首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文分析了TMD(Tuned mass damper)在刚性地基和柔性地基情况下的减震控制机理,以某6层钢筋混凝土框架结构为研究对象,分别考虑了土-结构动力相互作用对无TMD控制结构的影响,场地条件对TMD减震控制性能的影响和土-结构动力相互作用对TMD减震控制性能的影响。通过分析得出TMD控制系统的减震效果除了与输入地震动特性有关外,还与场地条件、上部结构和基础的动力特性等因素有关。如果土-结构动力相互作用体系的自振周期远离输入地震动的卓越周期,则相互作用体系的地震响应较小。地基土越软,框架建筑结构层间相对位移地震响应也就越小。如果考虑土-结构动力相互作用效应的影响设计TMD调频系统的自振周期,则TMD的控制效果会有一定程度的提高。  相似文献   

2.
土-结构相互作用地震反应分析软件及其二次开发   总被引:1,自引:0,他引:1  
本文简要介绍了目前在土-结构相互作用分析中常用的有限元软件ANSYS7.0、FLAC和MSC.M arc,通过比较评价其各自优缺点和适用性后,根据高层建筑结构土-结构相互作用地震反应分析的特点,建议利用带有灵活接口的大型非线性有限元分析软件MSC.M arc作为其分析工具,并尝试对MSC.M arc进行二次开发,将多层土E-B本构关系模型作为子程序加入其中。  相似文献   

3.
This paper presents an effective analysis procedure for the dynamic soil-structure interaction problem considering not only the sliding and separation phenomena but also the non-linear behaviour of soil by the finite element method. Soil is assumed to be an elasto-plastic material and the contact surface between the soil and structure is modelled by the joint element. The load transfer method is adopted to carry out dynamic non-linear response analysis. The method is applied to the response analysis of a nuclear reactor building resting on the ground surface. The effects of non-linear behaviour of soil on the safety against sliding of the structure are examined. The numerical computations reveal the following results: that the non-linear behaviour of soil reduces the response of the system and the magnitude of sliding of the structure, and that the safety against sliding obtained by the proposed method is higher than the safety obtained by classical methods. This implies the possibility of a more rational and economical design of large structures; it can be said that the proposed method provides useful information for the stability analysis of important and large structures.  相似文献   

4.
大型渡槽考虑土-结构相互作用的动力分析   总被引:7,自引:0,他引:7  
根据某大型渡槽采用桩基础的结构特点,采用集中弹簧模型考虑土-结构相互作用;渡槽槽身采用薄壁梁段单元进行离散,考虑了渡槽槽身开口薄壁结构的横向变扭耦合振动、约束扭转变表等结构自身特性;渡槽支架采用空间梁单元进行模拟。文章建立了大型渡槽的动力方程,对比计算了考虑土-结构相互作用与不考虑土-结构相互作用渡槽模态和地震响应的差异,计算结果表明:考虑土-结构相互作用后,虽然对大型渡槽的模态和地震应应有所影响  相似文献   

5.
An efficient methodology is presented which uses modal analysis implemented in the frequency domain to obtain the structural response of a system with soil-structure interaction. The interaction effects are represented using a free-field ground motion modification factor, derived for each mode of vibration and used in the determination of structural response. Applying this algorithm, the advantages of the modal superposition method are fully exploited, and the interaction problem can be solved easily and effectively within the framework of the conventional frequency domain analysis for a fixed-base structure. In addition, this method produces accurate approximation with less computational effort due to consideration of only the first few vibration modes of the structure.  相似文献   

6.
考虑土-结构相互作用的高层建筑抗震分析   总被引:17,自引:0,他引:17  
本文采用通用有限元程序ANSYS,针对上海地区一例土-箱基-高层建筑结构进行了三维有限元分析,计算中土体的本构模型采用等效线性模型,利用粘一弹性人工边界作为土体的侧向边界,并研究了土体边界位置、土性、基础埋深、基础形式以及上部结构刚度等参数对动力相互作用体系动力特性及地震反应的影响。  相似文献   

7.
张昊  康帅  王自法    裴笑娟 《世界地震工程》2022,38(2):029-37
目前结构的抗震分析主要是采用刚性地基假定,忽略了土-结构相互作用,而在实际情况中结构的地震破坏与刚性地基假定的预期结果并不相同。为了对比差异,本文以一6层混凝土框架结构为例,分别进行了Pushover分析和非线性时程分析。结果表明:当考虑土-结构相互作用时,结构的基底剪力减小,周期增大,顶点位移增大且结构的破坏主要集中在首层,柱端出现了塑性铰,更符合实际的震害情况。并将Pushover分析与非线性时程分析的结果进行对比,验证了Pushover分析的可靠性。  相似文献   

8.
A time domain transient analysis of a concrete gravity dam and its foundation has been carried out in a coupled manner using finite element technique and the effect of Soil-Structure Interaction (SSI) has been incorporated using a simplified direct method. A two dimensional plane strain dam-foundation model has been used for the time history analysis to compute the stresses and displacements against earthquake loading considering the effect of soil-structure interaction. An effective boundary condition has been implemented by attaching dashpots to the vertical boundaries. The material damping effects have also been considered and the dam and foundation have both been modeled as linear, elastic materials. To achieve a greater degree of accuracy, the displacements and stresses calculated in the free-field analysis have also been added to those developed in the complete dam-foundation analysis. The proposed algorithm has been simulated for the case of two published problems and in both the cases the results have been found to be in close agreement. The proposed technique is quite simple and easy to implement in the computer code. The outcomes of the results show the efficacy of the developed method.  相似文献   

9.
The direct finite element method is a type commonly used for nonlinear seismic soil-structure interaction(SSI) analysis. This method introduces a truncated boundary referred to as an artificial boundary meant to divide the soilstructure system into finite and infinite domains. An artificial boundary condition is used on a truncated boundary to achieve seismic input and simulate the wave radiation effect of infinite domain. When the soil layer is particularly thick, especially for a three-dimensional problem, the computational efficiency of seismic SSI analysis is very low due to the large size of the finite element model, which contains an whole thick soil layer. In this paper, an accurate and efficient scheme is developed to solve the nonlinear seismic SSI problem regarding thick soil layers. The process consists of nonlinear site response and SSI analysis. The nonlinear site response analysis is still performed for the whole thick soil layer. The artificial boundary at the bottom of the SSI analysis model is subsequently relocated upward from the bottom of the soil layer(bedrock surface) to the location nearest to the structure as possible. Finally, three types of typical sites and underground structures are adopted with seismic SSI analysis to evaluate the accuracy and efficiency of the proposed efficient analysis scheme.  相似文献   

10.
In this paper a centrifuge model that is capable of realistically representing soil-structure systems subjected to earthquake-like excitation is used to create a data pool which demonstrates the influence of (i) the frequencies of the structure, (ii) the foundation embedment and (iii) the foundation shape on radiation damping and soil-structure interaction effects for a structure on a semi-infinite soil layer over bedrock. The centrifuge model used in this study was developed and validated by the authors in an earlier publication,1 and employs an internal method of earthquake simulation, and the clay-like material, Duxseal, to absorb wave reflections at the boundary of the soil sample. The results of the experimental study are used to compute damping and stiffness values of a two-degree-of-freedom piecewise-linear numerical model of the soil-structure systems. The experimental parameter values are then compared to the values computed using classical text book formulae. The analysis demonstrates the value of the experimental data in validating and developing soil-structure interaction theory, and confirms the accuracy of classical text book formulae in the linear range.  相似文献   

11.
Most soil—structure interaction (SSI) analyses are still conducted assuming linear material behavior or simulating nonlinear effects through an equivalent linearization and the structure (foundation) being closely welded with the surrounding soil. It is recognized, however, that nonlinearities can play a significant role in the results. Two kinds of nonlinearities must be considered: those associated with inelastic soil behavior and those resulting from loss of contact between the foundation and the surrounding soil. In the present paper a modified lumped parametric model for the analysis of nonlinear SSI effects has been proposed. In the model both nonlinearities are taken into account. The results of tests of the soil-structure system model have been presented, which agree well with those obtained from analysis by using the proposed model.  相似文献   

12.
This paper evaluates the commonly used substructuring method for analysis of bridge systems where the bridge is divided into two sub-systems: the bridge superstructure and the substructure including the pile foundations, abutments, and soil. Modeling of the soil-structure interaction (SSI) in the system is simplified by replacing the pile foundations, abutments, and soil with sets of independent equivalent linear springs and dashpots at the base of the superstructure. The main objective of the paper is to examine how well the substructuring method simulates the seismic response of a bridge system. The baseline data required for the evaluation process is derived from analyzing a fully-coupled continuum bridge model, already validated for the instrumented two-span Meloland Road Overpass. The same bridge system is also simulated using the substructuring method. The results from both approaches are compared, and it is shown that the differences between them can be significant. The substructuring method consistently overestimates the pier base shear forces and bending moments and the pier top deflections. Moreover, the spectral response of the bridge structure is mispredicted. The analyses are repeated for a three-span bridge system subjected to several ground motions, leading to a similar observation as before. Hence, the current state of practice for simulating seismic SSI in bridges using the substructure model is shown to be too simplified to capture the major mechanisms involved in SSI.  相似文献   

13.
三维土-结构动力相互作用的一种时域直接分析方法   总被引:1,自引:0,他引:1  
本文提出了一种分析三维土-结构动力相互作用的时域直接方法。该方法采用集中质量显式有限元和透射人工边界模拟无限域地基,通过编制的FORTRAN程序实现;采用ANSYS软件对上部结构进行建模分析,并通过FORTRAN程序对ANSYS软件的调用,实现了土与结构系统在地震作用下的整体分析。该方法为显隐式相结合的方法,地基和上部结构可采用不同的时间步距进行分析,可大大提高效率。通过两算例,验证了该方法的可行性。  相似文献   

14.
An approximate solution of the classical eigenvalue problem governing the vibrations of a structure on an elastic soil is derived through the application of a perturbation analysis. For stiff soils, the full solution is obtained as the sum of the solution for a rigid-soil and small perturbing terms related to the inverse of the soil shear modulus. The procedure leads to approximate analytical expressions for the system frequencies, modal damping ratios and participation factors for all system modes that generalize those presented by other authors for the fundamental mode. The resulting approximate expressions for the system modal properties are validated by comparison with the corresponding quantities obtained by numerical solution of the eigenvalue problem for a nine-story building. The accuracy of the proposed approach and of the classical normal mode approach is assessed through comparison with the exact frequency response of the test structure.  相似文献   

15.
开展了土-结构动力相互作用的模型试验,探讨了框架结构的近似有效基本周期,并研究了考虑相互作用效应的界限.模型试验中分别进行了刚性地基和柔性地基条件下的结构基本周期测试,并通过与理论计算结果的比较,验证了FEMA450中建议的有效基本周期计算方法能够有效预测土-结构相互作用效应的影响.利用FEMA450中建议的刚性地基上普通钢筋混凝土框架结构基本周期近似值的计算式,分别建立了明置基础、埋置基础的框架结构有效基本周期近似值的计算式,并以此分析了框架结构考虑相互作用的界限问题,提出了考虑埋置深度影响的合理界限.  相似文献   

16.
A three-dimensional hybrid model for the analysis of soil-structure interaction under dynamic conditions is developed which takes advantage of the desirable features of the finite element and substructure methods and which minimizes their undesirable features. The modelling is achieved by partitioning the total soil-structure system into a near-field and a far-field with a hemispherical interface. The near-field, which consists of the structure to be analysed and a finite region of soil around it, is modelled by finite elements. The semi-infinite far-field is modelled by distributed impedance functions at the interface which are determined by system identification methods. Numerical results indicate that the proposed model makes possible realistic and economical assessment of three-dimensional soil-structure interaction for both surface and embedded structures.  相似文献   

17.
The viability of most analytical approaches developed to predict the inelastic response of Reinforced Concrete (RC) structures requires the load-deformation relationship to have a positive slope. In many realistic cases the slope is not positive. When this happens, most analytical approaches consider the maximum point as the failure point or use unrealistic material laws, e.g., the assumption of a positive slope when it really is negative. Hence, there is a need to develop a new analytical approach which recognizes load-deflection relationships which have ascending and descending branches. A method based on the impulse momentum principle and the resistance force (IMR) of an RC structure is developed. The resistance force vector { R (t)} is used in place of the stiffness approach. The material non-linearity of RC systems can be elegantly accounted for in the { R (t)} vector. An examination of numerical properties of the IMR method shows that stability and convergence are dependent on a time step length ratio. Applications of the IMR method which predict the inelastic seismic response of RC structures are performed.  相似文献   

18.
钢结构与混凝土结构阻尼比不同,混凝土房屋与其顶上钢塔组成了非比例阻尼结构系统。本文用非经典振型分解法求解该类结构系统的线弹性地震响应,发现只用前几阶振型响应迭加的结果即可逼近直接积分法的精确度。  相似文献   

19.
This paper presents a centrifuge model that is capable of realistically representing soil-structure systems subjected to earthquake-like excitation. The model is validated by performing (i) free field soil tests, (ii) dynamic soil-structure interaction tests and (iii) a numerical analysis of the experimental results. The free field experiments show that the simulated earthquake, which is generated by the hammer-exciter plate method, is similar in amplitude and frequency content to a real earthquake. The experiments also demonstrate that a confined soil sample can satisfactorily model a horizontal soil stratum of infinite lateral extent when the containment walls are lined with an absorptive material to attenuate wave reflections that would otherwise occur. Measurements of the acceleration at different locations on the free soil surface indicate that the surface motion is fairly uniform over a relatively large area. This is further confirmed by a comparison made between the measured free and scattered field motions for a surface foundation. Next, a series of soil-structure interaction tests are performed which examine the dependence of radiation damping on the natural frequencies of the structure relative to the fundamental frequency of the soil stratum. The experimental results are shown to be consistent with established theories. Finally, the experimental results are used to compute the stiffness and damping parameters of a two degree of freedom numerical model of the soil-structure system. The experimental parameters are shown to be in good agreement with calssical text book formulae. This study demonstrates that the centrifuge model consistently behaves as expected for simple, but realistic, dynamic soil and soil-structure systems, and can, therefore, be used with confidence to examine more complicated systems that are not yet fully understood.  相似文献   

20.
首先介绍了钢筋混凝土渡槽结构在地震荷载作用下的分析理论,根据这些理论建立了渡槽结构的动力有限元分析模型,分别采用干模态法、附加质量法和ALE法考虑渡槽结构液固耦合作用,通过具体的工程算例,对钢筋混凝土渡槽结构进行了不同工况下的数值模拟研究,包括混凝土非线性材料分析、渡槽结构静水与动水响应分析、渡槽结构自振特性分析和槽墩的能力曲线分析。研究表明,考虑固液耦合作用的渡槽实体有限元模型能较好地模拟渡槽结构地震反应,并得到相应的渡槽结构地震反应规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号