and Mn from August 1979). Dramatic changes across the O2H2S interface occur in the abundances of Cu, Co, Fe, and Mn (by factors of ?100). The concentrations of Zn, Cd, and Ni at the redox front decrease by factors between 3 to 5.Equilibrium calculations are presented for varying concentrations of hydrogen sulfide and compared with the field data. The study strongly supports the assumption that the solubility of Zn, Cd, Cu, and Ni is greatly enhanced and controlled by the formation of bisulfide and(or) polysulfide complexes. Differences between predicted and measured concentrations of these elements are mainly evident at lower ΣH2S concentrations.Cobalt proved to be very mobile in anoxic regions, and the results indicate that the concentrations are limited by CoS precipitation. The iron (Fe2+) and manganese (Mn2+) distribution in sulfide-containing waters is controlled by total flux from sediment-water interfaces rather than by equilibrium concentrations of their solid phases (FeS and MnCO3). The concentrations of these metals are therefore expected to increase with prolonged stagnation periods in the basin.  相似文献   

8.
Cd, Pb and Cu concentrations, dissolved and total, have been determined in the German Bight. In 1975, 1977, 1978, 1980 and 1983 water samples were collected at 215 sampling stations. In the 1983 mission samples were also analysed for Ni and Co. The samples were filtered and acidified immediately after collection. Analysis was performed by voltammetry.The analytical data indicate that a net portion of the Cd, the Weser being a distinct source for it, will cross the estuarine zone. Open sea Cd levels in the German Bight are about a factor 10 higher than North Atlantic values. Pb, being transported mainly with the suspended particulate phase (up to 99.5%), is better eliminated by sedimentation in the estuaries. Ni and Cu occur mainly in the dissolved phase. Pollution by Co is distinct in the Elbe, but the output is rapidly diluted to background contents below 10 ng kg−1. An interpretation of the results from the different years yields a rather steady state situation in the German Bight.  相似文献   

9.
Anoxic sulfidic waters provide important media for studying the effect of reducing conditions on the cycling of trace metals. In 1987–1988, dissolved and particulate trace metal (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) concentrations were determined in the water column of the anoxic Drammensfjord basins, southeastern Norway. The iminodiacetic acid type chelating resin (Chelex 100) was used for the preconcentration of trace metals. The trace metal concentrations were determined using atomic absorption spectrophotometry (AAS), differential pulse polarography (DPP), and differential pulse-anodic stripping voltammetry (DP-ASV).It was observed that the trace metals Mn and Fe were actively involved in the processes of redox cycling (oxidationreduction and precipitation-dissolution) at the O2/H2S interface. The dissolved concentrations of Mn, Fe and Co showed maxima just below the O2/H2S interface. The seasonal enhancement in the maxima of both dissolved and particulate Mn and Fe at the redox cline is mainly governed by the downward movement of water which carries oxygen. An association of Co with the Mn cycle was observed, while the total dissolved Ni was decreased by only 10–35% in the anoxic waters. The dissolved concentrations of Cu, Zn, Pb and, to a lesser extent, Cd decreased in the anoxic zone.  相似文献   

10.
Total dissolvable metals (Co, Ni, Cu, Cd, and Pb) in both surface waters and the water columns were acquired in the southern East/Japan Sea during a cruise around the Ulleung Basin in June 2001 to understand the spatial distributions of the metals. Concentrations in offshore surface waters were found to be Co 60 ± 12 pM, Ni 2.16 ± 0.25 nM, Cu 1.85 ± 0.55 nM, Cd 0.134 ± 0.018 nM, and Pb 155 ± 40 pM. Spatial distributions in surface waters showed that metal levels were generally enhanced at coastal sites in both Korea and Japan, where the metal distributions indicated complex patterns due to inputs, biogeochemical processes, and physical factors including upwelling. The Co distributions in the water columns seemed to be influenced predominantly by surface and bottom inputs, scavenged rather than regenerated at depth. For Cd, there was generally good agreement between the Cd and PO4 depth distributions, in agreement with the literature. The Cd/PO4 ratio from the water columns was found to be 0.133–0.203, lower than that in other marginal seas (e.g. the East/South China Seas and the Philippine Sea) of the western Pacific Ocean; this might be a result of the fast ventilation rate in this sea. The vertical Pb profile showed typical scavenged-type behavior with a surface maximum and deep minimum. From a comparison of inputs from the atmosphere and the Tsushima Warm Current, atmospheric deposition is substantial enough that it cannot be ignored, and its role in metal cycling is more significant in the offshore zone.  相似文献   

11.
Cd, Cu, Fe, Ni, Pb and Zn were determined in 123 samples from the Baltic Sea proper. The trace metals were extracted directly on board the vessel, using a dithiocarbamate-Freon procedure. Final analyses of the extracts are performed onshore by atomic absorption spectrometry.Similar trace-metal concentrations are found in different areas of the Baltic proper. Most values fall in the following ranges: Cd, 30–60 ng 1?1; Cu, 0.6–1.0 μg 1?1; Fe, 0.3–0.9 μg 1?1; Ni, 0.6–0.9 μg 1?1; Pb, 0.05–0.2 μg 1?1; and Zn, 1.5–3.5 μg 1?1. The metal-concentrations are generally independent of depth. However, copper exhibits a small but significent decrease in concentration below 80 m.Filtration did not affect trace-metal concentrations, with the exception of iron in waters from lower layers. Similarly, storage under acid conditions was shown to affect only the concentration of iron. An electro-chemical technique was also used to determine Cu in some samples.  相似文献   

12.
During mesoscale Fe enrichment (SEEDS II) in the western North Pacific ocean, we investigated dissolved and particulate Co, Ni, Cu, Zn, Cd and Pb in seawater from both field observation and shipboard bottle incubation of a natural phytoplankton assemblage with Fe addition. Before the Fe enrichment, strong correlations between dissolved trace metals (Ni, Zn and Cd) and PO43−, and between particulate trace metals (Ni, Zn and Cd) and chlorophyll-a were obtained, suggesting that biogeochemical cycles mainly control the distributions of Ni, Zn and Cd in the study area. Average concentrations of dissolved Co, Ni, Cu, Zn, Cd and Pb in the surface mixed layer (0–20 m) were 70 pM, 4.9, 2.1, 1.6, 0.48 nM and 52 pM, respectively, and those for the particulate species were 1.7 pM, 0.052, 0.094, 0.46, 0.037 nM and 5.2 pM, respectively. After Fe enrichment, chlorophyll-a increased 3 fold (up to 3 μg L−1) during developing phases of the bloom (<12 days). Mesozooplankton biomass also increased. Particulate Co, Ni, Cu and Cd inside the patch hinted at an increase in the concentrations, but there were no analytically significant differences between concentrations inside and outside the patch. The bottle incubation with Fe addition (1 nM) showed an increase in chlorophyll-a (8.9 μg L−1) and raised the particulate fraction up to 3–45% for all the metals, accompanying changes in Si/P, Zn/P and Cd/P. These results suggest that Fe addition lead to changes in biogeochemical cycling of trace metals. The comparison between the mesoscale Fe enrichment and the bottle incubation experiment suggests that although Fe was a limiting factor for the growth of phytoplankton, the enhanced biomass of mesozooplankton also limited the growth of phytoplankton and the transformation of trace metal speciation during the mesoscale Fe enrichment. Sediment trap data and the elemental ratios taken up by phytoplankton suggest that export loss was another reason that no detectable change in the concentrations of particulate trace metals was observed during the mesoscale Fe enrichment.  相似文献   

13.
The elements Al, Cd, Co, Cu, Ni and Zn were concentrated from seawater using tetraethylenepentamine resin and analysed by atomic absorption spectrophotometry. The spatial distribution of these elements in the northwest Atlantic Ocean is discussed with respect to possible riverine inputs to the area from Puerto Rico.  相似文献   

14.
Study on the avoidance response of Penaeus chinensis to heavy metals (Pb, Cr, Zn) and heavy metal mixtures (Pb-Cr, Pb-Zn) is carred out using a Y-model avoidance apparatus. The concentrations calculated to induce 50% avoidance rate byPenaeus chinensis are 11.4, 33.2 and 238. 1 mg/L for Pb, Cr and Zn, respectively. Mixtures of Pb-Cr and Pb-Zn produce additive effect in the avoidance test using Penaeus chinesis. But when the mixed Pb-Zn solution has 0.5 toxic unit Pb and 0.5 toxic unit Zn, the mixture seems to have synergistic effect.  相似文献   

15.
本文介绍了用国产D401型螯合树脂分离富集海水中铜、铅、锌、镉、铁、锰等痕量元素,并用原子吸收光谱仪测定其含量的方法。讨论了各元素的分离条件选择及干扰元素的影响,并与溶剂萃取法的结果作了比较。各元素检测的定量下限为:铜0.5μg/L、铅0.1μg/L、锌1.0μg/L、镉0.01μg/L、铁2.0μg/L、锰2.0μg/L。方法精密度在4—8%之间,回收率为90—102%。  相似文献   

16.
海洋环境及沉积地球化学的调查研究,常需同时了解多种元素在海洋底质中的含量及其分布规律.对于某些非金属及半金属元素,我们曾研究过应用碱性有机染料的萃取-光度测定法[1-3].原子吸收分光光度法则可以快速、准确地测定海洋沉积物中的许多种金属的含量[4-6],一般不需要大量的预处理.  相似文献   

17.
18.
《Marine Chemistry》2001,73(3-4):215-231
In-situ benthic flux studies were conducted at three stations in Upper Galveston Bay twice during March 1996 to directly measure release rates of dissolved Mn, Fe, Ni and Zn from the sediments. Results showed reproducible increases with time in both replicate light and light–dark benthic chambers, resulting in average fluxes of −1200±780, −17±12, −1.6±0.6 and −2.4±0.79 μmol m−2 day−1 for Mn, Fe, Ni and Zn, respectively. Sediment cores collected during 1994–1996 showed that surficial pore water concentrations were elevated compared to overlying water column concentrations, suggesting diffusive release from the sediments. Diffusive flux estimates of Mn and Zn agreed in direction with chamber fluxes measured on the same date, but only accounted for 5–38% of the measured flux. Diffusive fluxes of Fe agreed with measured fluxes at the near Trinity River station but overestimated actual release in the mid and outer Trinity Bay regions, possibly due to inaccurate determination of the Fe pore water gradients or rapid oxidation processes in the overlying water at these stations.In general, measured fluxes of Mn and Ni were higher in the mid Trinity Bay region and suggested a mechanism for the elevated trace metal concentrations previously reported for this region of Galveston Bay. However, the fluxes of Fe were highest in close proximity to the Trinity River, supporting the elevated Fe concentrations measured in this region during this and other studies, and decreased towards middle and outer Trinity Bay. Trace metal turnover times were between 0.1 and 1.2 days for Mn, between 1.3 and 4.6 days for Fe, and between 27 and 100 days for Ni and 12–20 days Zn, and were considerably shorter than the average Trinity Bay water residence time (1.5 years) for this period. Comparing area averaged benthic inputs to Trinity River inputs shows the sediments to be a significant source of trace metals to Galveston Bay. However, while benthic inputs of trace metals were measured, water column concentrations remained low despite rapid turnover times for Mn and Fe, suggesting removal of these metals from the water column after release from the sediments.  相似文献   

19.
We investigated the concentrations of cadmium, chromium, copper, iron, nickel, lead and zinc among feather tissues in sexes of Black-browed Albatross Thalassarche melanophrys killed in longliners off Argentina in 2005. We found no different metal concentration with sex for cadmium, copper, iron, lead and zinc in feathers of adult birds, though there were significant body-size differences between sexes. However, the concentrations of trace metals differed significantly among the type of feather within individual bird. The mean concentrations of copper, iron, and zinc in breast feathers of T.?melanophrys were lower than those reported for the species from Georgias del Sur/South Georgia, the southern Indian Ocean and for other seabirds' worldwide. While cadmium fall within the known range of concentrations for bird feathers lead were not. Our results may be indicating that level of pollution in Patagonia may not be as negligible as previously thought at least for some trace metals.  相似文献   

20.
渤海湾潮间带(大沽口)柱状沉积物中的重金属来源判别   总被引:9,自引:0,他引:9  
采用因子分析法对2003年11月采自渤海湾潮间带(大沽口)柱状沉积物中的重金属含量数据进行了分析,提取出的三个主要因子占据重金属含量样本信息量的83.69%,以此定量判别出重金属的来源方式和富集原因。并有效采用Li和Sc作为污染重金属的参照元素,以这两种元素含量比值的自然对数和目标元素与Sc的比值的自然对数做比率散点图的方法验证了因子分析所得的结论。结果表明,Cd,Zn和As以人类活动输入为主,Pb,Cr,Hg受到一定人为输入影响,但仍以环境背景贡献为主,Cu,Al,Fe,Ni以自然来源为主。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号