首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Modelling melt and runoff from snow‐ and ice‐covered catchments is important for water resource and hazard management and for the scientific study of glacier hydrology, dynamics and hydrochemistry. In this paper, a distributed, physically based model is used to determine the effects of the up‐glacier retreat of the snowline on spatial and temporal patterns of melt and water routing across a small (0·11 km2) supraglacial catchment on Haut Glacier d'Arolla, Switzerland. The melt model uses energy‐balance theory and accounts for the effects of slope angle, slope aspect and shading on the net radiation fluxes, and the effects of atmospheric stability on the turbulent fluxes. The water routing model uses simplified snow and open‐channel hydrology theory and accounts for the delaying effects of vertical and horizontal water flow through snow and across ice. The performance of the melt model is tested against hourly measurements of ablation in the catchment. Calculated and measured ablation rates show a high correlation (r2 = 0·74) but some minor systematic discrepancies in the short term (hours). These probably result from the freezing of surface water at night, the melting of the frozen layer in the morning, and subsurface melting during the afternoon. The performance of the coupled melt/routing model is tested against hourly discharge variations measured in the supraglacial stream at the catchment outlet. Calculated and measured runoff variations show a high correlation (r2 = 0·62). Five periods of anomalously high measured discharge that were not predicted by the model were associated with moulin overflow events. The radiation and turbulent fluxes contribute c. 86% and c. 14% of the total melt energy respectively. These proportions do not change significantly as the surface turns from snow to ice, because increases in the outgoing shortwave radiation flux (owing to lower albedo) happen to be accompanied by decreases in the incoming shortwave radiation flux (owing to lower solar incidence angles) and increases in the turbulent fluxes (owing to higher air temperatures and vapour pressures). Model sensitivity experiments reveal that the net effect of snow pack removal is to increase daily mean discharges by c. 50%, increase daily maximum discharges by >300%, decrease daily minimum discharges by c. 100%, increase daily discharge amplitudes by >1000%, and decrease the lag between peak melt rates and peak discharges from c. 3 h to c. 50 min. These changes have important implications for the development of subglacial drainage systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

2.
This paper describes a point surface energy balance model which runs within the Microsoft Excel spreadsheet package. The study incorporates a large amount of previous energy balance work and presents it in a useable form. The core model calculates the net shortwave and longwave radiation fluxes, the turbulent sensible and latent heat fluxes and the surface melt rate at a point on a melting ice or snow surface, from hourly inputs of incoming shortwave radiation, vapour pressure, air temperature and wind speed data. The latitude, longitude, slope angle, aspect, elevation, local temperature lapse rate, albedo and aerodynamic roughness of the study site, and the elevation of the meteorological station, can all be specified in the model. An output file containing the hourly and daily rates, and the totals of the energy fluxes is generated. The main advantages of the model are: first, that it requires only a PC or laptop computer running standard Microsoft Windows software, enabling it to be used at a desktop or in the field; and second, that it can be adapted quickly to different sites, meteorological data formats and other application requirements. Model calculations are compared with measured surface melt rates at five points on Haut Glacier d'Arolla, Switzerland, over a 115 day ablation period. Allowing for differences in shading between the meteorological station and the glacier, the root mean square error of the calculated melt rates is 2·0 mm day−1 water equivalent melt (mean error +1·2 mm day−1), for measured melt rates in the range 23 to 42 mm day−1 water equivalent melt. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
With global warming, hazards relating to glacial melt, such as glacial lake outburst floods, are becoming progressively more serious. However, glacial melt processes and their hydrological consequences are very poorly understood. This study collected glacier discharge data from the terminus of the Parlung No. 4 Glacier throughout the melt season (May–October) during 2008, 2010, 2011 and 2012 to study its specific hydrological characteristics. Time series and multivariate regression analyses were employed to investigate the relationships between discharge and meteorological factors involved, as well as their correlation to discharge estimations. The 0‐ to 3‐day time series analysis showed that discharge rates were highly autocorrelated and that discharge was significantly positively correlated to air temperature, vapour pressure and daily incoming shortwave radiation as well as weakly positively correlated to precipitation. A multiple‐regression exponential model using the independent variables of the daily mean temperature and the vapour pressure exclusively was applied to simulate daily discharge in the basin with a high degree of accuracy. On average, July yielded the maximum monthly mean discharge, followed by August. Discharge in July and August accounted for 53% of the total discharge during the main melt season. The daily cycle of discharge changed as the melt season progressed, reflecting hydrological processes and characteristics of snow melt and glacier ice/snow melt, as well as their transitional periods. Subsequently, regular variations in the characteristics of the diurnal cycle of discharge, storage and delay were observed as the melt season progressed. In addition, the reasons behind the inter‐annual variation in the characteristics of discharge and glacier discharge from the Tibetan Plateau and its surrounding areas are compared and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Water temperature dynamics in High Arctic river basins   总被引:2,自引:0,他引:2  
Despite the high sensitivity of polar regions to climate change and the strong influence of temperature upon ecosystem processes, contemporary understanding of water temperature dynamics in Arctic river systems is limited. This research gap was addressed by exploring high‐resolution water column thermal regimes for glacier‐fed and non‐glacial rivers at eight sites across Svalbard during the 2010 melt season. Mean water column temperatures in glacier‐fed rivers (0.3–3.2 °C) were lowest and least variable near the glacier terminus but increased downstream (0.7–2.3 °C km–1). Non‐glacial rivers, where discharge was sourced primarily from snowmelt runoff, were warmer (mean: 2.9–5.7 °C) and more variable, indicating increased water residence times in shallow alluvial zones and increased potential for atmospheric influence. Mean summer water temperature and the magnitude of daily thermal variation were similar to those of some Alaskan Arctic rivers but low at all sites when compared with alpine glacierized environments at lower latitudes. Thermal regimes were correlated strongly (p < 0.01) with incoming short‐wave radiation, air temperature, and river discharge. Principal drivers of thermal variability were inferred to be (i) water source (i.e. glacier melt, snowmelt, groundwater); (ii) exposure time to the atmosphere; (iii) prevailing meteorological conditions; (iv) river discharge; (v) runoff interaction with permafrost and buried ice; and (vi) basin‐specific geomorphological features (e.g. channel morphology). These results provide insight into the potential changes in high‐latitude river systems in the context of projected warming in polar regions. We hypothesize that warmer and more variable temperature regimes may prevail in the future as the proportion of bulk discharge sourced from glacial meltwater declines and rivers undergo a progressive shift towards snow water and groundwater sources. Importantly, such changes could have implications for aquatic species diversity and abundance and influence rates of ecosystem functioning in high‐latitude river systems. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
The spatial and temporal characterization of geochemical tracers over Alpine glacierized catchments is particularly difficult, but fundamental to quantify groundwater, glacier melt, and rain water contribution to stream runoff. In this study, we analysed the spatial and temporal variability of δ2H and electrical conductivity (EC) in various water sources during three ablation seasons in an 8.4‐km2 glacierized catchment in the Italian Alps, in relation to snow cover and hydro‐meteorological conditions. Variations in the daily streamflow range due to melt‐induced runoff events were controlled by maximum daily air temperature and snow covered area in the catchment. Maximum daily streamflow decreased with increasing snow cover, and a threshold relation was found between maximum daily temperature and daily streamflow range. During melt‐induced runoff events, stream water EC decreased due to the contribution of glacier melt water to stream runoff. In this catchment, EC could be used to distinguish the contribution of subglacial flow (identified as an end member, enriched in EC) from glacier melt water to stream runoff, whereas spring water in the study area could not be considered as an end member. The isotopic composition of snow, glacier ice, and melt water was not significantly correlated with the sampling point elevation, and the spatial variability was more likely affected by postdepositional processes. The high spatial and temporal variability in the tracer signature of the end members (subglacial flow, rain water, glacier melt water, and residual winter snow), together with small daily variability in stream water δ2H dynamics, are problematic for the quantification of the contribution of the identified end members to stream runoff, and call for further research, possibly integrated with other natural or artificial tracers.  相似文献   

6.
In glacierized catchments, meteorological inputs driving surface melting are translated into runoff outputs mediated by the glacier hydrological system: analysis of the relationship between meteorology and diurnal and seasonal patterns of runoff should reflect the functioning of that system, with the role of meltwater storage likely to be of particular importance. Daily meltwater storage is determined for a glacier at 78 °N in the Svalbard archipelago, by comparing inputs calculated from a surface energy balance model with measured outputs (proglacial discharge). Solar radiation, air temperature, wind speed and proglacial discharge are then analysed by regression and time‐series methods, in order to assess the meteorology–discharge relationship and its variation at diurnal and seasonal time‐scales. The recorded discharge time‐series can be divided into two contrasting intervals: up to early August, proglacial discharge was high and variable, mean hydrographs showed little indication of diurnal cycling, ARIMA models of discharge indicated a non‐seasonal, moving‐average generating process, and there was a net loss of meltwater from storage; from early August, proglacial discharge was low and relatively invariable, but with clearer diurnal cycles, regression models of discharge showed substantially improved correlations with air temperature and solar radiation, ARIMA models indicated a non‐seasonal, autoregressive generating process, and eventually a seasonal component, and there was a net gain in meltwater storage. The transition between the two periods is brief compared with the duration of the melt season. The runoff response to meteorology therefore lacks the strongly progressive element previously identified in mid‐latitude glacierized catchments. In particular, the glacier hydrological system only appears responsive to diurnal forcing following the depletion of the seasonal snowpack meltwater store. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

7.
Meteorological observations at high elevations in mountainous regions are often lacking. One opportunity to fill this data gap is through the use of downscaled output from weather reanalysis models. In this study, we tested the accuracy of downscaled output from the North American Regional Reanalysis (NARR) against high‐elevation surface observations at four ridgetop locations in the southern Coast Mountains of British Columbia, Canada. NARR model output was downscaled to the surface observation locations through three‐dimensional interpolation for air temperature, vapour pressure and wind speed and two‐dimensional interpolation for radiation variables. Accuracy was tested at both the 3‐hourly and daily time scales. Air temperature displayed a high level of agreement, especially at the daily scale, with root mean square error (RMSE) values ranging from 0.98 to 1.21 °C across all sites. Vapour pressure downscaling accuracy was also quite high (RMSE of 0.06 to 0.11 hPa) but displayed some site specific bias. Although NARR overestimated wind speed, there were moderate to strong linear relations (r2 from 0.38 to 0.84 for daily means), suggesting that the NARR output could be used as an index and bias‐corrected. NARR output reproduced the seasonal cycle for incoming short‐wave radiation, with Nash–Sutcliffe model efficiencies ranging from 0.78 to 0.87, but accuracy suffered on days with cloud cover, resulting in a positive bias and RMSE ranged from 42 to 46 Wm? 2. Although fewer data were available, incoming long‐wave radiation from NARR had an RMSE of 19 Wm? 2 and outperformed common methods for estimating incoming long‐wave radiation. NARR air temperature showed potential to assist in hydrologic analysis and modelling during an atmospheric river storm event, which are characterized by warm and wet air masses with atypical vertical temperature gradients. The incorporation of a synthetic NARR air temperature station to better represent the higher freezing levels resulted in increased predicted peak flows, which better match the observed run‐off during the event. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A spatially distributed, physically based, hydrologic modeling system (MIKE SHE) was applied to quantify intra‐ and inter‐annual discharge from the snow and glacierized Zackenberg River drainage basin (512 km2; 20% glacier cover) in northeast Greenland. Evolution of snow accumulation, distribution by wind‐blown snow, blowing‐snow sublimation, and snow and ice surface melt were simulated by a spatially distributed, physically based, snow‐evolution modelling system (SnowModel) and used as input to MIKE SHE. Discharge simulations were performed for three periods 1997–2001 (calibration period), 2001–2005 (validation period), and 2071–2100 (scenario period). The combination of SnowModel and MIKE SHE shows promising results; the timing and magnitude of simulated discharge were generally in accordance with observations (R2 = 0·58); however, discrepancies between simulated and observed discharge hydrographs do occur (maximum daily difference up to 44·6 m3 s?1 and up to 9% difference between observed and simulated cumulative discharge). The model does not perform well when a sudden outburst of glacial dammed water occurs, like the 2005 extreme flood event. The modelling study showed that soil processes related to yearly change in active layer depth and glacial processes (such as changes in yearly glacier area, seasonal changes in the internal glacier drainage system, and the sudden release of glacial bulk water storage) need to be determined, for example, from field studies and incorporated in the models before basin runoff can be quantified more precisely. The SnowModel and MIKE SHE model only include first‐order effects of climate change. For the period 2071–2100, future IPCC A2 and B2 climate scenarios based on the HIRHAM regional climate model and HadCM3 atmosphere–ocean general circulation model simulations indicated a mean annual Zackenberg runoff about 1·5 orders of magnitude greater (around 650 mmWE year?1) than from today 1997–2005 (around 430 mmWE year?1), mainly based on changes in negative glacier net mass balance. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
In high elevation cold regions of the Tibetan Plateau, suspended sediment transfer from glacier meltwater erosion is one of the important hydrological components. The Zhadang glacier is a typical valley‐type glacier in the Nyainqentanglha Mountains on the Tibetan Plateau. To make frequent and long period records of meltwater runoff and sediment processes in the very high elevation and isolated regions, an automatic system was installed near the glacier snout (5400 m a.s.l) in August 2013, to measure the transient discharge and sediment processes at 5‐min interval, which is shorter than the time span for the water flow to traverse the catchment from the farthest end to the watershed outlet. Diurnal variations of discharge, and suspended sediment concentration (SSC) were recorded at high frequency for the Zhadang glacier, before suspended sediment load (SSL) was computed. Hourly SSC varied from the range of 0.2 kg/m3 to 0.5 kg/m3 (at 8:00–9:00) to the range of 2.0 kg/m3 to 4.0 kg/m3 (at 17:00–18:00). The daily SSL was 32.24 t during the intense ablation period. Hourly SSC was linearly correlated with discharge (r = 0.885**, n = 18, p < 0.01). A digit‐eight hysteresis loop was observed for the sediment transport in the glacier area. Air temperature fluctuations influence discharge, and then result in the sediment variations. The results of this study provide insight into the responses of suspended sediment delivery processes with a high frequency data in the high elevation cold regions. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
《水文科学杂志》2013,58(1):278-291
Abstract

Hydrological and glaciological data were gathered in the watershed (1.37 km2) of the Antizana Glacier 15 (0.7 km2) in the periods 1997–2002 and 1995–2005, respectively. In addition, tracer experiments were carried out to analyse the flow through permeable morainic deposits located between the glacier snout and the runoff gauging station. Over 11 years, the mean specific net balance of the glacier was negative (–627 mm w.e.), despite the occurrence of positive values in the La Niña years (1999–2000). From the glacier net mass balance between 1997 and 2002, it was found that the mean flow originating from ice melt was significantly higher than the mean discharge measured at the hydrological station. Analyses of tracer experiments and of the different components of the hydrological balance suggest groundwater flow that originates below the glacier accounts for the remaining water. This result is important for regional analyses of available water resources and for the relationship between hydro-cryospheric processes and volcanic activity.  相似文献   

11.
In arid environments, thermal oscillations are an important source of rock weathering. Measurements of temperature have been made on the surface of rocks in a desert environment at a sampling interval of 0·375 s, with simultaneous measurements of wind speed, air temperature, and incoming shortwave radiation. Over timescales of hours, the temperature of the rock surface was determined primarily by shortwave radiation and air temperature, while rapid temperature variations, high dT/dt, at intervals of seconds or less, were determined by wind speed. The maximum values of temperature change and time spent above 2°C min?1 increased at high measurement rates and were much higher than previously reported. The maximum recorded value of dT/dt was 137°C min?1 and the average percentage time spent above 2°C min?1 was ~70 ± 13%. Maximum values of dT/dt did not correlate with the maximum values of time spent above 2°C min?1. Simultaneous measurements of two thermocouples 5·5 cm apart on a single rock surface had similar temperature and dT/dt values, but were not correlated at sampling intervals of less than 10 s. It is suggested that this is resulting from rapid fluctuations due to small spatial and timescale wind effects that are averaged out when data is taken at longer sampling intervals, ~10 s or greater. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

12.
This paper examines characteristics of meteorological and runoff time-series collected from the Brøggerbreen glacier basin, Svalbard, during 1991 and 1992. Proglacial discharge and electrical conductivity were monitored at two gauging stations: one immediately downstream of the terminus of Austre Brøggerbreen and another c. 2·5 km downstream, in order to assess the contribution of the intervening proglacial sandur. Meteorological time-series (incident radiation, wind speed and direction, air temperature and precipitation) were monitored on the proglacial sandur. Changes in wind direction, incident radiation receipt and air temperature were used as a basis for separating the time-series into different periods. These periods allowed the relative significance of advective and incident (short-wave) radiative forcing of air temperatures to be determined at diurnal and synoptic time-scales. The analysis shows that incident radiation dominated over advection in the forcing of diurnal variations in air temperature during all the periods. At the synoptic scale, both processes were periodically dominant in forcing air temperature variability. An examination of synoptic charts supports the use of ground level measurements to describe the effect of energy advection upon the synoptic air temperature variability and indicates the role of large-scale circulation patterns in the delivery of energy for ablation under different conditions. Interrelationships between the hydrological and meteorological time-series are then used to characterize the response of the glacierized part of the catchment to meteorological forcing throughout the two ablation seasons. The analyses show that the recession of the snowpack across the proglacial and glacial portions of the basin has an important effect on the catchment contributing area contributing to runoff and the lag between energy inputs and meltwater discharge outputs. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
Arctic glaciers are rapidly responding to global warming by releasing organic carbon (OC) to downstream ecosystems. The glacier surface is arguably the most biologically active and biodiverse glacial habitat and therefore the site of important OC transformation and storage, although rates and magnitudes are poorly constrained. In this paper, we present measurements of OC fluxes associated with atmospheric deposition, ice melt, biological growth, fluvial transport and storage (in superimposed ice and cryoconite debris) for a supraglacial catchment on Foxfonna glacier, Svalbard (Norway), across two consecutive years. We found that in general atmospheric OC input (averaging 0.63 ± 0.25 Mg a-1 total organic carbon, i.e. TOC, and 0.40 ± 0.22 Mg a-1 dissolved organic carbon, i.e. DOC) exceeded fluvial OC export (0.46 ± 0.04 Mg a-1 TOC and 0.36 ± 0.03 Mg a-1 DOC). Early in the summer, OC was mobilised in snowmelt but its release was delayed by temporary storage in superimposed ice on the glacier surface. This delayed the export of 28.5% of the TOC in runoff. Biological production in cryoconite deposits was a negligible potential source of OC to runoff, while englacial ice melt was far more important on account of the glacier's negative ice mass balance (–0.89 and –0.42 m a-1 in 2011 and 2012, respectively). However, construction of a detailed OC budget using these fluxes shows an excess of inputs over outputs, resulting in a net retention of OC on the glacier surface at a rate that would require c. 3 years to account for the OC stored as cryoconite debris. © 2018 John Wiley & Sons, Ltd.  相似文献   

14.
There are still relatively few hydrochemical studies of glacial runoff and meltwater routing from the high latitudes, where non-temperate glacier ice is frequently encountered. Representative samples of glacier meltwater were obtained from Scott Turnerbreen, a ‘cold-based’ glacier at 78° N in the Norwegian high Arctic archipelago of Svalbard, during the 1993 melt season and analysed for major ion chemistry. Laboratory dissolution experiments were also conducted, using suspended sediment from the runoff. Significant concentrations of crustal weathering derived SO2−4 are present in the runoff, which is characterized by high ratios of SO2−4: (SO2−4+HCO3) and high p(CO2). Meltwater is not routed subglacially, but flows to the glacier terminus through subaerial, ice marginal channels, and partly flows through a proglacial icing, containing highly concentrated interstitial waters, immediately afront the terminus. The hydrochemistry of the runoff is controlled by: (1) seasonal variations in the input of solutes from snow- and icemelt; (2) proglacial solute acquisition from the icing; and (3) subaerial chemical weathering within saturated, ice-cored lateral moraine adjoining drainage channels at the glacier margins, sediment and concentrated pore water from which is entrained by flowing meltwater. Diurnal variations in solute concentration arise from the net effects of variable sediment pore water entrainment and dilution in the ice marginal streams. Explanation of the hydrochemistry of Scott Turnerbreen requires only one major subaerial flow path, the ice marginal channel system, in which seasonally varying inputs of concentrated snowmelt and dilute icemelt are modified by seepage or entrainment of concentrated pore waters from sediment in lateral moraine, and by concentrated interstitial waters from the proglacial icing, supplied by leaching, slow drainage at grain intersections or simple melting of the icing itself. The ice marginal channels are analogous neither to dilute supra/englacial nor to concentrated subglacial flow components. © 1998 John Wiley & Sons, Ltd.  相似文献   

15.
Abstract

Abstract Routine estimates of daily incoming solar radiation from the GOES-8 satellite were compared to locally measured values in Florida. Longwave radiation estimates corrected using GOES-derived cloud amount and cloud top temperature products improved net radiation estimates as compared to a clear sky longwave approach. The Penman-Monteith, Turc, Hargreaves and Makkink models were applied using GOES-derived estimates of solar radiation and net radiation to predict daily evapotranspiration and were compared to evapotranspiration measured with an eddy-correlation system in an emergent wetland experimental site in north-central Florida under unstressed conditions. While the Penman-Monteith model provided the best estimates of evapotranspiration (R 2 = 0.92), the empirical Makkink method demonstrated nearly comparable agreement (R 2 = 0.90) using only the GOES solar radiation and measured temperature. The results show that it is possible to generate spatially distributed daily potential evapotranspiration estimates using GOES-derived solar radiation and net radiation with limited additional surface measurements.  相似文献   

16.
We develop a simple model to evaluate the daily flow discharges in the ablation season for the 11 km2 Pantano basin in the Retiche Italian Alps, based upon the data gathered during a three years field campaign. The Pantano basin embeds the Venerocolo debris covered and the Avio debris free glaciers, covering 2.14 km2 in the Adamello Group, where the widest Italian glacier Adamello is located. First, degree-day models based upon air temperature are tuned to calculate snow and ice melt at daily scale. Glaciers’ meteorological data are collected from an automatic weather station (AWS), operating on the glacier during summer 2007. The melt factors in the debris covered areas of the glacier are estimated against debris thickness, using a data driven parameterization. The flow discharge from the catchment is estimated using semi distributed flow routing for the ablation seasons of four years, from 2006 to 2009. The predicted discharges are compared to those derived from inverse reservoir's routing at the Benedetto lake, catching the basin outflow. The proposed approach is valuable as a tool to investigate the hydrology of poorly gauged glacierized areas, including those with debris covered ice, widely diffused and yet poorly understood. Pending accurate parameterization the approach is usable for water resources evaluation and for long term assessment of the climate change impact on the glacierized areas within the Alps.  相似文献   

17.
The observed retreat of several Himalayan glaciers and snow packs is a cause of concern for the huge population in southern Asia that is dependent on the glacial‐fed rivers emanating from Himalayas. There is considerable uncertainty about how cryospheric recession in the Himalayan region will respond to climate change, and how the water resource availability will be affected. As a first step towards quantifying the contribution of glacier‐melt water, hydrograph separation of River Ganga at Rishikesh into its constituent components, namely (i) surface runoff, (ii) glacial ice‐melt and (iii) groundwater discharge has been done in this paper. A three‐component mixing model has been employed using the values of δ18O and electrical conductivity (EC) of the river water, and its constituents, to estimate the time‐varying relative fraction of each component. The relative fraction of the surface runoff peaks (70–90%) during winter, due to the near‐zero contribution of glacial ice‐melt, essentially represents the melting of surface snow from the catchment. The contribution of glacial ice‐melt to the stream discharge peaks during summer and monsoon reaches a maximum value of ~40% with an average of 32%. The fraction of groundwater discharge varies within a narrow range (15 ± 5%) throughout the year. On the basis of the variation in the d‐excess values of river water, it is also suggested that the snow‐melt and ice‐melt component has a significant fraction derived from winter precipitation with moisture source from mid‐latitude westerlies (also known as western disturbances). Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
River supercooling and ice formation is a regular occurrence throughout the winter in northern countries. The resulting frazil ice production can obstruct the flow through intakes along the river, causing major problems for hydropower and water treatment facilities, among others. Therefore, river ice modellers attempt to calculate the river energy budget and predict when supercooling will occur in order to anticipate and mitigate the effects of potential intake blockages. Despite this, very few energy budget studies have taken place during freeze-up, and none have specifically analysed individual supercooling events. To improve our understanding of the freeze-up energy budget detailed measurements of air temperature, relative humidity, barometric pressure, wind speed and direction, short- and longwave radiation, and water temperature were made on the Dauphin River in Manitoba. During the river freeze-up period of late October to early November 2019, a total of six supercooling events were recorded. Analysis of the energy budget throughout the supercooling period revealed that the most significant heat source was net shortwave radiation, reaching up to 298 W/m2, while the most significant heat loss was net longwave radiation, accounting for losses of up to 135 W/m2. Longwave radiation was also the most significant heat flux overall during the individual supercooling events, accounting for up to 84% of the total heat flux irrespective of flux direction, highlighting the importance of properly quantifying this flux during energy budget calculations. Five different sensible (Qh) and latent (Qe) heat flux calculations were also compared, using the bulk aerodynamic method as the baseline. It was found that the Priestley and Taylor method most-closely matched the bulk aerodynamic method on a daily timescale with an average offset of 8.5 W/m2 for Qh and 10.1 W/m2 for Qe, while a Dalton-type equation provided by Webb and Zhang was the most similar on a sub-daily timescale with average offsets of 20.0 and 14.7 W/m2 for Qh and Qe, respectively.  相似文献   

19.
The impact of surface melt patterns and the Indian summer monsoon (ISM) is examined on the varying contributions of end member (snow, glacier ice, and rain) to proglacial streamflow during the ablation period (June–October) in the Chhota Shigri glaciated basin, Western Himalaya. Isotopic seasonality observed in the catchment precipitation was generally reflected in surface runoff (supraglacial melt and proglacial stream) and shows a shift in major water source during the melt season. Isotopically correlated (δ18O–δD) high deuterium intercept in the surface runoff suggests that westerly precipitation acts as the dominant source, augmenting the other snow- and ice-melt sources in the region. The endmember contributions to the proglacial stream were quantified using a three-component mixing. Overall, glacier ice melt is the major source of proglacial discharge. Snowmelt is the predominant source during the early ablation season (June) and the peak ISM period (August and September), whereas ice melt reaches a maximum in the peak melt period (July). The monthly contribution of rain is on the lower side and shows a steady rise and decline with onset and retreat of the monsoon. These results are persistent with the surface melt pattern observed in Chhota Shigri glacier, Upper Chandra basin. Moreover, the role of the ISM in Chhota Shigri glacier is unvarying to that observed in other glacierized catchments of Upper Ganga basin. Thus, this study augments the significant role of the ISM in glacier mass balance up to the boundary of the central-western Himalayan glaciated region.  相似文献   

20.
Recent understanding of chemical weathering in glacierized catchments has been focused on mid-latitude, Alpine catchments; comparable studies from the high latitudes are currently lacking. This paper attempts to address this deficiency by examining solute provenance, transport and denudation in a glacierized catchment at 78°N in the Svalbard High Arctic archipelago. Representative samples of snow, glacier ice, winter proglacial icing and glacier meltwater were obtained from the catchment during spring and summer 1993 and analysed for major ion chemistry. Seasonal variations in the composition of glacier meltwater occur and are influenced by proglacial solute acquisition from the icing at the very start of the melt season, and subsequently by a period of discharge of concentrated snowmelt caused by snowpack elution; weathering within the ice-marginal channels that drain the glacier, particularly carbonation reactions, continues to furnish solute to meltwater when suspended sediment concentrations increase later in the melt season. Partitioning the solute flux into its various components (sea-salt, crustal, aerosol and atmospheric sources) shows that c. 25% of the total flux is sea salt derived, consistent with the maritime location of the glacier, and c. 71% is crustally derived. Estimated chemical denudation, 160 meq m−2 a−1 sea salt-corrected cation equivalent weathering rate, is somewhat low compared with other studied glacierized catchments (estimates in the range 450–1000 meq m−2 a−1), which is probably attributable to the relatively short melt season and low specific runoff in the High Arctic. A positive relationship was identified between discharge and CO2 drawdown owing to carbonation reactions in turbid meltwater. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号