首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
回顾总结了近20年、特别是近10年来青藏高原气候变化的特征、变化的原因及其对高原水资源的影响方面的最新研究进展。1960年以来青藏高原地区总体气温显著升高,升温趋势存在明显的海拔依赖性,温室气体、冰雪反照率反馈、云-水汽-辐射反馈、局地强迫等是影响高原气温上升具有海拔依赖性的重要因素。总体上青藏高原降水呈现增加趋势,变化的区域性和季节性差异比气温变化的时空差异更强;降水空间变化主要分为南北偶极型、东西偶极型、中部和边缘差异型和多元型;夏季降水增加最为显著。受气候变化和人为气溶胶排放等影响,青藏高原水资源特别是冰冻圈水资源发生剧烈的变化,大部分冰川加速退缩、冰川径流增加、湖泊严重扩张,导致青藏高原上水循环加强和气候偏暖湿化;青藏高原积雪的变化具有明显的年代际特征。最后提出未来需要进一步开展的研究方向和政策建议。  相似文献   

2.
青藏高原年代际气候变化研究进展   总被引:3,自引:3,他引:3  
邹燕  赵平 《气象科技》2008,36(2):168-173
青藏高原是全球气候系统的重要组成部分.从降水、气温、积雪及能量源汇方面,系统地阐述了众多学者关于青藏高原年代际气候变化的研究进展.研究显示,近百年来高原的气温变化可分为4个阶段,即20世纪20年代之前偏冷,20~50年代偏暖,60~70年代气温下降以及80年代至今的持续偏暖;80年代前后全球性的暖跃变在高原气候变化上同样存在,而且更超前于北半球.全球变暖的环境下,高原降水趋于增加,高原积雪呈偏多状态.高原气候的变化还存在着明显的地域性和季节性差异.文中还综述了青藏高原的热源和地形作用对亚洲季风爆发、季风区降水等区域和全球气候变化影响的研究成果,并简要提出了研究中存在的问题和今后的科研方向.  相似文献   

3.
作为全球能量水分循环的关键区域,青藏高原(下称高原)气候变化对高原及周边地区气候与环境变化具有重要影响.本文从高原表面增暖、辐射变化、降水的多尺度变率、表面风速及环境变化方面回顾了高原近60年来气候变化及其环境效应与物理机制的研究进展,并基于再分析和台站观测资料讨论了近10余年来高原表面温度和风速变化的特征及原因.最后...  相似文献   

4.
青藏高原年降水量的气候变化及其异常类型研究   总被引:12,自引:1,他引:12       下载免费PDF全文
利用青藏高原的80个气象台站近34a来年降水量资料,采用EOF、REOF、气候趋势线性趋势分析以及累积距平法等方法对青藏高原年降水量的时空分布特征及其异常进行了分析。结果表明:EOF分解的前三个主向量的累积方差贡献占总方差的44.9%,地形特别是高原主体的阻挡和抬升作用对年降水量的空间变化影响显著;年降水量的时间变化在缓慢减少的过程中于1982年和1995年发生了2次突变,并经历了减少、增多和再次减少的3个变化阶段;青藏高原年降水量的空间异常类型均可分为高原中东区、高原南部区、高原北部区、高原腹地区和西藏西南区共5个区,其分区主要受地形和低涡的影响较明显。  相似文献   

5.
利用全球大气环流模式BCC_AGCM2.0,通过青藏高原不同区域不同粗糙度的改变,模拟了青藏高原风电场开发造成的动力和热力强迫扰动对我国气候变化的影响。模拟结果表明,青藏高原热力场和动力场扰动对我国不同区域气候变化有着显著的影响,热力场的扰动会使华北地区的夏季降水明显减少,长江以南地区冬季气温降低,而动力场的扰动则会引起南方地区夏季降水增加,冬季气温明显上升。而且随着粗糙度的增大,长江以南地区冬季850 hPa水汽输送明显减小,而华北地区夏季的水汽输送也呈现出显著减少趋势。  相似文献   

6.
青藏高原气候变化与植被指数的关系研究   总被引:9,自引:0,他引:9  
本文通过处理全国400余个台站1951-1995圻的降水、平均气温、积温等资料,利用GRAPHER,SURFER等绘图工具,分析了青藏高原所处气候区域的气候特征及变化趋势,并采用桑斯威方法计算出可能蒸发量,从而得到全国的湿润指数分布,由此确定青藏高原的气候分区,继而通过卫星遥感获得的全球归一化植被指数(Glob-NDVI),结合降水、气温,分析了气候变化与生态系统演变的联系,最后着重从积温与高原农作物方面作了一定研究。  相似文献   

7.
利用1980~1999年CRU温度和降水资料,结合柯本气候分类,模拟了20世纪末期青藏高原气候分布,模拟结果与FAO结果吻合较好.基于A1B情景下的高分辨率动力降尺度资料,分析了21世纪中期、末期青藏高原温度和降水变化趋势.在此基础上,模拟了21世纪青藏高原可能的气候带分布,分析其可能变化趋势.分析结果显示,21世纪青藏高原的气候类型向着更暖湿的方向发展,月平均温度和月累积降水量都有增加的趋势,并且在21世纪中期达到了最大值.  相似文献   

8.
利用第五次国际耦合模式比较计划(the Fifth Phase of Coupled Model Inter-comparison Project,CM IP5)的8个模式在高浓度排放路径RCP8. 5下的输出资料对青藏高原(下称高原) 21世纪未来气候变化进行预测,基于水汽收支方程对高原局地地表水通量P-E(降水-蒸发)变化进行热动力过程分解,求取平均环流(动力因子Mean Circulation Dynamic,MCD)、水汽辐合项(热动力因子,Thermal Dynamic,TH)等对P-E通量变化的相对贡献率,建立大尺度环流变化和高原局地气候变化的定量关系,探讨高原未来气候变化的热动力成因。研究结果表明:(1)高原未来整体变暖湿,与历史参考时期1986-2005年相比,21世纪末P-E通量增加17. 9%,增湿梯度呈西北-东南向分布,以高原东南部林木分布区增加最显著;(2)在高原湿季(5-9月,也即高原植被生长季)内,因平均环流变化导致的水汽输送变化是高原未来变湿的主要原因,贡献了约53%的P-E通量增加,这与气候变暖后Hadley环流下沉支和中高纬西风环流的极向扩展有关;热动力因子贡献了12%P-E通量的增加,对高原未来的整体变湿贡献相对较小,但在三江源区热动力贡献较大,这与该区未来植被覆盖增加,植被对气候变化的正反馈加强有关。值得注意的是,受CMIP5多模式分辨率粗糙、模拟性能在高原地区差异较大等的影响,分析结果存在一定不确定性,结论比较初步,未来使用分辨率更高、物理过程更完善的模式,结合统计方法提高预测精度可进一步改善研究结果。  相似文献   

9.
通过数值试验对高原地表反射率变化的气候效应进行了敏感性研究,同时对观测的近40年中国区域气候变化趋势作了对比分析。结果表明,高原主体地表反射率增加是我国短期气候变化的重要控制因子之一,它能造成东亚夏季风和高原夏季风的显著减弱,使夏季我国东部季风区北方变暖,南方变冷,季风降水普遍减少。  相似文献   

10.
柳艳香 《高原气象》1998,17(3):258-265
利用ERBE资料分的了1985~1988年期间青藏高原地气系统辐射收支的分布特征与几次重大天气气候事件的关系,结果表明,ElNino期间,高原东南部地区(Ⅲ区即90°E以东,35°N以南)加热场强度比高原西部地区(I区即90°E以西)及高原东北部地区(Ⅱ区即90°E以东,35°N以北)要大,LaNina期间,高原I区的热源强度比Ⅱ,Ⅲ区大,高原热源强度大,西南季风弱,反之,西南季风强。  相似文献   

11.
青藏高原区域气候变化及其差异性研究   总被引:31,自引:0,他引:31       下载免费PDF全文
利用1961—2007年青藏高原66个气象台站气温和降水量资料,通过典型气候分区,系统研究了近47年来青藏高原气温、降水量等气候因子时空演变规律,揭示了青藏高原不同区域气候变化的差异性。研究表明:近47年来,青藏高原的气候呈现出显著增暖趋势,年平均气温以0.37℃/10a的速率上升,气候变暖在夜间要较日间明显。冬季较其他季节明显,2月气温由冷向暖的转变最为显著,8月最不显著,且在某些区域有变冷迹象;高原边缘地区气候变暖要明显于高原腹地,青海北部区特别是柴达木盆地是青藏高原气候变化的敏感区。降水量总体表现出增多态势,气候倾向率达9.1mm/10a,但区域性差异较为明显,藏东南川西区是青藏高原降水量增多最显著的地区;12月至次年5月即冬春季整个青藏高原降水量随着气候变暖而增多,7月和9月黄河上游区1987年后干旱化趋势明显。  相似文献   

12.
本文利用西藏雅江中游地区1961~2009年逐日气象资料和Penman–Monteith公式,计算并分析了PE(潜在蒸散量)的时空分布特征,运用多元回归方法定量计算各气候因子变化对PE变化的贡献率。研究表明:近49年来,拉萨年潜在蒸散量呈明显增加趋势,增幅为8.21mm/10a,日喀则和江孜呈不显著的减少趋势,而泽当减少趋势显著,减幅最大达-24.71mm/10a。PE变化趋势的季节差异较大,年潜在蒸散量在1993年发生突变,在全球气候变暖的背景下,平均风速明显减少从气候因子角度解释了潜在蒸散减少的原因。  相似文献   

13.
近几十年来全球变暖受到越来越广泛的关注,然而全球变暖从1998年开始趋缓,但青藏高原却呈现加速增暖的趋势。本文基于前人研究,系统回顾了青藏高原气温、积雪、降水和大气热源等四方面在全球变暖背景下的变化,指出高原的加速增温导致了积雪迅速融化,降水明显增多的同时,高原热源却呈现减弱趋势。  相似文献   

14.
青藏高原增暖海拔依赖性研究进展   总被引:2,自引:0,他引:2  
青藏高原平均海拔4000m以上,由于复杂的地形及其特殊的地理位置,对全球气候变化影响重大,已成为研究的热点和关键区.古气候代用指标、常规气象台站以及卫星反演资料表明,青藏高原变暖显著,最低气温升温趋势高于最高气温,冬季增温幅度最大,且存在海拔依赖性,即升温幅度随海拔高度上升而增大.在此基础上,不同大气环流模式试验以及未来气候变化情景下高原气候变化模拟结果也表现出明显的海拔依赖性.而模式资料分析表明,海拔依赖性的存在可能与高海拔地区冰雪反馈和云量有关.但由于青藏高原5000m以上常规观测台站稀少,难以获得连续的气象观测资料,而当前气候系统模式分辨率仍较低,缺乏对复杂地形描述和模拟,这使得海拔依赖性的研究存在一定的争议.因此,当前海拔依赖性研究还存在两个问题:第一,如何获取更高海拔地区的观测和模式资料,运用尽可能多的观测资料来检验海拔依赖性存在与否的问题,如6000m以上站点和格点;第二,如果这种依赖性确实存在,如何从物理机制上解释高原气候变暖的海拔依赖性.  相似文献   

15.
近46年青藏高原干湿气候区动态变化研究   总被引:5,自引:0,他引:5  
毛飞  唐世浩  孙涵 《大气科学》2008,32(3):499-507
利用青藏高原62个气象站1961~2006年逐日气象资料, 用世界粮农组织 (FAO) 在1998年推荐的、并唯一承认的Penman-Menteith模式计算潜在蒸散量; 比较了降水量、积温降水比、气温降水比、蒸散降水比和降水蒸散比5种湿润度指标在青藏高原的适用性, 用常规统计方法和墨西哥帽小波变换分析青藏高原各气候区干湿状况及其界线的动态变化。结果表明: 5种指标中, 用降水蒸散比得到的青藏高原湿润、半湿润、半干旱、干旱和极端干旱气候区的分区结果比较合理; 近46年来青藏高原大部分地区湿润度和每个气候区的平均湿润度均呈增加趋势, 半干旱和半湿润气候区的界线呈向西北推进趋势, 气候在向暖湿方向发展。  相似文献   

16.
利用1961~1998年青藏高原123个气象台站常规地面观测资料,对近40年青藏高原地区的气候年代际变化特征进行分析。分析结果表明:20世纪80年代中后期青藏高原经历了一次气温、降水量、相对湿度显著增加的气候突变。以突变点为界,可以划分为两个时期,即从20世纪60年代初到80年代中后期,青藏高原为相对暖干时期,从20世纪80年代后期开始,青藏高原进入相对暖湿时期。由此,从气温、降水量、相对湿度的变化特征和突变理论上可以初步判断,20世纪80年代中后期青藏高原气候年代际变化实现了由暖干型向暖湿型的突变。青藏高原气温和降水突变早于相对湿度突变;青藏高原的增温、增湿现象主要发生在冬季;春季亦增温、增湿,但增幅小于冬季;夏季出现增温和略减湿现象;秋季为明显增温,但湿度无明显变化。  相似文献   

17.
黄土高原作物气候生产力对气候变化的响应   总被引:8,自引:3,他引:8  
利用中国黄土高原7省51个气象站1961—2000年主要气象要素观测资料,采用EOF和其他数理统计方法研究了黄土高原气候生产力对气候变化的响应,结果表明:中国黄土高原气候生产力呈递减趋势;年和各季节的平均气温均呈明显的上升趋势,增温速度大于全国同期增温速度;年降水量和作物生长季节降水量均呈下降趋势;黄土高原气候暖干化使作物气候生产力下降。“暖湿型”气候对作物生产最有利,平均增产幅度为5.9%,而“冷湿型”气候对作物生产最不利,平均减产幅度为6.3%。  相似文献   

18.
黄土高原地区农业生产对气候变化的脆弱性分析   总被引:17,自引:0,他引:17  
根据IPCC定义和实地考察、文献、问卷调查等结果确定了评价黄土高原地区农业生产对气候变化的脆弱性判别指标体系及其权重分配结果,并对几个代表站点做了脆弱性现状评估,为进一步完成黄土高原地区农业生产对气候变化的脆弱性地区分布和对策研究提供了一定的基础和方法。  相似文献   

19.
This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years.It is shown that observed climate change in China bears a strong similarity with the global average.The country-averaged annual mean surface air temperature has increased by 1.1℃over the past 50 years and 0.5-0.8℃over the past 100 years,slightly higher than the global temperature increase for the same periods.Northern China and winter have experienced the greatest increases in surface air temperature.Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable,with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase,and North China a severe drought.Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings,show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases,while the temperature change of the first half of the 20th century may be due to solar activity,volcanic eruptions and sea surface temperature change.A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC(National Climate Center,China Meteorological Administration)and the IAP(Institute of Atmospheric Physics,Chinese Academy of Sciences),as well as 40 models developed overseas,indicate a potential significant warming in China in the 21st century,with the largest warming set to occur in winter months and in northern China.Under varied emission scenarios,the country-averaged annual mean temperature is projected to increase by 1.5-2.1℃by 2020,2.3-3.3℃by 2050, and by 3.9-6.0℃by 2100,in comparison to the 30-year average of 1961 1990.Most models project a 10% 12% increase in annual precipitation in China by 2100,with the trend being particularly evident in Northeast and Northwest China,but with parts of central China probably undergoing a drying trend.Large uncertainty exists in the projection of precipitation,and further studies are needed.Furthermore,anthropogenic climate change will probably lead to a weaker winter monsoon and a stronger summer monsoon in eastern Asia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号