首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Sound knowledge of the spatial and temporal patterns of rockfalls is fundamental for the management of this very common hazard in mountain environments. Process‐based, three‐dimensional simulation models are nowadays capable of reproducing the spatial distribution of rockfall occurrences with reasonable accuracy through the simulation of numerous individual trajectories on highly‐resolved digital terrain models. At the same time, however, simulation models typically fail to quantify the ‘real’ frequency of rockfalls (in terms of return intervals). The analysis of impact scars on trees, in contrast, yields real rockfall frequencies, but trees may not be present at the location of interest and rare trajectories may not necessarily be captured due to the limited age of forest stands. In this article, we demonstrate that the coupling of modeling with tree‐ring techniques may overcome the limitations inherent to both approaches. Based on the analysis of 64 cells (40 m × 40 m) of a rockfall slope located above a 1631‐m long road section in the Swiss Alps, we illustrate results from 488 rockfalls detected in 1260 trees. We illustrate that tree impact data cannot only be used (i) to reconstruct the real frequency of rockfalls for individual cells, but that they also serve (ii) the calibration of the rockfall model Rockyfor3D, as well as (iii) the transformation of simulated trajectories into real frequencies. Calibrated simulation results are in good agreement with real rockfall frequencies and exhibit significant differences in rockfall activity between the cells (zones) along the road section. Real frequencies, expressed as rock passages per meter road section, also enable quantification and direct comparison of the hazard potential between the zones. The contribution provides an approach for hazard zoning procedures that complements traditional methods with a quantification of rockfall frequencies in terms of return intervals through a systematic inclusion of impact records in trees. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
罗晓春  杭鑫  曹云  杭蓉蓉  李亚春 《湖泊科学》2019,31(5):1248-1258
利用2004-2018年卫星遥感解译的太湖蓝藻水华信息构建蓝藻综合指数,采用随机森林机器学习算法分析同期气象因子与蓝藻水华综合指数的关系,定量评估影响蓝藻水华的主要气象因子特征变量的重要性度量和贡献率.结果表明,在光、温、水、风等主要气象要素中,气温对蓝藻水华综合指数起着主导的作用,其次是风速和降水,日照时间的影响或可忽略.其中气温条件中重要性度量最大的是年平均气温,其次是冬、春季节的平均气温;风速因子中影响较大的是7月份的平均风速;水分条件中主导因子是9月累计降水量.优选的随机森林模型模拟值与实际蓝藻水华综合指数的变化趋势基本一致,拟合优度为0.91,通过0.01显著性检验,随机森林模型模拟效果较好.用随机森林模型模拟值对太湖蓝藻水华分等级评估,模型模拟精度达到了86.7%,其中5个重度等级年份模型模拟结果完全一致,中度等级的6个年份模型模拟值有5年与之相符,中度以上等级的模拟精度达90.9%,模型能够反映气象因子对蓝藻水华综合指数的综合影响,对中、重度蓝藻水华的模拟效果更好.随机森林模型有助于理解富营养化状态下影响蓝藻水华的主导气象因子,利用气象因子的可预测性可以促进蓝藻水华预测预警能力的提升.  相似文献   

4.
Seismic inversion plays an important role in reservoir modelling and characterisation due to its potential for assessing the spatial distribution of the sub‐surface petro‐elastic properties. Seismic amplitude‐versus‐angle inversion methodologies allow to retrieve P‐wave and S‐wave velocities and density individually allowing a better characterisation of existing litho‐fluid facies. We present an iterative geostatistical seismic amplitude‐versus‐angle inversion algorithm that inverts pre‐stack seismic data, sorted by angle gather, directly for: density; P‐wave; and S‐wave velocity models. The proposed iterative geostatistical inverse procedure is based on the use of stochastic sequential simulation and co‐simulation algorithms as the perturbation technique of the model parametre space; and the use of a genetic algorithm as a global optimiser to make the simulated elastic models converge from iteration to iteration. All the elastic models simulated during the iterative procedure honour the marginal prior distributions of P‐wave velocity, S‐wave velocity and density estimated from the available well‐log data, and the corresponding joint distributions between density versus P‐wave velocity and P‐wave versus S‐wave velocity. We successfully tested and implemented the proposed inversion procedure on a pre‐stack synthetic dataset, built from a real reservoir, and on a real pre‐stack seismic dataset acquired over a deep‐water gas reservoir. In both cases the results show a good convergence between real and synthetic seismic and reliable high‐resolution elastic sub‐surface Earth models.  相似文献   

5.
Many researchers have examined the impact of detailed soil spatial information on hydrological modelling due to the fact that such information serves as important input to hydrological modelling, yet is difficult and expensive to obtain. Most research has focused on the effects at single scales; however, the effects in the context of spatial aggregation across different scales are largely missing. This paper examines such effects by comparing the simulated runoffs across scales from watershed models based on two different levels of soil spatial information: the 10‐m‐resolution soil data derived from the Soil‐Land Inference Model (SoLIM) and the 1:24000 scale Soil Survey Geographic (SSURGO) database in the United States. The study was conducted at three different spatial scales: two at different watershed size levels (referred to as full watershed and sub‐basin, respectively) and one at the model minimum simulation unit level. A fully distributed hydrologic model (WetSpa) and a semi‐distributed model (SWAT) were used to assess the effects. The results show that at the minimum simulation unit level the differences in simulated runoff are large, but the differences gradually decrease as the spatial scale of the simulation units increases. For sub‐basins larger than 10 km2 in the study area, stream flows simulated by spatially detailed SoLIM soil data do not significantly vary from those by SSURGO. The effects of spatial scale are shown to correlate with aggregation effect of the watershed routing process. The unique findings of this paper provide an important and unified perspective on the different views reported in the literature concerning how spatial detail of soil data affects watershed modelling. Different views result from different scales at which those studies were conducted. In addition, the findings offer a potentially useful basis for selecting details of soil spatial information appropriate for watershed modelling at a given scale. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
7.
为了准确的探测和描绘地下复杂的地质结构,同时克服地球物理单一方法反演的多解性和单一参数反演模型的不一致性等问题,近年来基于交叉梯度联合反演的综合地球物理解释已经得到了广泛的关注和应用.本文首先研究了两种地球物理方法的交叉梯度联合反演算法,在此基础上,推导并实现了多种地球物理方法(大地电磁,重力,磁法,地震初至波走时)的多交叉梯度约束的二维联合反演算法;其次,我们设计了结构不一致模型和复杂模型,针对多物性联合反演算法的准确性和有效性进行了模拟试算,并对复杂模型的单独反演结果和联合反演结果进行了交叉梯度值和物性交会图的对比;最后,本文将成熟的卫星资料多光谱综合分析技术应用到联合反演中,将多物性参数反演模型结果图通过RGB(红-绿-蓝)模式进行合成,得到融合的RGB合成图.结果表明:通过对结构不一致模型和复杂模型的联合反演结果和单独反演结果的对比分析,可以得出联合反演得到的结果更接近真实模型,并从得到的交叉梯度值进一步证明了联合反演模型相似度高,也从物性交会图中得到联合反演的物性相关性更好的结论,反向证明了算法的正确性.最终从得到的RGB合成图像,我们可以更直观的分析反演结果,更有利于准确划分地下模型结构.  相似文献   

8.
Nonparametric bias-corrected variogram estimation under non-constant trend   总被引:1,自引:1,他引:0  
In geostatistics, the approximation of the spatial dependence structure of a process, through the estimation of the variogram or the covariogram of the variable under consideration, is an important issue. In this work, under a general spatial model, including a mean or trend function, and without assuming any parametric model for this function and for the dependence structure of the process, a general nonparametric estimator of the variogram is proposed. The new approach consists in applying an iterative algorithm, using the residuals obtained from a nonparametric local linear estimation of the trend function, jointly with a correction of the bias due to the use of these residuals. A simulation study checks the validity of the presented approaches in practice. The broad applicability of the procedures is demonstrated on a real data set.  相似文献   

9.
It is well known that real‐time hybrid simulation (RTHS) is an effective and viable dynamic testing method. Numerous studies have been conducted for RTHS during the last 2 decades; however, the application of RTHS toward practical civil infrastructure is fairly limited. One of the major technical barriers preventing RTHS from being widely accepted in the testing community is the difficulty of accurate displacement control for axially stiff members. For such structures, a servo‐hydraulic actuator can generate a large force error due to the stiff oil column in the actuator even if there is a small axial displacement error. This difficulty significantly restricts the implementation of RTHS for structures such as columns, walls, bridge piers, and base isolators. Recently, a flexible loading frame system was developed, enabling a large‐capacity real‐time axial force application to axially stiff members. With the aid of the flexible loading frame system, this paper demonstrates an RTHS for a bridge structure with an experimental reinforced concrete pier, which is subjected to both horizontal and vertical ground motions. This type of RTHS has been a challenging task due to the lack of knowledge for satisfying the time‐varying axial force boundary condition, but the newly developed technology for real‐time force control and its incorporation into RTHS enabled a successful implementation of the RTHS for the reinforced concrete pier of this study.  相似文献   

10.
Abstract

Intensive forest management is one of the main land cover changes over the last century in Central Europe, resulting in forest monoculture. It has been proposed that these monoculture stands impact hydrological processes, water yield, water quality and ecosystem services. At the Lysina Critical Zone Observatory, a forest catchment in the western Czech Republic, a distributed physics-based hydrologic model, Penn State Integrated Hydrologic Model (PIHM), was used to simulate long-term hydrological change under different forest management practices, and to evaluate the comparative scenarios of the hydrological consequences of changing land cover. Stand-age-adjusted LAI (leaf area index) curves were generated from an empirical relationship to represent changes in seasonal tree growth. By consideration of age-adjusted LAI, the spatially-distributed model was able to successfully simulate the integrated hydrological response from snowmelt, recharge, evapotranspiration, groundwater levels, soil moisture and streamflow, as well as spatial patterns of each state and flux. Simulation scenarios of forest management (historical management, unmanaged, clear cutting to cropland) were compared. One of the critical findings of the study indicates that selective (patch) forest cutting results in a modest increase in runoff (water yield) as compared to the simulated unmanaged (no cutting) scenario over a 29-year period at Lysina, suggesting the model is sensitive to selective cutting practices. A simulation scenario of cropland or complete forest cutting leads to extreme increases in annual water yield and peak flow. The model sensitivity to forest management practices examined here suggests the utility of models and scenario development to future management strategies for assessing sustainable water resources and ecosystem services.
Editor D. Koutsoyiannis  相似文献   

11.
The area located inside the São Sebastião volcanic crater, at the southeast end of Terceira Island (Azores), is characterized by an important amplification of ground motion with respect to the surrounding area, as clearly demonstrated by the spatial distribution of the damage that occurred during the Terceira earthquake (the strongest earthquake felt in the Island during the recent decades — 01/01/1980 — M = 7.2). Geological and geophysical studies have been conducted, to characterize the volcanic crater and understand the different site effects that occurred in the village of São Sebastião. The complexity of the subsurface geology, with intercalations of compact basalt and soft pyroclastic deposits, is associated to extreme vertical and lateral velocity contrasts, and poses a serious challenge to different geophysical characterization methods. The available qualitative model did not allow a complete understanding of the site effects. A new seismic campaign has been designed and acquired, and a single, geologically consistent geophysical model has been generated integrating the existing and new data. The new campaign included two cross-line P-wave seismic refraction profiles, four short SH-wave seismic reflection profiles, and seven multichannel surface wave acquisitions. The integration and joint interpretation of geophysical and geological data allowed mutual validation and confirmation of data processing steps. In particular, the use of refraction, reflection and surface wave techniques allowed facing the complexity of a geology that can pose different challenges to all the methods when used individually: velocity inversions, limited reflectivity, and lateral variations. It is shown how the integration of seismic data from different methods, in the framework of a geological model, allowed the geometrical and dynamic characterization of the site. Correlation with further borehole information, then allowed the definition of a subsoil model for the crater, providing information that allowed a better understanding of the earthquake site effects in the São Sebastião village. The new near-surface geological model includes a lava layer within the soft infill materials of the crater. This new model matches closely with the damage distribution map, and explains the spatial variation of building stock performance in the 1980 earthquake.  相似文献   

12.
谭清海  邓春林  刘俊  单桂华  张怀 《地震》2013,33(4):153-161
本文针对气候模式在超大规模数值模拟中产生的Tb至Pb量级的四维体数据的可视化和分析诊断方法, 提出了基于Server-Client方式的远程数据抽取和并行可视化解决方案。 针对气候模拟数据中的海洋模式和大气模式数值模拟结果数据的抽取和可视化数值试验分析, 验证了解决方案的可行性和抽取算法的高效性、 可靠性和灵活性。 本文提出的远程数据抽取方法对于帮助气候模式领域中的专家快速抽取、 快速可视化和实现实时交互式模拟结果的诊断分析具有重要的应用价值。  相似文献   

13.
ABSTRACT

Poorly monitored catchments could pose a challenge in the provision of accurate flood predictions by hydrological models, especially in urbanized areas subject to heavy rainfall events. Data assimilation techniques have been widely used in hydraulic and hydrological models for model updating (typically updating model states) to provide a more reliable prediction. However, in the case of nonlinear systems, such procedures are quite complex and time-consuming, making them unsuitable for real-time forecasting. In this study, we present a data assimilation procedure, which corrects the uncertain inputs (rainfall), rather than states, of an urban catchment model by assimilating water-level data. Five rainfall correction methods are proposed and their effectiveness is explored under different scenarios for assimilating data from one or multiple sensors. The methodology is adopted in the city of São Carlos, Brazil. The results show a significant improvement in the simulation accuracy.  相似文献   

14.
ABSTRACT

The non-parametric mathematical framework of bilinear surface smoothing (BSS) methodology provides flexible means for spatial (two dimensional) interpolation of variables. As presented in a companion paper, interpolation is accomplished by means of fitting consecutive bilinear surface into a regression model with known break points and adjustable smoothing terms defined by means of angles formed by those bilinear surface. Additionally, the second version of the methodology (BSSE) incorporates, in an objective manner, the influence of an explanatory variable available at a considerably denser dataset. In the present study, both versions are explored and illustrated using both synthesized and real world (hydrological) data, and practical aspects of their application are discussed. Also, comparison and validation against the results of commonly used spatial interpolation methods (inverse distance weighted, spline, ordinary kriging and ordinary cokriging) are performed in the context of the real world application. In every case, the method’s efficiency to perform interpolation between data points that are interrelated in a complicated manner was confirmed. Especially during the validation procedure presented in the real world case study, BSSE yielded very good results, outperforming those of the other interpolation methods. Given the simplicity of the approach, the proposed mathematical framework’s overall performance is quite satisfactory, indicating its applicability for diverse tasks of scientific and engineering hydrology and beyond.
Editor Z. W. Kundzewicz; Associate editor A. Carsteanu  相似文献   

15.
Digital elevation models have been used in many applications since they came into use in the late 1950s. It is an essential tool for applications that are concerned with the Earth's surface such as hydrology, geology, cartography, geomorphology, engineering applications, landscape architecture and so on. However, there are some differences in assessing the accuracy of digital elevation models for specific applications. Different applications require different levels of accuracy from digital elevation models. In this study, the magnitudes and spatial patterning of elevation errors were therefore examined, using different interpolation methods. Measurements were performed with theodolite and levelling. Previous research has demonstrated the effects of interpolation methods and the nature of errors in digital elevation models obtained with indirect survey methods for small‐scale areas. The purpose of this study was therefore to investigate the size and spatial patterning of errors in digital elevation models obtained with direct survey methods for large‐scale areas, comparing Inverse Distance Weighting, Radial Basis Functions and Kriging interpolation methods to generate digital elevation models. The study is important because it shows how the accuracy of the digital elevation model is related to data density and the interpolation algorithm used. Cross validation, split‐sample and jack‐knifing validation methods were used to evaluate the errors. Global and local spatial auto‐correlation indices were then used to examine the error clustering. Finally, slope and curvature parameters of the area were modelled depending on the error residuals using ordinary least regression analyses. In this case, the best results were obtained using the thin plate spline algorithm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Addressing non-uniqueness in linearized multichannel surface wave inversion   总被引:1,自引:0,他引:1  
The multichannel analysis of the surface waves method is based on the inversion of observed Rayleigh-wave phase-velocity dispersion curves to estimate the shear-wave velocity profile of the site under investigation. This inverse problem is nonlinear and it is often solved using 'local' or linearized inversion strategies. Among linearized inversion algorithms, least-squares methods are widely used in research and prevailing in commercial software; the main drawback of this class of methods is their limited capability to explore the model parameter space. The possibility for the estimated solution to be trapped in local minima of the objective function strongly depends on the degree of nonuniqueness of the problem, which can be reduced by an adequate model parameterization and/or imposing constraints on the solution.
In this article, a linearized algorithm based on inequality constraints is introduced for the inversion of observed dispersion curves; this provides a flexible way to insert a priori information as well as physical constraints into the inversion process. As linearized inversion methods are strongly dependent on the choice of the initial model and on the accuracy of partial derivative calculations, these factors are carefully reviewed. Attention is also focused on the appraisal of the inverted solution, using resolution analysis and uncertainty estimation together with a posteriori effective-velocity modelling. Efficiency and stability of the proposed approach are demonstrated using both synthetic and real data; in the latter case, cross-hole S-wave velocity measurements are blind-compared with the results of the inversion process.  相似文献   

17.
A covariance-based model-fitting approach is often considered valid to represent field spatial variability of hydraulic properties. This study examines the representation of geologic heterogeneity in two types of geostatistical models under the same mean and spatial covariance structure, and subsequently its effect on the hydraulic response to a pumping test based on 3D high-resolution numerical simulation and field data. Two geostatistical simulation methods, sequential Gaussian simulation (SGS) and transition probability indicator simulation (TPROGS) were applied to create conditional realizations of alluvial fan aquifer systems in the Lawrence Livermore National Laboratory (LLNL) area. The simulated K fields were then used in a numerical groundwater flow model to simulate a pumping test performed at the LLNL site. Spatial connectivity measures of high-K materials (channel facies) captured connectivity characteristics of each geostatistical model and revealed that the TPROGS model created an aquifer (channel) network having greater lateral connectivity. SGS realizations neglected important geologic structures associated with channel and overbank (levee) facies, even though the covariance model used to create these realizations provided excellent fits to sample covariances computed from exhaustive samplings of TPROGS realizations. Observed drawdown response in monitoring wells during a pumping test and its numerical simulation shows that in an aquifer system with strongly connected network of high-K materials, the Gaussian approach could not reproduce a similar behavior in simulated drawdown response found in TPROGS case. Overall, the simulated drawdown responses demonstrate significant disagreement between TPROGS and SGS realizations. This study showed that important geologic characteristics may not be captured by a spatial covariance model, even if that model is exhaustively determined and closely fits the exponential function.  相似文献   

18.
Lake water level forecasting is very important for an accurate and reliable management of local and regional water resources. In the present study two nonlinear approaches, namely phase-space reconstruction and self-exciting threshold autoregressive model (SETAR) were compared for lake water level forecasting. The modeling approaches were applied to high-quality lake water level time series of the three largest lakes in Sweden; Vänern, Vättern, and Mälaren. Phase-space reconstruction was applied by the k-nearest neighbor (k-NN) model. The k-NN model parameters were determined using autocorrelation, mutual information functions, and correlation integral. Jointly, these methods indicated chaotic behavior for all lake water levels. The correlation dimension found for the three lakes was 3.37, 3.97, and 4.44 for Vänern, Vättern, and Mälaren, respectively. As a comparison, the best SETAR models were selected using the Akaike Information Criterion. The best SETAR models in this respect were (10,4), (5,8), and (7,9) for Vänern, Vättern, and Mälaren, respectively. Both model approaches were evaluated with various performance criteria. Results showed that both modeling approaches are efficient in predicting lake water levels but the phase-space reconstruction (k-NN) is superior to the SETAR model.  相似文献   

19.
Abstract

Abstract Land development often results in adverse environmental impact for surface and subsurface water systems. For areas close to the coast, land changes may also result in seawater intrusion into coastal aquifers. Due to this, it is important to evaluate potential adverse effects in advance of any land development. For evaluation purposes a combined groundwater recharge model is proposed with a quasi three-dimensional unconfined groundwater flow equation. The catchment water balance for a planned new campus area of Kyushu University in southern Japan, was selected as a case study to test the model approach. Since most of the study area is covered with forest, the proposed groundwater recharge model considers rainfall interception by forest canopy. The results show that simulated groundwater and surface runoff agree well with observations. It is also shown that actual evapotranspiration, including rainfall interception by forest canopy, is well represented in the proposed simulation model. Several hydrological components such as direct surface runoff rate, groundwater spring flow rate to a ground depression, trans-basin groundwater flow etc., were also investigated.  相似文献   

20.
This article is devoted to application of a simulation algorithm based on geostatistical methods to compile and update seismotectonic provinces in which Iran has been chosen as a case study. Traditionally, tectonic maps together with seismological data and information (e.g., earthquake catalogues, earthquake mechanism, and microseismic data) have been used to update seismotectonic provinces. In many cases, incomplete earthquake catalogues are one of the important challenges in this procedure. To overcome this problem, a geostatistical simulation algorithm, turning band simulation, TBSIM, was applied to make a synthetic data to improve incomplete earthquake catalogues. Then, the synthetic data was added to the traditional information to study the seismicity homogeneity and classify the areas according to tectonic and seismic properties to update seismotectonic provinces. In this paper, (i) different magnitude types in the studied catalogues have been homogenized to moment magnitude (Mw), and earthquake declustering was then carried out to remove aftershocks and foreshocks; (ii) time normalization method was introduced to decrease the uncertainty in a temporal domain prior to start the simulation procedure; (iii) variography has been carried out in each subregion to study spatial regressions (e.g., west-southwestern area showed a spatial regression from 0.4 to 1.4 decimal degrees; the maximum range identified in the azimuth of 135?±?10); (iv) TBSIM algorithm was then applied to make simulated events which gave rise to make 68,800 synthetic events according to the spatial regression found in several directions; (v) simulated events (i.e., magnitudes) were classified based on their intensity in ArcGIS packages and homogenous seismic zones have been determined. Finally, according to the synthetic data, tectonic features, and actual earthquake catalogues, 17 seismotectonic provinces were introduced in four major classes introduced as very high, high, moderate, and low seismic potential provinces. Seismotectonic properties of very high seismic potential provinces have been also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号