首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
A new base isolation method is proposed for the protection of structures. Because of the efficiency of the isolation devices, the isolated structure may be made to remain elastic throughout major earthquakes. This device consists of two sets of mutually orthogonal free rolling rods under the basement of the structure. Since the coefficient of rolling friction of the rods is very small in practice, the structure can be isolated excellently from the support excitation. In this paper, the analytical method and the response of the isolated system for different parameters, such as the periods of the structure, the coefficient of rolling friction and the masses of rolling rods, are presented. The results indicate that the proposed method is excellent in isolating the structure from support excitations, as expected.  相似文献   

2.
In twelve flowing water (Q 1.04… 30.4 m3/s, 0.5… 1.2 m/s) the self-purification efficiency in 110 river sections (L 1.3… 26.4 km) is determined as the load difference in kg · d?1 COD-Mn as well as in g · m?3 referred to the daily passage. In the economical comparison, the self-purification efficiency is valued as substitution for wastewater treatment plants of the same capacity. At a mean specific capacity of 8.6 g · m?3, the self-purification efficiency of the investigated waters is equivalent to economical values of 124 · 103… 534 · 103 M km?1 investment costs, 11 · 103… 80 · 103 M · a?1km?1 operating costs and 5… 81 MWh · a?1 km?1 expenditure of energy. The specific capacity in g · m?3 COD-Mn shows an exponential regression to the degree of saprobity (L = 0.015 · exp (1.7358 · S)). From this empirical model the limits of the self-purification capacity of aerobic waters by oxygen input can be detected: in respective examples more than 50% of the required oxygen input are due to weirs.  相似文献   

3.
Z. Shi  H. J. Zhou 《水文研究》2004,18(15):2877-2892
Theoretical and experimental studies were undertaken to gain insight into physical parameters controlling the flocculation and settling properties of mud flocs in the Changjiang Estuary, China. The Rouse equation is applied to vertical profiles of suspended sediment concentration to determine the bulk mean settling velocity (ws) of sediment suspended in the Changjiang Estuary. Both in situ point‐sampled and acoustically measured profiles of suspended mud concentrations were fit selectively. The calculated settling velocities ws mainly ranged from 0·4 to 4·1 mm s?1 for the point‐sampled data set, and from 1·0 to 3·0 mm s?1 for the acoustically measured data set. Furthermore, the settling velocities of mud flocs increased with mean concentration (C?) of mud flocs in suspension and were proportional to increasing bottom shear stress (τb) of tidal flow. The best equation for the field settling velocity of mud flocs in the Changjiang Estuary can be expressed by the power law: ws = mC?n (m, 1·14–2·37; n, 0·84–1·03). It is suggested that C? and τb were the dominant physical parameters controlling the flocculation and ws of mud flocs in suspension. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Oxygen uptake rates by the sediment have been determined in a natural stratified sediment-water system from Lake Constance (Obersee, max. depth). After oxic preconditioning of the system the uptake rates ranged between 855 and 1,062 mg·m?2·d?1; after anoxic preconditioning of the system they ranged between 3,405 and 3,794 mg·m?2·d?1. These data, and the electron activity buffer capacity and oxygen consumption intensity as found in Lake Constance profundal water, show that the oxic-anoxic transition will happen here at the earliest after 142 days (about 4.5 months) of total oxygen isolation. Reoxygenation requires at least 3.7 times higher O2 input than supposed for a ‘normal’ winter circulation in Obersee.  相似文献   

5.
A series of Mb 3.8–5.5 induced seismic events in the midcontinent region, United States, resulted from injection of fluid either into a basal sedimentary reservoir with no underlying confining unit or directly into the underlying crystalline basement complex. The earthquakes probably occurred along faults that were likely critically stressed within the crystalline basement. These faults were located at a considerable distance (up to 10 km) from the injection wells and head increases at the hypocenters were likely relatively small (~70–150 m). We present a suite of simulations that use a simple hydrogeologic‐geomechanical model to assess what hydrogeologic conditions promote or deter induced seismic events within the crystalline basement across the midcontinent. The presence of a confining unit beneath the injection reservoir horizon had the single largest effect in preventing induced seismicity within the underlying crystalline basement. For a crystalline basement having a permeability of 2 × 10?17 m2 and specific storage coefficient of 10?7/m, injection at a rate of 5455 m3/d into the basal aquifer with no underlying basal seal over 10 years resulted in probable brittle failure to depths of about 0.6 km below the injection reservoir. Including a permeable (kz = 10?13 m2) Precambrian normal fault, located 20 m from the injection well, increased the depth of the failure region below the reservoir to 3 km. For a large permeability contrast between a Precambrian thrust fault (10?12 m2) and the surrounding crystalline basement (10?18 m2), the failure region can extend laterally 10 km away from the injection well.  相似文献   

6.
The ability of a recently proposed seismic isolation system, with inherent self‐stopping mechanism, to mitigate or even eliminate seismic pounding of adjacent structures is investigated under severe near‐fault earthquakes. The isolation system is referred to as roll‐in‐cage (RNC) isolator. It is a rolling‐based isolator that provides in one unit the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, hysteretic energy dissipation, and resistance to minor vibration loads. In addition, the RNC isolator is distinguished by a self‐stopping (buffer) mechanism to limit the bearing displacement under excitations stronger than a design earthquake or at limited seismic gaps, and a linear gravity‐based self‐recentering mechanism to prevent permanent bearing displacement without causing vertical fluctuation of the isolated structure. A previously developed multifeature SAP2000 model of the RNC isolator is improved in this paper to account for the inherent buffer mechanism's damping. Then, the effectiveness of the isolator's buffer mechanism in limiting peak bearing displacements is studied together with its possibly arising negative influence on the isolation efficiency. After that, the study investigates how to alleviate or even eliminate those possibly arising drawbacks, due to the developed RNC isolator's inner pounding as a result of its buffer activation, to achieve efficient seismic isolation with no direct structure‐to‐structure pounding, considering limited seismic gaps with adjacent structures and near‐fault earthquakes. The results show that the RNC isolator could be an efficient solution for aseismic design in near‐fault zones considering limited seismic gaps. Earthquake Engineering and Structural Dynamics. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
The belowground part of terrestrial ecosystem is a huge carbon pool. It is believed that of the total 2500Gt carbon stored in global terrestrial ecosystem, soil carbon storage within the 1 m surface layer ac- counts for 2000Gt, which is 4-fold of vegetation car- bon storage[1,2]. Compared with the carbon in the vegetation, carbon in the deep soil layers is much more stable, and it will stay in soil profile permanentlyunless geological vicissitude occurs. Essentially, forest restoration is the…  相似文献   

8.
The stationary response of base-isolated buildings subjected to earthquake excitation is studied. The frequency content of earthquake input is described by the Clough-Penzien spectral model. The response parameters of interest are (1) the root-mean-square (RMS) displacement σx of the basement relative to the foundation (i.e. shear deformation of the isolation system) and (2) the ratio (σaa0) of the RMS value of the absolute acceleration at the roof of the isolated structure over the corresponding value when the isolation system is locked. The variation of these response parameters with the effective frequency f0 of the base-isolated structure is investigated. As input, earthquakes with moment magnitudes M = 7-3 and M = 6-0 are considered. The acceleration spectra corresponding to these two earthquake sizes have pronouncedly different frequency content over the frequency range 0–1-1–0 Hz which is of primary importance for base-isolated structures. An important conclusion that comes from these analyses is that confidence in the effectiveness of a base-isolated system should be based primarily on its capacity to absorb/dissipate energy and less on its influence in shifting the fundamental period of the structure out of the range of dominant earthquake energy.  相似文献   

9.
The hyporheic zone (HZ) has the capability to eliminate and attenuate nutrients and contaminants in riverine systems. Biogeochemical reactions and the potential elimination of contaminants are strongly controlled by the flow paths and dynamics in the HZ. Nevertheless, an easily applicable method for the field determination of flow patterns in the HZ is still lacking. Therefore, a heat pulse technique, which traces the movement of a short heat pulse in the upper part of the HZ and other sand beds, was developed. Five rods are vertically driven into the sediment of the streambed; one rod with a heater as point source located in about 10‐cm sediment depth and four rods with four temperature sensors in 3 cm distance, arranged concentrically with 7 cm diameter around the heating rod. Subsequently, a heat pulse is applied and the resulting breakthrough curves are indicative of flow velocities and flow directions in the streambed. A rough data analysis procedure is also suggested. In addition, laboratory experiments were performed to test the heat pulse technique. These experiments were validated based on coupled numerical modelling of flow and heat transport. First field tests of the method prove that the method is easily applicable under field conditions. These first field tests showed highly complex flow patterns with flow velocities from 1·8 to 4·9 cm min?1 and flow directions from parallel to surface flow to opposite to surface flow. This suggests the need for a robust method to quantify hyporheic flow patterns in situ. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
Laboratory experiments to determine the maximum size of sediment transported in shallow, rain-impacted flow were conducted in a recirculating flume 4·80 m long and 0·50 m wide. Rainfall intensities were varied between 51 and 138 mm h−1, flow was introduced from a header tank into the flume at rates ranging from 0 to 0·64 l s−1, and experiments were conducted on gradients between 3·5 and 10°. The following equation was developed: ML = (REFE)1·6363 in which M is particle mass, L is distance moved in unit time (cm min−1), RE is rainfall energy (J m−2 s−1) and FE is flow energy (J m−2 s−1). This equation can be used to predict sediment-transport competence of interrill overland flow. The equation is limited in its utility insofar as it has been developed using quartz grains and takes no account of variations in absorption of rain energy by natural ground surfaces. © 1998 John Wiley & Sons, Ltd.  相似文献   

11.
Litterfall was measured in a dry schlerophyll eucalypt forest and a nearby Pinus radiata plantation of similar tree density and basal area near Canberra in south-eastern Australia. Total annual litterfall for the eucalypts was 329 g m−2, compared with 180 g m−2 for the pines, with the bark component being 52 g m−2 for eucalypts and zero for pines. Barkfall did not occur for the eucalypts during the drought of 1982–1983 but complete bark shedding occurred during the subsequent very wet year when barkfall was 177 g m−2 for Eucalyptus rossii and 146 g m−2 for Eucalyptus mannifera (9·3 and 7·6 g m−2 of basal area, respectively). Barkfall of E. rossii responded to rainfall in the period autumn to early summer, whereas E. mannifera responded to summer rainfall. In the eucalypt forest floor-litter was stratified into a surface layer where the components were substantially intact, and a cohesive layer where the components were fragmented and bound together by fungal hyphae. The amount and residence times of loose and cohesive floor-litter were 1056 g m−2 and 3·2 years, respectively, for the loose litter layer; and 1164 g m−2 and 3·5 years for the cohesive layer. The litter biomass represented 17% of the estimated total above-ground biomass of 127 tonnes ha−1. A previous study showed roots to be 25% of total biomass, suggesting a total biomass of 167 tonnes ha−1. © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
Wang  Chunlin  Yu  Guirui  Zhou  Guoyi  Yan  Junhua  Zhang  Leiming  Wang  Xu  Tang  Xuli  Sun  Xiaomin 《中国科学:地球科学(英文版)》2006,49(2):127-138

The Dinghushan flux observation site, as one of the four forest sites of ChinaFLUX, aims to acquire long-term measurements of CO2 flux over a typical southern subtropical evergreen coniferous and broad-leaved mixed forest ecosystem using the open path eddy covariance method. Based on two years of data from 2003 to 2004, the characteristics of temporal variation in CO2 flux and its response to environmental factors in the forest ecosystem are analyzed. Provided two-dimensional coordinate rotation, WPL correction and quality control, poor energy-balance and underestimation of ecosystem respiration during nighttime implied that there could be a CO2 leak during the nighttime at the site. Using daytime (PAR > 1.0 μmol−1·m−2·s−1) flux data during windy conditions (u* > 0.2 m·s−1), monthly ecosystem respiration (Reco) was derived through the Michaelis-Menten equation modeling the relationship between net ecosystem C02 exchange (NEE) and photosynthetically active radiation (PAR). Exponential function was employed to describe the relationship between Reco and soil temperature at 5 cm depth (Ts05), then Reco of both daytime and nighttime was calculated respectively by the function. The major results are: (i) Derived from the Michaelis-Menten equation, the apparent quantum yield (α) was 0.0027±0.0011 mgCO2·μmol−1 photons, and the maximum photosynthetic assimilation rate (Amax) was 1.102±0.288 mgCO2·m−2·s−1. Indistinctive seasonal variation of α or Amax was consistent with weak seasonal dynamics of leaf area index (LAf) in such a lower subtropical evergreen mixed forest, (ii) Monthly accumulated Reco was estimated as 95.3±21.1 gC·m−2mon−1, accounting for about 68% of the gross primary product (GPP). Monthly accumulated WEE was estimated as −43.2±29.6 gC·m−2·mon−1. The forest ecosystem acted as carbon sink all year round without any seasonal carbon efflux period. Annual NEE of 2003 and 2004 was estimated as −563.0 and −441.2 gC·m−2·a−1 respectively, accounting for about 32% of GPP.

  相似文献   

13.
Obtaining good quality soil loss data from plots requires knowledge of the factors that affect natural and measurement data variability and of the erosion processes that occur on plots of different sizes. Data variability was investigated in southern Italy by collecting runoff and soil loss from four universal soil‐loss equation (USLE) plots of 176 m2, 20 ‘large’ microplots (0·16 m2) and 40 ‘small’ microplots (0·04 m2). For the four most erosive events (event erosivity index, Re ≥ 139 MJ mm ha?1 h?1), mean soil loss from the USLE plots was significantly correlated with Re. Variability of soil loss measurements from microplots was five to ten times greater than that of runoff measurements. Doubling the linear size of the microplots reduced mean runoff and soil loss measurements by a factor of 2·6–2·8 and increased data variability. Using sieved soil instead of natural soil increased runoff and soil loss by a factor of 1·3–1·5. Interrill erosion was a minor part (0·1–7·1%) of rill plus interrill erosion. The developed analysis showed that the USLE scheme was usable to predict mean soil loss at plot scale in Mediterranean areas. A microplot of 0·04 m2 could be used in practice to obtain field measurements of interrill soil erodibility in areas having steep slopes. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
In the dimict lake Arend (5.1 km2, 146 hm3, 49.5 m zmax), nitrogen is production-limiting with concentrations below the detection limit during the production period. Phytoplankton achieves biomasses of up to 18 mg/l fresh matter, essential contributions being made by Aphanizomenon with 2 mg/l and Anabaena with up to 10 mg/l. Nitrogen fixation was measured by the ethine reduction technique (acetylene reduction) during periods of the occurrence of heterocystforming Cyanophyceae and achieved peak values up to 6.59 μg N2 · h?1 · l?1 or 14.87 m?2 · h?1 g N2 · m?2 · h?1. The rates of fixation show a safe correlation with the biomass of heterocyst-containing Cyanophyceae (r = 0.88), their development beginning at values below the N : P-ratio of 2.66.  相似文献   

15.
Prediction of concentrated flow width in ephemeral gully channels   总被引:3,自引:0,他引:3  
Empirical prediction equations of the form W = aQb have been reported for rills and rivers, but not for ephemeral gullies. In this study six experimental data sets are used to establish a relationship between channel width (W, m) and flow discharge (Q, m3 s?1) for ephemeral gullies formed on cropland. The resulting regression equation (W = 2·51 Q0·412; R2 = 0·72; n = 67) predicts observed channel width reasonably well. Owing to logistic limitations related to the respective experimental set ups, only relatively small runoff discharges (i.e. Q < 0·02 m3s?1) were covered. Using field data, where measured ephemeral gully channel width was attributed to a calculated peak runoff discharge on sealed cropland, the application field of the regression equation was extended towards larger discharges (i.e. 5 × 10?4m3s?1 < Q < 0·1 m3s?1). Comparing WQ relationships for concentrated flow channels revealed that the discharge exponent (b) varies from 0·3 for rills over 0·4 for gullies to 0·5 for rivers. This shift in b may be the result of: (i) differences in flow shear stress distribution over the wetted perimeter between rills, gullies and rivers, (ii) a decrease in probability of a channel formed in soil material with uniform erosion resistance from rills over gullies to rivers and (iii) a decrease in average surface slope from rills over gullies to rivers. The proposed WQ equation for ephemeral gullies is valid for (sealed) cropland with no significant change in erosion resistance with depth. Two examples illustrate limitations of the WQ approach. In a first example, vertical erosion is hindered by a frozen subsoil. The second example relates to a typical summer situation where the soil moisture profile of an agricultural field makes the top 0·02 m five times more erodible than the underlying soil material. For both cases observed W values are larger than those predicted by the established channel width equation for concentrated flow on cropland. For the frozen soils the equation W = 3·17 Q0·368 (R2 = 0·78; n = 617) was established, but for the summer soils no equation could be established. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.

Eddy covariance technique was used to measure carbon flux during two growing seasons in 2003 and 2004 over typical steppe in the Inner Mongolia Plateau, China. The results showed that there were two different CO2 flux diurnal patterns at the grassland ecosystem. One had a dual peak in diurnal course of CO2 fluxes with a depression of CO2 flux after noon, and the other had a single peak. In 2003, the maximum diurnal uptake and emitting value of CO2 were −7.4 and 5.4 g·m−2·d−1 respectively and both occurred in July. While in 2004, the maximum diurnal uptake and release of CO2 were −12.8 and 5.8 g·m−2·d−1 and occurred both in August. The grassland fixed 294.66 and 467.46 g CO2·m−2 in 2003 and 2004, and released 333.14 and 437.17 g CO2·m−2 in 2003 and 2004, respectively from May to September. Water availability and photosynthetic active radiation (PAR) are two important factors of controlling CO2 flux. Consecutive precipitation can cause reduction in the ability of ecosystem carbon exchange. Under favorable soil water conditions, daytime CO2 flux is dependent on PAR. CO2 flux, under soil water stress conditions, is obviously less than those under favorable soil water conditions, and there is a light saturation phenomena at PAR=1200 μmol·m−2·s−1. Soil respiration was temperature dependent when there was no soil water stress; otherwise, this response became accumulatively decoupled from soil temperature.

  相似文献   

17.
Based on the stem analysis of 59 individuals of Pinus elliottii in combination with tree biomass models, we calculated annual biomass increment of forest plots at Qianyanzhou Ecological Station, Chinese Academy of Sciences in subtropical China. In addition, canopy layer and community NPP were calculated based on 12 years’ litter fall data. NPP of the 21-year-old forest was estimated by using the BIOME BGC model; and both measured NPP and estimated NPP were compared with flux data. Community biomass was 10574 g · m−2; its distribution patterns in tree layer, shrub layer, herbaceous layer, tree root, herbaceous and shrub roots and fine roots were 7542, 480, 239, 1810, 230, 274 and 239 g · m−2, respectively. From 1999 to 2004, the average annual growth rate and litter fall were 741 g · m−2 · a−1 (381.31 gC · m−2 · a−1) and 849 g · m−2 · a−1 (463 gC · m−2 · a−1), respectively. There was a significant correlation between annual litter fall and annual biomass increment; and the litter fall was 1.19 times the biomass increment of living trees. From 1985 to 2005, average NPP and GPP values based on BGC modeling were 630.88 (343.31–906.42 gC · m−2 · a−1) and 1 800 gC · m−2 · a−1 (1351.62–2318.26 gC · m−2 · a−1). Regression analysis showed a linear relationship (R 2=0.48) between the measured and simulated tree layer NPP values. NPP accounted for 30.2% (25.6%–32.9%) of GPP, while NEP accounted for 57.5% (48.1%–66.5%) of tree-layer NPP and 41.74% (37%–52%) of stand NPP. Soil respiration accounted for 77.0% of measured tree NPP and 55.9% of the measured stand NPP. NEE based on eddy covariance method was 12.97% higher than the observed NEP. Supported by the National Key Basic Research Special Foundation of China (Grant No. 2002CB4125), International Joint Research Project under Ministry of Science and Technology of China (Grant No. 2006DFB91920)  相似文献   

18.
Solute transport experiments using a non-reactive tracer were conducted on short, undisturbed, saturated columns of a sandy loam soil. All columns, 20 cm in diameter and 20 cm long, were collected along a transect of 35 m. Most of the soil columns had pre-existing macropores. The columns were leached at a steady flow-rate under ponding conditions. The resulting breakthrough curves (BTCs) showed a large heterogeneity. Several of the BTCs displayed early breakthrough and long tailing. All the data were interpreted in terms of dimensional time moments, the classical convection-dispersion equation (CDE) and the mobile-immobile transport model (MIM). Experimental time moments were found to vary significantly among the different BTCs. Analysis of the time moments also revealed that the variance of the field-scale BTC was several times larger than the average of the local-scale variance. The pore water velocity v and dispersion coefficient D were obtained by fitting the CDE to the local-scale BTCs, resulting in an average dispersivity of 7·4 cm. Frequency distributions for the CDE parameters v and D were equally well described by a normal or log-normal probability density function (pdf). When a log-normal pdf for D is considered, the variance of the loge transformed D values (σln D2) was found to be 2·1. For the MIM model, two additional parameters were fitted: the fraction of mobile water, θm/θ, and the first-order mass transfer coefficient, α. The MIM was more successful in describing the data than the CDE transport model. For the MIM model, the average dispersivity was about 2 cm. The MIM parameters v, D and θm/θ were best described by a log-normal pdf rather than a normal pdf. Only the parameter α was better described by a normal pdf. Mobile water fractions, θm/θ ranged from 0·01 to 0·98, with a mean of 0·43 (based on a log-normal pdf). When the CDE and MIM were applied to the data, the fitted pore water velocities, v, compared favourably with the effective pore water velocities, veff, obtained from moment analysis.  相似文献   

19.
We present an uncertainty analysis of ecological process parameters and CO2 flux components (R eco, NEE and gross ecosystem exchange (GEE)) derived from 3 years’ continuous eddy covariance measurements of CO2 fluxes at subtropical evergreen coniferous plantation, Qianyanzhou of ChinaFlux. Daily-differencing approach was used to analyze the random error of CO2 fluxes measurements and bootstrapping method was used to quantify the uncertainties of three CO2 flux components. In addition, we evaluated different models and optimization methods in influencing estimation of key parameters and CO2 flux components. The results show that: (1) Random flux error more closely follows a double-exponential (Laplace), rather than a normal (Gaussian) distribution. (2) Different optimization methods result in different estimates of model parameters. Uncertainties of parameters estimated by the maximum likelihood estimation (MLE) are lower than those derived from ordinary least square method (OLS). (3) The differences between simulated Reco, NEE and GEE derived from MLE and those derived from OLS are 12.18% (176 g C·m−2·a−1), 34.33% (79 g C·m−2·a−1) and 5.4% (92 g C·m−2·a−1). However, for a given parameter optimization method, a temperature-dependent model (T_model) and the models derived from a temperature and water-dependent model (TW_model) are 1.31% (17.8 g C·m−2·a−1), 2.1% (5.7 g C·m−2·a−1), and 0.26% (4.3 g C·m−2·a−1), respectively, which suggested that the optimization methods are more important than the ecological models in influencing uncertainty in estimated carbon fluxes. (4) The relative uncertainty of CO2 flux derived from OLS is higher than that from MLE, and the uncertainty is related to timescale, that is, the larger the timescale, the smaller the uncertainty. The relative uncertainties of Reco, NEE and GEE are 4%−8%, 7%−22% and 2%−4% respectively at annual timescale. Supported by the National Natural Science Foundation of China (Grant No. 30570347), Innovative Research International Partnership Project of the Chinese Academy of Sciences (Grant No. CXTD-Z2005-1) and National Basic Research Program of China (Grant No. 2002CB412502)  相似文献   

20.
A field‐based project was initiated in order to characterize velocities and sediment entrainment in a forced‐pool and riffle sequence. Three‐dimensional velocities and turbulence intensities were measured with an acoustic Doppler velocimeter at 222 different points at three similar flows that averaged approximately 4·35 m3 s−1 within a large pool–riffle unit on North Saint Vrain Creek, Colorado. Sediment‐sorting patterns were observed with the introduction of 500 tracer particles painted according to initial seeding location. Tracer particles moved sporadically during a 113 day period in response to the annual snowmelt peak flow, which reached a maximum level of 14·8 m3 s−1. Velocity data indicate high instantaneous velocities and turbulence levels in the centre of pools. Patterns of sediment deposition support the notion that stream competence is higher in the pool than the downstream riffle. Flow convergence around a large channel constriction appears to play a major role in multiple processes that include helical flow development and sediment routing, and backwater development with low velocities and turbulence levels above the constriction that may locally limit sediment supply. Jet flow, flow separation, vortex scour and turbulence generation enhance scour in the centre of pools. Ultimately, multiple processes appear to play some role in maintenance of this forced pool and the associated riffle. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号