首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Schmidt‐hammer exposure‐age dating (SHD) was applied to the problem of dating the diachronous surfaces of five distal river‐bank boulder ramparts deposited by snow avalanches plunging into the Jostedøla and Sprongdøla rivers in the Jostedalsbreen region of southern Norway. Approaches to local high‐precision linear age calibration, which controlled in different ways for boulder roundness, were developed. The mean age (SHDmean) and the maximum age (SHDmax) of surface boulders were estimated for whole ramparts, crests and distal fringes. Interpretation was further assisted by reference to R‐value distributions. SHDmean ages (with 95% confidence intervals) ranged from 520 ± 270 years to 5375 ± 965 years, whereas SHDmax ages (expected to be exceeded by <5% of surface boulders) ranged from 675 to 9065 years. SHD ages from the Jostedøla ramparts tended to be older than those associated with the Sprongdøla, rampart crests were younger than the respective distal fringes, and use of relatively rounded boulders yielded more consistent SHD ages than angular boulders. The SHDmean ages indicate differences in recent levels of snow‐avalanche activity between ramparts and provide insights into rampart dynamics as boulders are deposited on rampart crests and, in smaller numbers, on the distal fringes. SHDmax ages provide minimum age estimates of rampart age (i.e. the time elapsed since the ramparts began to form) and suggest that at least some of the ramparts have been developing since the early Holocene. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Where snow avalanches descend steeply into large rivers, displacing bedload, avalanche boulder-ramparts may accumulate, retaining a record of late-Holocene snow-avalanche frequency. The age frequency of surface boulders on 12 such features in upper Jostedalen, southern Norway, was investigated using the size-frequency distribution of lichens. A model was constructed to simulate the influence of variations in avalanche frequency since AD 1325 on lichen-size-frequency distributions. Using this modelling approach it is not possible to define a unique pattern of avalanche activity to account for the observed lichen-size-frequency distributions, but it is possible to place strict limits on the range of scenarios that are acceptable. The results suggest that maximum avalanche activity occurred during the 19th century, after the peak of the Little Ice Age. This conflicts with historical records of avalanche damage to property at lower altitude in nearby valleys, which may reflect avalanche activity only during a short period of extreme climatic conditions. Close agreement between the records of snow avalanches and debris flows suggests that both reflect periods of high winter snowfall and rapid spring melting rather than low temperature. Future ‘greenhouse warming’ may therefore result in increased avalanche activity in southern Norway.  相似文献   

3.
Lichens of the subspecies Rhizocarpon geographicum s.l were measured on 25 avalanche boulder tongues in the Massif des Ecrins to elucidate the Little Ice Age history of avalanche activity. Results show: (1) an increase of lichen size from the median to the distal zone of deposits, and a decrease from the edges to the centre; (2) three types of lichen settlement. From the uppermost to the median zone, lichens are absent, because avalanche activity is very active. Down‐slope, lichens occur in two different zones: the median zone is colonized by 5–20 mm size lichens on sides of blocks protected from the abrasional action of avalanches, while in the distal zone lichen diameters are largest (>30 mm) and occur on all sides of the blocks. The spatial distribution of the lichens and their size according to elevation make it possible to distinguish different phases during which avalanche activity has increased. At high elevation, the avalanche activity was at a maximum before ad 1650 and between ad 1730 and 1830. During these two periods avalanches had suf?cient magnitude to reach the basal zone of the deposits. At low elevation since ad 1650 the magnitude and frequency of avalanches have declined. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

4.
Tsunami boulders deposited along the coast constitute important geological evidence for paleotsunami activity. However, boulders can also be deposited by large storm waves. Although several sedimentological and theoretical methods have been proposed to differentiate tsunami and storm wave affected boulders, no appropriate numerical method exists for their differentiation. Therefore, we developed a new numerical scheme to differentiate tsunami and storm wave boulders for coastal boulders on Ishigaki Island, Japan. In this area, tsunami and storm waves have emplaced numerous boulders on the reef and the coast. By conducting numerical calculations of storm waves in this region, we estimated the size of a storm wave that can explain the maximum clast size distribution of boulders on the reef. Consequently, we showed that a wave with a combination of 8 m in initial wave height and 10 s period can satisfy the above conditions when we assume mean sea level. In contrast to the boulders on the reef, all boulders deposited along the shore are heavier than the calculated possible maximum clast size distribution by the storm wave. Therefore, we confirmed these boulders as being of tsunami origin. Results of previous studies showed that they were most likely deposited or reworked by the 1771 Meiwa tsunami. Then, using the tsunami boulders, we numerically estimated the wave period and amplitude of the 1771 Meiwa tsunami, which should have had a 4–5 min period and 5.6–5.9, 6.3–7.0 m amplitude, respectively. Using the proposed scheme, it is possible to differentiate tsunami and storm wave boulders and estimate the size of past storm waves and tsunami waves, although it is noteworthy that there are exceptions for which the scheme cannot be applied.  相似文献   

5.
Moraine ridges are present in the highest cirques of the Durmitor massif in Montenegro and post‐date the widespread Pleistocene moraines of this area. Lichenometry suggests that at least eight glaciers were present in the 19th century and correlate with the culmination of the Little Ice Age in the European Alps. Cooler temperatures combined with local topoclimatic controls, including windblown and avalanching snow as well as shading, were crucial for the formation and survival of these glaciers below the regional equilibrium–line altitude. The resultant regional equilibrium line altitude (ELA) was positioned close to the highest peaks between 2400 and 2500 m, with local controls such as avalanche, windblown snow and shading depressing the ELA in the northern cirques to 2130–2210 m. This ELA position was very low for this latitude and lower than for most glaciers in the European Alps at any time during the Holocene, and even equivalent to many Alpine glaciers during the Younger Dryas. Today, one glacier still survives in Montenegro, in a deep northeast‐facing cirque characterized by the largest combined areas of potential avalanche and windblown snow. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
This study investigates the distribution of boulders at Miyara Bay of Ishigaki Island, Japan. These boulders were deposited on a reef flat extending approximately 400–1300 m in width. Most boulders were rectangular to ellipsoidal, without sharp broken edges. They are reef and coral rock fragments estimated as <335 m3 (<633 t). Locally in the bay, the relationship between the boulder weight and position shows that boulders of a given weight have a clear limit on seaward distribution on the reef flat. For example, more than 1, 10, and 100 tons of boulders were deposited, respectively, more than 500, 300, and 100 m from the reef edge. The line is consistent with the possible landward transport limit by maximum storm waves at the Ryukyu Islands, suggesting that the line was formed by the reworking of some boulders by maximally strong storm waves, although we can not exclude the possibility that the line was formed by tsunamis. Furthermore, 68% of boulders at the bay are deposited beyond this line. Therefore, the presence of these boulders at their present positions is difficult to explain solely by storm waves, implying the possible tsunami origin of these boulders. The boulders are characteristically concentrated along the high‐tide line, suggesting the drastic reduction of the tsunami hydraulic force along the line. Previous studies using radiocarbon age dating, as well as our study, imply that at least 69 boulders at Miyara Bay were probably deposited at their present positions by the 1771 Meiwa tsunami, although some of these boulders might have been emplaced and displaced on the reef flat by prior tsunami or storm surges.  相似文献   

7.
Cosmogenic exposure dating of moraines during the last two decades has vastly improved knowledge on the timing of glaciation worldwide. Due to a variety of geologic complications, such as moraine degradation, snow cover, bedrock erosion and isotopic inheritance, samples from multiple large boulders (>1–2 m) often lead to the most accurate moraine age assignments. However, in many cases, large boulders are not available on moraines of interest. Here, I test the suitability of pebble collections from moraine crest surfaces as a sample type for exposure dating. Twenty-two 10Be ages from two Pleistocene lateral moraine crests in Pine Creek valley in the upper Arkansas River basin, Colorado, were calculated from both pebble and boulder samples. Ten 10Be ages from a single-crested Bull Lake lateral moraine range between 3 and 72 ka, with no statistical difference between pebble (n = 5) and boulder (n = 5) ages. The lack of a cluster of 10Be ages suggests that moraine degradation has led to anomalously young exposure ages. Twelve 10Be ages from a single-crested Pinedale lateral moraine have a bimodal age distribution; one mode is 22.0 ± 1.4 ka (three boulders, two pebble collections), the other is 15.2 ± 0.9 ka (two boulders, five pebble collections). The interpretation of the two age modes is that two glacier maxima of similar extent were attained during the late Pleistocene. Regardless of moraine age interpretations, that 10Be ages from pebble collections and boulders are indistinguishable on moraines of two different ages, and in two different age modes of the Pinedale moraine, suggests that pebble collections from moraine crests may serve as a suitable sample type in some settings.  相似文献   

8.
Boulder transport is an area of growing interest to coastal scientists as a means of improving our understanding of the complex interactions between extreme wave activity and the evolution of rocky coasts. However, our knowledge of the response of intertidal boulder deposits to contemporary storm events remains limited due to a lack of quantifiable field-based evidence. We address this by presenting a methodology incorporating Radio Frequency Identification (RFID) tagging and Differential Global Positioning Navigation Satellite System (DGNSS) technology to monitor and accurately quantify the displacement of RFID tagged boulders resulting from storm wave activity. Based on preliminary findings we highlight the suitability of the technology and methodology to better understand the spatial and temporal response of intertidal boulders to contemporary storm events. We inserted RFID tags in 104 limestone boulders (intermediate axes from 0.27 to 2.85 m) across a range of morphogenic settings at two sites on the intertidal shore platforms at Bembridge, Isle of Wight (UK). Fifteen topographic surveys were conducted between July 2015 and May 2017 to relocate and record tagged boulder locations (tag recovery rate: 91%). The relocated boulder coordinate data from both sites identified 164 individual transport events in 63% of the tagged boulder array amounting to 184.6 m of transport, including the displacement of a boulder weighing more than 10 tonnes. Incidents of boulder quarrying and overturning during transport were also recorded, demonstrating that despite the relatively sheltered location, intertidal boulders are created and regularly transported under moderate storm conditions. This suggests that contemporary storm events have a greater propensity to mobilise boulders in the intertidal range than has previously been realised. Consequently, by documenting our methodology we provide guidance to others and promote further use of RFID technology to enable new hypotheses on boulder transport to be tested in a range of field settings and wave regimes. © 2018 John Wiley & Sons, Ltd.  相似文献   

9.
Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals 10,000 years of explosive eruptions. Highlights include:(1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier.(2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at 3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred 1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter.(3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and 900 A.D. (roughly, 1400–1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by “caretakers” for several centuries longer.(4) A partial collapse of New Merapi occurred <1130±50 14C y B.P. Eruptions 700–800 14C y B.P. (12–14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended “caretaker” occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12–14th centuries, probably impounded by deposits from Merapi.(5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much larger than any of this century have occurred many times during Merapi's history, most recently during the 19th century.Are the relatively small eruptions of the 20th century a new style of open-vent, less hazardous activity that will persist for the foreseeable future? Or, alternatively, are they merely low-level “background” activity that could be interrupted upon relatively short notice by much larger explosive eruptions? The geologic record suggests the latter, which would place several hundred thousand people at risk. We know of no reliable method to forecast when an explosive eruption will interrupt the present interval of low-level activity. This conclusion has important implications for hazard evaluation.  相似文献   

10.
Cosmogenic nuclide dating of glacial landforms may lead to ambiguous results for ice retreat histories. The persistence of significant cosmogenic concentrations inherited from previous exposure may increase the apparent exposure ages for polished bedrocks affected by limited erosion under ice and for erratic boulders transported by glaciers and previously exposed in high-altitude rock walls. In contrast, transient burying by moraines, sediments and snow decreases the apparent exposure age. We propose a new sampling strategy, applied to four sites distributed in the Arc and Arve valleys in the Western Alps, to better constrain the factors that can bias exposure ages associated with glacial processes. We used the terrestrial cosmogenic nuclide 10Be (TCN) to estimate the exposure time from paired sampling of depth profiles in polished bedrock and on overlying erratic boulders. For a given sampling site, the exposure ages for both the polished bedrock and boulder are expected to be the same. However, in six cases out of seven, boulders had significantly higher 10Be surface concentrations than those of the associated polished surfaces. In present and past glacial processes, the 10Be distribution with depth for boulders and bedrocks implies the presence of an inheritance concentration of 10Be. Our study suggests that 10Be concentrations in erratic boulders and in polished bedrocks provide maximum and minimum exposure ages of the glacial retreat, respectively. © 2019 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd  相似文献   

11.
Weathering microforms associated with exfoliation were investigated on 40 granitic spheroidal boulders identified on Pricopan Ridge (M?cin Mountains) in order to establish a spatial distribution pattern. Continuous thermal monitoring allowed the frequency and intensity distribution assessment of short‐term temperature changes triggered by summer storms, of intense day–night amplitudes and frost cycles across a uniform rounded boulder. Rock strength estimated by Schmidt hammer tests differentiates a significantly weaker resistance on the southern face of the boulders (rebound values of 27 to 33) in comparison with the northern face (43–50). The lowest resistance of the north–south cross‐boulder profile corresponds to the southern gentle slopes (0°–45°) thus defining the most susceptible area to exfoliation and other weathering processes. It is argued that this low‐resistant sector fits well with the maximum frequency and intensity of thermal processes recorded on the low and mid slopes (0°–45°) of the boulders south side, with small differences from one process to another, whilst the sector of 20° to 30° south corresponds to the peak activity of all. In accordance, the overlay map of exfoliated surfaces places the high frequency area on a spherical cap developed similarly (between 5° north and 45° south). The smallest exfoliated surfaces normally appear around 30° south and are inferred to extend in time both to the boulder top and downslope. The correlations between the frequency/intensity maps of thermal processes and the frequency map of exfoliated surfaces point to a complementary action in the exfoliated surfaces development of the short‐term temperature changes and diurnal cooling and heating due to the directional insolation effect, as similarly inferred in the development of meridional cracks. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A remarkable accumulation of marine boulders located above the present spring tide level has occurred in two coastal lowlands of the Algarve (Portugal). The size‐interval of the particles studied here is seldom reported in the literature in association with extreme events of coastal inundation, thus making this study of relevance to many other coasts worldwide. The spreads of boulders extend several hundred meters inland and well beyond the present landward limit of storm activity. The marine origin of the boulders is demonstrated by well‐developed macro‐bioerosion sculpturing and in situ skeletal remains of endolithic shallow marine bivalves. The good state preservation of the fossils within the boulders indicates that abrasion during transport and redeposition was not significant. We envisage boulder deposition as having taken place during the Lisbon tsunami of ad 1755 through the simultaneous landward entrainment of coarse particles from nearshore followed by rapid shoreward suspended‐dominated transport and non‐graded redeposition that excluded significant sorting by weight or boulder dimensions. We use numerical hydrodynamic modeling of tsunami (and storm) waves to test the observational data on boulder dimensions (density, size, distribution) on the most likely processes of sediment deposition. This work demonstrates the effectiveness of the study of boulder deposits in tsunami reconstruction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
A role of lithobionts in geomorphological processes is increasingly argued, but the spatio‐temporal scale of their impact is largely unexplored in many ecosystems. This study first characterizes in the temperate zone (northwest Italy) the relationships between lithobiontic communities including endolithic lichens and the hardness of their siliceous rock substrate (Villarfocchiardo Gneiss). The communities are characterized, on humid and xeric quarry surfaces exposed for decades and natural outcrops exposed for centuries, in terms of lichen and microbial constituents, using a combined morphological and molecular approach, and with regard to their development on and within the gneiss. A lichen species belonging to Acarosporaceae (Polysporina‐Sarcogyne‐Acarospora group, needing taxonomic revision) chasmoendolithically colonizes both the humid and xeric quarry surfaces, on which epilithic cyanobacterial biofilms and epilithic pioneer lichens respectively occur. Light and electron microscopic observations show the development of the endolithic thalli within rock microcracks and the hyphal penetration along crystal boundaries down to depths of 1 to 3 mm, more pronounced within the humid surfaces. Such colonization patterns are likely related to biogeophysical deterioration, while no chemical alteration characterizes minerals contacted by the endolithic lichen. By contrast, on natural outcrops, where the endolithic colonization is negligible, a reddish rind below epilithic lichens indicates chemical weathering processes. Schmidt Hammer measurements highlight that the endolithic lichens deeply affect the hardness of the gneiss (down to ?60% with respect to fresh controls and surfaces only colonized by cyanobacteria), exerting a significantly higher weakening effect with respect to the associated epilithic lithobionts. The phenomenon is more remarkable on humid than on xeric quarry surfaces and natural outcrops, where epilithic lichens are likely involved in long‐term hardening processes supporting surface stabilization. Endolithic lichens are thus active biogeomorphological agents at the upper millimetric layer of siliceous rocks in temperate areas, exerting their weakening action during the early decade‐scaled stages of surface exposure. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Arcuate and linear protalus ramparts of inferred Loch Lomond Stadial age are widespread in upland Britain outside the limits of contemporaneous glaciers. Survey and analysis of the morphology of nine ramparts suggests that these may have formed at the foot of slowly thickening snowbeds, with rockfall debris accumulating against their distal slopes, and that snowbed melting at the end of the stadial was uninterrupted by prolonged periods of stability or renewed growth. Rampart sediments consist of poorly-sorted assemblages of clasts with a variable infill of fines. Clast size and shape are strongly influenced by lithology, but rampart clasts are characteristically more angular and ‘slabbier’ than those of similar lithology in ice-marginal moraines. Ramparts may also be distinguished from moraines by their location, morphology, lack of a true matrix of fines and absence of erratics, and from talus-foot rock glaciers in terms of their width and the absence of flow structures. The mapped distribution of rampart altitudes across the Scottish Highlands displays a marked regional trend, with the lowest features in the west and south and highest in the Cairngorms. This pattern mirrors that of reconstructed firn line altitudes of Loch Lomond Stadial glaciers, and is inferred to reflect a pronounced eastwards and northwards decline in snowfall during the stadial.  相似文献   

15.
Two major fluvial terrace surfaces, and four less significant surfaces, are identified by aerial photographic interpretation, field mapping and levelling on one c. 2 km long reach of the upper Bowmont Water, an upland stream draining the northern Cheviot Hills, Scotland. The oldest terrace surface remains undated. Cartographic, radiocarbon and palynological dating suggest that later terraces formed very recently, within the last 250 years, with the most prominent terrace fill having aggraded in the 18th century. Incision below this terrace surface is dated to approximately the end of the 18th century, correlated with channel trenching at other sites in the region. Detailed palaeoecological and documentary evidence is used to examine whether climatic or land-use changes might have instigated aggradation, and a link with increased precipitation and flooding during part of the ‘Little Ice Age’ is suggested.  相似文献   

16.
Correct and precise age determination of prehistorical catastrophic rock‐slope failures prerequisites any hypotheses relating this type of mass wasting to past climatic regimes or palaeo‐seismic records. Despite good exposure, easy accessibility and a long tradition of absolute dating, the age of the 230 million m3 carbonate‐lithic Tschirgant rock avalanche event of the Eastern Alps (Austria) still is relatively poorly constrained. We herein review the age of mass‐wasting based on a total of 17 absolute ages produced with three different methods (14C, 36Cl, 234U/230Th). Chlorine‐36 (36Cl) cosmogenic surface exposure dating of five boulders of the rock avalanche deposit indicates a mean event age of 3.06 ± 0.62 ka. Uranium‐234/thorium‐230 (234U/230Th) dating of soda‐straw stalactites formed in microcaves beneath boulders indicate mean precipitation ages of three individual soda straws at 3.20 ± 0.26 ka, 3.04 ± 0.10 ka and 2.81 ± 0.15 ka; notwithstanding potential internal errors, these ages provide an ‘older‐than’ (ante quam) proxy for mass‐wasting. Based on radiocarbon ages (nine sites) only, it was previously suggested that the present rock avalanche deposit represents two successive failures (3.75 ± 0.19 ka bp , 3.15 ± 0.19 ka bp ). There is, however, no evidence for two events neither in surface outcrops nor in LiDAR derived imagery and drill logs. The temporal distribution of all absolute ages (14C, 36Cl, 234U/230Th) also does not necessarily indicate two successive events but suggest that a single catastrophic mass‐wasting took place between 3.4 and 2.4 ka bp . Taking into account the maximum age boundary given by reinterpreted radiocarbon datings and the minimum U/Th‐ages of calcite precipitations within the rock avalanche deposits, a most probable event age of 3.01 ± 0.10 ka bp can be proposed. Our results underscore the difficulty to accurately date catastrophic rock slope failures, but also the potential to increase the accuracy of age determination by combining methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
18.
Fourier and wavelet analyses were used to reveal the dominant trends and coherence of a more than one‐century‐long time series of precipitation and discharge in several watersheds in Sweden, two of which were subjected to hydropower and intensive agriculture. During the 20th century, there was a gradual, significant drift of the dominant discharge periodicity in agricultural watersheds. This study shows that the steepness of the Fourier spectrum of runoff from the May to October period each year increased gradually during the century, which suggests a more predictable intra‐annual runoff pattern (more apart from white‐noise). In the agricultural watershed, the coherence spectrum of precipitation and runoff is generally high with a consistent white‐noise relationship for precipitation during the 20th century, indicating that precipitation is not controlling the drift of the discharge spectrum. In the hydropower regulated watershed, there was a sudden decrease of the discharge spectrum slope when regulation commenced in the 1920s. This study develops a new theory in which the runoff spectrum is related to the hydraulic and hydro‐morphological characteristics of the watershed. Using this theory, we explain the changes in runoff spectra in the two watersheds by the anthropogenic change in surface water volume and, hence, changes in kinematic wave celerity and water transit times. The reduced water volume in the agricultural watershed would also contribute to decreasing evaporation, which could explain a slightly increasing mean discharge during the 20th century despite the fact that precipitation was statistically constant in the area. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

19.
Large, rapid rockslope failures generate deposits with complex morphologies due to a number of causal and influencing factors. To investigate these, we conducted a detailed case study at the carbonate Tschirgant deposit (Tyrol, Austria). It preserved evidence of simultaneous rock sliding (very large, coherent hummocks) and rock avalanche spreading (smaller, more scattered hummocks and ridges). Motion indicators, such as longitudinal ridges furthermore pinpoint the transition between linear sliding and radial spreading. The lithological distribution in the Tschirgant deposit shows that it retained source stratigraphy despite being split into two accumulation lobes by a high bedrock ridge. Furthermore, lithology had a very strong control on the final deposit morphology in that the different lithologic units form individual deposit surfaces. River erosion has created fortuitous outcrops that reveal the basal rock avalanche contact. The underlying valley‐fill sediments (substrates) have been intricately involved in shaping the rock avalanche morphology and, where entrained, highlight internal rock avalanche deformation features. This study shows that intrinsic dynamic properties of granular media (e.g. tendency for longitudinal alignments), emplacement mode, lithology (and source predisposition), runout path topography, and substrates form the quintet of causal factors that shape rock avalanche morphology. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Large rock slope failures from near‐vertical cliffs are an important geomorphic process driving the evolution of mountainous landscapes, particularly glacially steepened cliffs. The morphology and age of a 2·19 × 106 m3 rock avalanche deposit beneath El Capitan in Yosemite Valley indicates a massive prehistoric failure of a large expanse of the southeast face. Geologic mapping of the deposit and the cliff face constrains the rock avalanche source to an area near the summit of ~8·5 × 104 m2. The rock mass free fell ~650 m, reaching a maximum velocity of 100 m s?1, impacted the talus slope and spread across the valley floor, extending 670 m from the base of the cliff. Cosmogenic beryllium‐10 exposure ages from boulders in the deposit yield a mean age of 3·6 ± 0·2 ka. The ~13 kyr time lag between deglaciation and failure suggests that the rock avalanche did not occur as a direct result of glacial debuttressing. The ~3·6 ka age for the rock avalanche does coincide with estimated late Holocene rupture of the Owens Valley fault and/or White Mountain fault between 3·3 and 3·8 ka. The coincidence of ages, combined with the fact that the most recent (AD 1872) Owens Valley fault rupture triggered numerous large rock falls in Yosemite Valley, suggest that a large magnitude earthquake (≥M7.0) centered in the south‐eastern Sierra Nevada may have triggered the rock avalanche. If correct, the extreme hazard posed by rock avalanches in Yosemite Valley remains present and depends on local earthquake recurrence intervals. Published in 2010 by John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号