首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A version of the global–local finite element method is presented for studying dynamic steady-state soil–structure interaction wherein the soil medium extends to infinity. Herein, only axisymmetric behaviour is considered. In this approach, conventional finite elements are used to model the structure and some portion of the surrounding soil medium considered to be homogeneous and isotropic. A complete set of outgoing waves in the form of spherical harmonics for the entire space is used to represent the behaviour in the half-space beyond the finite element mesh and these are termed the global functions. Full traction and displacement continuity is enforced at the finite element mesh interface with the outer region. On the free surface of the half-space in the outer field, traction-free surface conditions are enforced by demanding that a sequence of integrals of the weighted-average tractions must vanish. Numerical examples are presented for the response of different shaped foundations, resting on the free surface or at various submerged levels, due to a normal seismic plane compressional wave. Plots of differential scattering cross-sections show the angular distribution of the energy (its directional nature) of the scattered field.  相似文献   

2.
In this paper, a finite element model of a soil island is coupled to both a consistent transmitting boundary and a paraxial boundary, which are then used to model the propagation of waves in semi-infinite elastic layered media. The formulation is carried out in the frequency domain while assuming plane strain conditions. It is known that a discrete model of this type, while providing excellent results for a wide range of physical parameters in the context of a half-space problem, may deteriorate rapidly at low frequencies of excitation. This is so because at low frequencies the various waves in the model eventually attain characteristic wavelengths which exceed the distance of the bottom boundary, which then causes that boundary to fail. Also, the paraxial boundaries themselves break down at very low frequencies. In this paper, this difficulty is overcome and the model׳s performance is improved upon dramatically by incorporating an artificial buffer layer sandwiched between the bottom of the soil medium and the underlying elastic half-space. Applications dealing with rigid foundations resting on homogenous or layered half-space media are shown to exhibit significant improvement. Following extensive simulations, clear guidelines are provided on the performance of the coupled model and an interpretation is given on the engineering significance of the findings. Finally, clear recommendations are provided for the practical use of the proposed modelling strategy.  相似文献   

3.
A simplified analytical model including the coupled effects of the wheel–rail–soil system and geometric irregularities of the track is proposed for evaluation of the moving train load. The wheel–rail–soil system is simulated as a series of moving point loads on an Euler–Bernoulli beam resting on a visco-elastic half-space, and the wave-number transform is adopted to derive the 2.5D finite element formulation. The numerical model is validated by published data in the literature. Numerical predictions of ground vibrations by using the proposed method are conducted at a site on the Qin-Shen Line in China.  相似文献   

4.
The seismic response analysis of a base-isolated liquid storage tank on a half-space was examined using a coupling method that combines the finite elements and boundary elements. The coupled dynamic system that considers the base isolation system and soil–structure interaction effect is formulated in time domain to evaluate accurately the seismic response of a liquid storage tank. Finite elements for a structure and boundary elements for liquid are coupled using equilibrium and compatibility conditions. The base isolation system is modeled using the biaxial hysteretic element. The homogeneous half-space is idealized using the simple spring-dashpot model with frequency-independent coefficients. Some numerical examples are presented to demonstrate accuracy and applicability of the developed method.Consequently, a general numerical algorithm that can analyze the dynamic response of base-isolated liquid storage tanks on homogeneous half-space is developed in three-dimensional coordinates and dynamic response analysis is performed in time domain.  相似文献   

5.
The dynamic soil-tunnel interaction is studied by indirect boundary element method (IBEM), using the model of a rigid tunnel in layered half-space, which is simplified to a single soil layer on elastic bedrock, subjected to incident plane SH waves. The accuracy of the results is verified through comparison with the analytical solution. It is shown that soil-tunnel interaction in layered half-space is larger than that in homogeneous half-space and this interaction mechanism is essentially different from that of soil-foundation-superstructure interaction.  相似文献   

6.
The dynamic soil–structure interaction of a rigid rectangular foundation with the subsoil represents a mixed-boundary value problem. This problem is formulated in terms of a system of coupled Fredholm integral equations of the first kind. The subsoil is modelled by a homogeneous, linear-elastic and isotropic half-space which is perfectly bonded to the rigid, rectangular foundation. An approximate solution for the resultant loads between the foundation and the half-space due to a unit forced displacement or rotation is obtained using the Bubnov–Galerkin method. Using this method the displacement boundary value conditions are exactly satisfied and the contact stress distributions between the foundation and the half-space are approximated by series expansions of Chebyshev polynomials. This method provides a simple means of studying the soil-structure interaction of rectangular foundations with different inertia properties.  相似文献   

7.
A boundary element formulation for the dynamic analysis of axially and laterally loaded single piles and pile groups is presented. The piles are represented by compressible beam-column elements and the soil as a hysteretic elastic half-space. The governing equations of motion for the pile domain have been solved exactly for distributed periodic loading intensities. These solutions are then coupled with a numerical solution for the motion of the soil domain by satisfying equilibrium and compatibility at the pile-soil interface. The results obtained from the analysis compare favourably with those from alternative analyses, e.g. finite element, but at greatly reduced computational costs.  相似文献   

8.
The dynamic soil-tunnel interaction is studied by the model of a rigid tunnel embedded in layered half-space,which is simplified as a single soil layer on elastic bedrock to the excitation of P- and SV-waves.The indirect boundary element method is used,combined with the Green's function of distributed loads acting on inclined lines.It is shown that the dynamic characteristics of soil-tunnel interaction in layered half-space are different much from that in homogeneous half-space,and that the mechanism of soil-tunnel interaction is also different much from that of soil-foundation-superstructure interaction.For oblique incidence,the tunnel response for in-plane incident SV-waves is completely different from that for incident SH-waves,while the tunnel response for vertically incident SV-wave is very similar to that of vertically incident SH-wave.  相似文献   

9.
The foundation on deformable soil, which, in general, radiates energy, can be represented in structural dynamics as a simple spring-dashpot-mass model with frequency-independent coefficients. For the two limiting cases of a site, the homogeneous half-space and the homogeneous layer fixed at its base, the coefficients are specified in tables for varying parameters such as ratios of dimensions and Poisson's ratio. Rigid foundations on the surface and with embedment are considered for all translational and rotational motions. In a practical analysis of soil–structure interaction this dynamic model of the foundation is coupled directly to that of the structure, whereby a standard dynamics program is used. © 1997 by John Wiley & Sons, Ltd.  相似文献   

10.
The boundary element method is used to obtain dynamic stiffness functions of rigid cylindrical foundations embedded in a uniform or layered viscoelastic half-space. Dynamic stiffness functions of hemispherical foundations embedded in a uniform half-space are also computed. The direct integral equation formulation is used in combination with the complete space point load fundamental solution that is integrated numerically along the azimuthal coordinate. The approach is easy to implement because of the simplicity of the fundamental solution. The numerical results obtained by this method for cylindrical and hemispherical foundations are very close to corresponding published results obtained by different procedures. A parametric study shows the important effects of the Poisson's ratio on the dynamic stiffness functions of cylindrical foundations embedded in a uniform viscoelastic half-space. The effect of the bedrock compliance on the stiffness functions is also shown in the case of cylindrical foundations embedded in a soil layer that rests on a bedrock.  相似文献   

11.
The effect of soil conditions on strength reduction factors (SRFs) is investigated. Both site effect and soil-structure interaction (SSI) effect are considered in the study with special emphasis on the latter effect. The structure is modeled as an elasto-plastic single degree of freedom (SDOF) system, whereas the underlying soil is considered as a homogeneous half-space. The half-space is also replaced by a simplified 3DOF system, based on the concept of Cone Models. The whole 4DOF model is then analyzed under a total of 54 strong motions recorded on different soil types. A parametric study is done for a wide range of non-dimensional parameters, which completely define the problem. It is concluded that SSI reduces the SRF values, especially for the case of buildings located on soft soil. Consequently, using the fixed-base SRFs for soil-structure systems lead to non-conservative design forces. Simplified expressions are proposed to estimate SRF for soil-structure systems.  相似文献   

12.
A method to obtain the three-dimensional harmonic response of a infinitely long cylindrical shell of circular cross-section embedded in a layered viscoelastic half-space and subjected to harmonic plane waves impinging at an oblique angle with respect to the axis of the shell is presented. The procedure combines an indirect integral representation for the field in the exterior half-space with a model of the pipeline or tunnel based on Donnell shell theory. The integral representation for the soil is based on the use of moving Green's functions for the layered viscoelastic half-space. The accuracy of the formulation is tested by comparison of results obtained by using different discretizations. Extensive comparisons with previous two- and three-dimensional results for the case of a shell embedded in a uniform half-space and some new numerical results for a shell embedded in a multilayered half-space are presented in a companion paper.  相似文献   

13.
This paper explores dynamic soil–bridge interaction in high speed railway lines. The analysis was conducted using a general and fully three-dimensional multi-body finite element–boundary element model formulated in the time domain to predict vibrations caused by trains passing over the bridge. The vehicle was modelled as a multi-body system, the track and the bridge were modelled using finite elements and the soil was considered as a half-space by the boundary element method. The dynamic response of bridges to vehicle passage is usually studied using moving force and moving mass models. However, the multi-body system allows to consider the quasi-static and dynamic excitation mechanisms. Soil–structure interaction was taken into account by coupling finite elements and boundary elements. The paper presents the results obtained for a simply supported short span bridge in a resonant regime under different soil stiffness conditions.  相似文献   

14.
层状半空间中洞室对平面SH波的放大作用   总被引:1,自引:0,他引:1  
利用间接边界元法,求解了弹性层状半空间中洞室对入射平面SH波的放大作用问题,并以基岩上单一土层中洞室对入射平面SH波的放大作用为例进行了数值计算分析。本文模型的特点之一是考虑了层状场地的动力特性,因而更接近于实际工程;特点之二是计算精度非常高。研究表明,层状半空间中洞室对波的放大作用与均匀半空间中情况有着本质的差别;层状半空间中洞室附近地表动力响应由土层动力特性和洞室对波的散射二者共同决定。土层动力特性不仅影响洞室附近地表位移的幅值,还会影响地表位移的频谱。在土层的前几阶共振频率附近,随着基岩与土层剪切波速比的增大,土层的影响随之增大,而随着土层厚度的增加,土层的影响随之减小,并逐渐趋于均匀半空间情况。  相似文献   

15.
This paper compares the use of local and global shape functions in a boundary element method that is used in a prediction model for traffic induced vibrations. The boundary element formulation describes the interaction problem between a linear elastic layered half-space and a longitudinally invariant structure representing a road or a railway track. The boundary element formulation in the frequency–wavenumber domain is obtained by means of a weighted residual method. Constant element shape functions, as well as Legendre and Chebyshev shape functions are considered. Their effect on both accuracy and computational effort is investigated. The presence of a singularity in the Chebyshev based shape functions allows to obtain a better approximation for the soil tractions. The theory is applied to road traffic induced vibrations where the response is calculated in a large number of output points.  相似文献   

16.
An up to date literature survey on the dynamics of underground structures is presented briefly. The dynamic response of large three-dimensional underground structures to external or internal dynamic forces or to seismic waves is numerically determined by the frequency domain boundary element method. This method is used to model both the structure and the soil medium, which are assumed to behave as linear elastic or viscoelastic bodies. The full-space dynamic fundamental solution is employed in the formulation and this requires a free soil surface discretization, confined to a finite portion around the area of interest, in addition to soil—structure interface and free structural surface discretizations. The dynamic disturbances can have a harmonic or a transient time variation. The transient case is treated with the aid of numerical Laplace transforms with respect to time. Various numerical examples involving lined cavities and long lined tunnels buried in the full- or the half-space subjected to harmonic or transient external forces or seismic waves are presented to illustrate the method and demonstrate its advantages.  相似文献   

17.
A half-space finite element and a consistent transmitting boundary in a cylindrical coordinate system are developed for analysis of rigid circular (or cylindrical) foundations in a water-saturated porous layered half-space. By means of second-order paraxial approximations of the exact dynamic stiffness for a half-space in plane-strain and antiplane-shear conditions, the corresponding approximation for general three-dimensional wave motion in a Cartesian coordinate system is obtained and transformed in terms of cylindrical coordinates. Using the paraxial approximations, the half-space finite element and consistent transmitting boundary are formulated in a cylindrical coordinate system. The development is verified by comparison of dynamic compliances of rigid circular foundations with available published results. Examination of the advantage of the paraxial condition vis-á-vis the fixed condition shows that the former achieves substantial gain in computational effort. The developed half-space finite element and transmitting boundary can be employed for accurate and effective analysis of foundation dynamics and soil–structure interaction in a porous layered half-space.  相似文献   

18.
This paper presents the dynamic soil–structure analysis of the main telescope T250 of the Observatorio Astrofísico de Javalambre (OAJ, Javalambre Astrophysical Observatory) on the Pico del Buitre. Vibration control has been of prime concern in the design, since astrophysical observations may be hindered by mechanical vibration of optical equipment due to wind loading. The telescope manufacturer therefore has imposed a minimal natural frequency of 10 Hz for the supporting telescope pier. Dynamic soil–structure interaction may significantly influence the lowest natural frequency of a massive construction as a telescope pier. The structure clamped at its base has a resonance frequency of 14.3 Hz. A coupled finite element–boundary element (FE–BE) model of the telescope pier that accounts for the dynamic interaction of the piled foundation and the soil predicts a resonance frequency of 11.2 Hz, demonstrating the significant effect of dynamic soil–structure interaction. It is further investigated to what extent the coupled FE–BE model can be simplified in order to reduce computation time. The assumption of a rigid pile cap allows us to account for dynamic soil–structure interaction in a simplified way. A coupled FE–BE analysis with a rigid pile cap predicts a resonance frequency of 11.7 Hz, demonstrating a minor effect of the pile cap flexibility on the resonance frequency of the telescope pier. The use of an analytical model for the pile group results in an overestimation of the dynamic soil stiffness. This error is due to the large difference between the actual geometry and the square pile cap model for which the parameters have been tuned.  相似文献   

19.
This paper presents the concept of using an additional generator to prevent ground vibrations. A linear, transversally isotropic three dimensional half-space with the hysteretic damping model, acted upon by a harmonic vertical excitation is assumed. Equations of motion for the transversally isotropic ground model with the absorbing boundary conditions are presented and numerically integrated using FlexPDE software, based on the finite element method. The efficiency of the solution is analysed in terms of reducing the vertical and horizontal components of ground surface vibrations. Results in the form of a dimensionless amplitude reduction factor are presented for four different locations of a generator. The influence of the soil parameters and layers locations on the additional generator's efficiency is investigated. The vibration reduction efficiency in a four-story building is also presented.  相似文献   

20.
Soil-structure interaction analysis is usually carried out in the frequency domain, because the compliance functions of the half-space are known only in the frequency domain. Since non-linear analysis cannot be carried out in the frequency domain, a system with frequency independent parameters is used to represent the half-space soil medium so that a nonlinear analysis in the time domain becomes possible. The objective of this paper is to propose a system with lumped parameters, which are independent of frequency, to represent the half-space soil medium. The proposed frequency independent system consists of a number of real discrete structure elements; thus the existing dynamic analysis programs may be adoptable with little modification. In this paper, the parameters are found by minimizing the sum of the squares of deviations between the steady-state responses of the theoretical half-space model and those of the lumped parameter system over a specified frequency range. Once the parameters have been found, the lumped parameter system can be used in practical applications for time domain dynamic analysis of either linear or non-linear structures. In comparison with the dynamic response of the theoretical half-space model, the lumped parameter system yields satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号