首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We suggest a practical method for estimating strain–modulus–damping relationships for utilization in equivalent-linear site response analyses, so that the necessity for more sophisticated sampling and testing procedures can be justified. The method employs the commercial cyclic testing apparatuses, which have limitations in low-strain ranges, and the in-situ seismic tests. The shear modulus at about 1% cyclic shear strain amplitude and the shear-wave velocity measured in-situ is used for building a hyperbolic relationship between shear stress and shear strain. An extension of Masing׳s rule and the constraint on hysteretic damping at 1% cyclic shear strain amplitude leads to a strain–damping relationship. By putting a particular emphasis on the soils of Adapazarı, a city famous for the concentrated damage on alluvium basin during the 1999 Kocaeli (Mw7.4) earthquake, we demonstrated the usefulness of the method, and concluded that the shear-modulus reduction and damping characteristics of Adapazarı soils can yield to site amplification factors greater than those predicted by strain–modulus–damping relationships presented in literature, and can more efficiently explain the concentration of damage on the alluvium basin. Through the comparisons of spectral amplification factors computed by equivalent-linear site response analyses, we justified the necessity to run a more sophisticated testing program on determination of cyclic stress–strain behavior of Adapazarı soils, and consequently to consider transient nonlinear site-response analyses in order to reduce the possible bias in calculation of spectral amplification factors.  相似文献   

2.
The paper focuses on the seismic response of walls in dual (frame + wall) structures, with particular emphasis on shear behaviour. Although dual structures are widely used in earthquake-resistant medium-rise and high-rise buildings, the provisions of modern seismic codes regarding design of walls for shear are not fully satisfactory, particularly in the (common) case that walls of substantially different length form part of the same structure. Relevant provisions of the leading seismic codes are first summarised and their limitations discussed. Then an extensive parametric study is presented, involving two multistorey dual systems, one with identical walls, and one with walls with unequal length, designed to the provisions of Eurocode 8 for two different ductility classes (H and M). The walls of the same structures are also designed to other methods such as those used in New Zealand and Greece. The resulting different designs are then assessed by subjecting the structures to a suite of strong ground motions, carrying out inelastic time history analysis, and comparing the results against design action effects. It is found that although modern code procedures generally lead to satisfactory performance (differences among them do exist), the design of walls seems to be less appropriate in the case of unequal length walls. For this case a modified procedure is proposed, consisting of an additional factor to account for the relative contribution of walls of the same length to the total base and an improved envelope of wall shears along the height; this improved method seems to work better than the other procedures evaluated herein, but further calibration is clearly required.  相似文献   

3.
常规土类动剪切模量阻尼比超越概率计算方法   总被引:1,自引:0,他引:1       下载免费PDF全文
土的动剪切模量比和阻尼比是土层地震反应分析、工程场地地震安全性评价和地震小区划工作中的必备参数,但其不确定性显著,对地震动和抗震设计影响很大。本文以我国常规土类动剪切模量比和阻尼比与剪应变非线性关系试验为基础,研究考虑这两个动力参数变异性下其超越概率的计算方法。方法包括了试验数据的整理、超越概率的计算以及两个动力参数和超越概率关系模拟等几个步骤,最后给出了我国常规土类动剪切模量比和阻尼比超越概率的计算公式,为我国基于概率和可靠度思想的工程地震安全风险评估提供了一定基础。  相似文献   

4.
At present, methods based on allowable displacements are frequently used in the seismic design of earth retaining structures. However, these procedures ignore both the foundation soil deformability and the seismic amplification of the soil placed behind the retaining wall. Thus, they are not able to predict neither a rotational failure mechanism nor seismic induced lateral displacements with an acceptable degree of accuracy for the most general case. In this paper, a series of 2D finite-element analyses were carried out to study the seismic behavior of gravity retaining walls on normally consolidated granular soils. Chilean strong-motion records were applied at the bedrock level. An advanced non-linear constitutive model was used to represent both the backfill and foundation soil behavior. This elastoplastic model takes into account both the stress dependency of soil stiffness and coupling between shear and volumetric strains. In unloading–reloading cycles, the non-linear shear-modulus reduction with shear strain amplitude is considered. Interface elements were used to model soil–structure interaction. Routine-design charts were derived from the numerical analyses to predict the lateral movements at the base and top of gravity retaining walls located at sites with similar seismic characteristics to the Chilean subduction zone. Thus, wall seismic rotation can also be obtained. The developed charts consider wall dimensions, granular soil properties, bedrock depth, and seismic input motion characteristics. As shown, the proposed charts match well with available experimental data.  相似文献   

5.
In order to further improve the seismic performance of RC shear walls, a new composite shear wall with concrete filled steel tube (CFT) columns and concealed steel trusses is proposed. This new shear wall is a double composite shear wall; the first composite being the use of three different force systems, CFT, steel truss and shear wall, and the second the use of two different materials, steel and concrete. Three 1/5 scaled experimental specimens: a traditional RC shear wall, a shear wall with CFT columns, and a shear wall with CFT columns and concealed steel trusses, were tested under cyclic loading and the seismic performance indices of the shear walls were comparatively analyzed. Based on the data from these experiments, a thorough elastic-plastic finite element analysis and parametric analysis of the new shear walls were carried out using ABAQUS software. The finite element results of deformation, stress distribution, and the evolution of cracks in each phase were compared with the experimental results and showed good agreement. A mechanical model was also established for calculating the load-carrying capacity of the new composite shear walls. The results show that this new type of shear wall has improved seismic performance over the other two types of shear walls tested.  相似文献   

6.
结构弹塑性反应可用等效线性化方法中的等效刚度和等效阻尼比进行计算。为研究钢筋混凝土剪力墙的等效刚度和等效阻尼比,通过分析剪力墙的力-位移简化四折线滞回模型,推导了其屈服点和峰值点的等效刚度、等效周期和等效阻尼比的计算公式。为验证其准确性和适用性,采用提出的峰值点等效刚度、等效阻尼比公式和FEMA 440建议的公式,分别计算了42片钢筋混凝土剪力墙试件的等效刚度和等效阻尼比,并进行了对比分析。结果表明:提出的计算公式和FEMA 440建议的公式所得到的等效周期和等效阻尼比值与试验值比较吻合,因此,所提出的计算剪力墙的等效周期和等效阻尼比的公式较为合理。  相似文献   

7.
在地震荷载作用下,自由场地会产生土体侧向变形和地表响应放大现象。由于土体的高度非线性,计算自由场地地震响应时,不同的阻尼比及剪切模量取值是造成其计算结果与试验结果相差较大的原因之一。目前动力计算常采用瑞利阻尼方法,其系数取值会在一定程度上影响计算结果。选用两模态简化瑞利阻尼系数计算方法,分析土体阻尼比及控制频率的取值对计算结果的影响,对比离心机模型试验,利用开源有限元平台OpenSees,采用适合于土体动力分析的多屈服面本构模型(PDMY),建立剪切梁模型模拟三维自由场地,并分析瑞利阻尼参数对自由场地地震响应和侧向变形计算结果的影响。结果表明,针对相对密度为60%的Nevada干砂,阻尼比为4%、控制频率比为5时,场地响应计算结果与试验结果较为符合。综合分析显示场地非线性响应时域计算时,应特别注意选用的瑞利阻尼参数值。  相似文献   

8.
Vertical loads such as gravity may have an important influence on the seismic response of buildings. In this paper, the continuous shear-beam model is extended to study the seismic demand of shear buildings with consideration of the gravity load effect under near-field ground motions. An analytical solution of the free motion equation of as gravity shear beam model is provided in terms of a Bessel series. A method for computing interstory drift spectra is proposed. The interstory drift spectra for two near-field records with distinct pulses are presented to illustrate the effects of gravity and the damping ratio. The interstory drift spectra are also used to analyze the spectral characteristics of near fault ground motion during the 2008 Wenchuan earthquake. The effects of the gravity load ratio, damping ratio and higher modes are investigated and discussed.  相似文献   

9.
附加或不附加粘滞阻尼墙的RC框架试验与分析   总被引:1,自引:0,他引:1  
本文阐述了附加或不附加粘滞阻尼墙的2个相同的RC框架模型振动台试验和理论分析的情况.这2个钢筋混凝土框架模型为3层1跨两开间,几何相似关系大致为1:2.将阻尼墙附加到一个RC框架模型当中,先后对附加或不附加阻尼墙的2个相同的RC框架模型进行振动台试验.试验结果表明,阻尼墙有效减小了框架模型的地震反应.对耗能框架模型和普通框架模型进行了弹性和弹塑性时程分析,计算结果和试验结果吻合良好.改变阻尼墙的参数进行分析,结果表明选取合适的阻尼墙参数,才能达到最好的耗能减振效果;适当减小层间位移较小处的阻尼墙参数,对减振效果影响很小而又能节省投资.  相似文献   

10.
余培杰  翟燕 《地震工程学报》2019,41(6):1514-1520
为提升剪力墙抗震性能分析精度,以某高层建筑工程楼体剪力墙为背景,将静力弹塑性分析方法与能量等效准则相结合,确定房屋剪力墙结构沿2个主轴方向的三线性恢复力参数,通过参数构建房屋剪力墙相近层模型。使用三维有限元模型模拟房屋剪力墙工程楼体,并采用相近层模型模拟该楼体三维有限元模型抗震性能的动力时程。结果表明,随着地震水平和楼层的增加,房屋剪力墙层间侧移角包络值和顶点侧移角包络值都在明显增加。设置黏滞流体阻尼器可改善房屋剪力墙受两种地震波的作用,在Ⅸ度罕见地震作用下,房屋剪力墙结构的X向减震效果比Y向好,房屋剪力墙X向和Y向层间位移角的最大减震率分别约为38%与18%。  相似文献   

11.
韩鹏飞  隋孝民 《地震工程学报》2015,37(2):585-593,611
介绍基于性能抗震设计的核心理念,以支挡结构震害调查分析为背景,阐述开展高烈度区重力式挡墙基于性能抗震设计研究的必要性;构建重力式挡墙基于性能的抗震设计框架,归类分析现行规范与基于性能抗震设计的关键技术问题;依据支挡结构震害调查及大型振动台模型试验,提出位移指数可作为衡量挡墙抗震性能的量化指标,确定重力式挡墙基于性能抗震设计的性能准则及流程;经对比计算基于性能与规范抗震设计的挡墙算例,显示基于性能抗震设计的优越性,为高烈度区重力式挡墙基于性能抗震设计的工程应用提出建议。  相似文献   

12.
The seismic evaluation of existing buildings is a more difficult task than the seismic design of new buildings. Non-linear methods are needed if realistic results are to be obtained. However, the application to real complex structures of various evaluation procedures, which have usually been tested on highly idealized structural models, is by no means straightforward. In the paper, a practice-oriented procedure for the seismic evaluation of building structures, based on the N2 method, is presented, together with the application of this method to an existing multi-storey reinforced concrete building. This building, which is asymmetric in plan and irregular in elevation, consists of structural walls and frames. It was designed in 1962 for gravity loads and a minimum horizontal loading (2% of the total weight). The main results presented in terms of the global and local seismic demands are compared with the results of non-linear dynamic response-history analyses. As expected, the structure would fail if subjected to the design seismic action according to Eurocode 8. The shear capacity of the structural walls is the most critical. If the shear capacity of these elements was adequate, the structure would be able to survive the design ground motion according to Eurocode 8, in spite of the very low level of design horizontal forces. The applied approach proved to be a feasible tool for the seismic evaluation of complex structures. However, due to the large randomness and uncertainty which are involved in the determination of both the seismic demand and the seismic capacity, only rough estimates of the seismic behaviour of such structures can be obtained.  相似文献   

13.
在不规则结构中,填充墙的表现对框架结构的局部以及整体抗震性能的表现显得非常重要。随着阻尼填充墙的深入研究,大大提高了框架填充墙结构的抗震性能。但由于阻尼填充墙施工工艺复杂、施工成本较高,很难得以大规模使用。为了实现既降低施工的难度和成本又提高框架结构的抗震性能,本文选取一座不规则框架结构对其地震表现进行分析。采用局部优化布置阻尼填充墙的方法,达到既提高结构抗震性能又降低施工难度和成本的要求,为框架填充墙结构的设计提供一定的建议。  相似文献   

14.
This review type of paper shows how the poroelastodynamic theory of Biot can be applied to some soil dynamics problems encountered in transportation engineering, which have been solved by the present authors. These problems involve rigid walls retaining poroelastic soil and subjected to harmonic seismic waves and moving loads on poroelastic soil. Both classes of problems involve a soil layer over bedrock, are of the plane strain type and are solved analytically by two methods: a direct (almost exact and exact for the above two classes of problems) method and an approximate method. The effects of shear modulus, porosity, permeability and hysteretic damping of the soil medium as well as the seismic frequency for retaining walls and velocity for moving loads on the dynamic response are numerically evaluated in order to assess their relative importance on that response.  相似文献   

15.
The paper contains a discussion of the inelastic dynamic magnification of seismic shear forces in cantilever walls with rectangular cross-sections. An extensive parametric study was performed in order to determine the reliability of the procedure in Eurocode 8 (EC8). A large number of single cantilever walls which are characteristic for the design practice in Europe and designed to satisfy all the EC8 requirements were analysed. The results obtained with the (modified) code procedures were compared with the results of inelastic response history analyses. If properly applied, the EC8 procedure for DCH walls usually yields good results for the base shears. However, as presently formulated and understood in the EC8, it can yield significantly incorrect results (overestimations of up to 40%). For this reason three modifications were introduced: (1) Keintzel’s formula, which is adopted in EC8, should be used in combination with the seismic shears obtained by considering the first mode of the excitation only; (2) the upper limit of the shear magnification factor should be related to the total shear force; and (3) a variable shear magnification factor along the height of the wall should be applied. The present procedure in EC8 for DCM structures (using a constant shear magnification factor of 1.5 for all walls) is non-conservative. For DCM walls it is strongly recommended that the same procedure as required for DCH walls be used.  相似文献   

16.
改善混凝土剪力墙抗震性能的研究   总被引:1,自引:0,他引:1  
混凝土剪力墙被广泛运用于各类结构体系中。它作为主要的抗侧力单元,其刚度大、承载力高,但当剪力墙以受剪破坏为主时,其抗震性能较差。为此,不少学者提出了各种改善混凝土剪力墙抗震性能的措施。本文对几种采用不同构造措施的剪力墙作了简要介绍,特别是介绍一种新型双重组合剪力墙。  相似文献   

17.
This paper evaluates the seismic resistance of steel moment resisting frames (MRFs) with supplemental fluid viscous dampers against collapse. A simplified design procedure is used to design four different steel MRFs with fluid viscous dampers where the strength of the steel MRF and supplemental damping are varied. The combined systems are designed to achieve performance that is similar to or higher than that of conventional steel MRFs designed according to current seismic design codes. Based on the results of nonlinear time history analyses and incremental dynamic analyses, statistics of structural and non‐structural response as well as probabilities of collapse of the steel MRFs with dampers are determined and compared with those of conventional steel MRFs. The analytical frame models used in this study are reliably capable to simulate global frame collapse by considering full geometric nonlinearities as well as the cyclic strength and stiffness deterioration in the plastic hinge regions of structural steel members. The results show that, with the aid of supplemental damping, the performance of a steel MRF with reduced design base shear can be improved and become similar to that of a conventional steel MRF with full design base shear. Incremental dynamic analyses show that supplemental damping reduces the probability of collapse of a steel MRF with a given strength. However, the paper highlights that a design base shear equal to 75% of the minimum design base shear along with supplemental damping to control story drift at 2% (i.e., design drift of a conventional steel MRF) would not guarantee a higher collapse resistance than that of a conventional MRF. At 75% design base shear, a tighter design drift (e.g., 1.5% as shown in this study) is needed to guarantee a higher collapse resistance than that of a conventional MRF. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Boundary effects of a laminar container in centrifuge shaking table tests   总被引:2,自引:0,他引:2  
Two dynamic centrifuge model tests were performed to simulate dry or saturated sand deposits subjected to 1 Hz base shaking. This experimental study investigated the boundary effects of a laminar container on the seismic response acquired from accelerometers and from pore pressure transducers, both of which were embedded in the sand bed at various depths and distances from the end walls. Under the tested configurations and the employed input motion used in the study, the test results revealed minimal boundary effects on the seismic responses. The measured maximum amplitude, main frequencies, phase lags of acceleration, and the profiles of the calculated RMS acceleration amplification factor were not affected by the boundaries if the instruments were positioned at a distance of more than one-twentieth of the model length from the end walls and were not positioned on the ground surface. No obvious discrepancies were observed in the time histories of excess pore water pressure, measured at a distance of one-fourth of the model length from the end walls. These results infer that variations in the seismic response at the end walls were minimal; hence the laminar container used in the study may be used effectively to simulate 1D shear wave propagation in centrifuge shaking table tests. However, for other testing configurations, a similar study should be undertaken for evaluating the boundary effect of the laminar container on the seismic responses.  相似文献   

19.
Sandwich masonry walls are widely used as energy-saving panels since the interlayer between the outer leaves can act as an insulation layer.New types of sandwich walls are continually being introduced in research and applications,and due to their unique bond patterns,experimental studies have been performed to investigate their mechanical properties,especially with regard to their seismic performance.In this study,three new types of sandwich masonry wall have been designed,and cyclic lateral loading tests were carried out on five specimens.The results showed that the specimens failed mainly due to slippage along the bottom cracks or the development of diagonal cracks,and the failure patterns were considerably influenced by the aspect ratio.Analysis was undertaken on the seismic response of the new walls,which included ductility,stiffness degradation and energy dissipation capacity,and no obvious difference was observed between the seismic performance of the new walls and traditional walls.Comparisons were made between the experimental results and the calculated results of the shear capacity.It is concluded that the formulas in the two Chinese codes(GB 50011 and GB 50003) are suitable for the calculation of the shear capacity for the new types of walls,and the formula in GB 50011 tends to be more conservative.  相似文献   

20.
收集天津地区近年来有代表性的具有完整土动力学参数作为实验数据的地震安全性评价报告66份,用两种统计方法按不同深度统计分析粉质黏土、黏土、粉土、砂土、淤泥质土等的实测土动力学参数,给出动剪切模量比和阻尼比平均值。选取2个典型工程场地,构建土层分析模型,进行土层地震反应分析计算。结果表明,本文得到的统计2值在天津地区具有一定的代表性和适用性,与实测值结果更为接近。对于获得原状土样困难的场地,特别是对于较薄的夹层土,可参照统计2结果进行分析计算。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号