首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The highest response of multi-supported structures subjected to partially specified multi-component earthquake support motions is considered. The seismic inputs are modelled as incompletely specified vector Gaussian random processes with known autospectral density functions but unknown cross spectral densities and these unknown functions are determined such that the steady state response variance of a given linear system is maximized. The resulting cross power spectral density functions are shown to be dependent on the system properties, autospectra of excitation and the response variable chosen for maximization. It emerges that the highest system response is associated neither with fully correlated support motions, nor with independent motions, but, instead, specific forms of cross power spectral density functions are shown to exist which produce bounds on the response of a given structure. Application of the proposed results is demonstrated by examples on a ground based extended structure, namely, a 1578 m long, three span, suspension cable bridge and a secondary system, namely, an idealized piping structure of a nuclear power plant.  相似文献   

2.
宋刚  谭川  陈果 《地震工程学报》2015,37(4):933-937
对传统的结构抗震闭开环控制算法进行改进。基于地面运动自回归模型,采用Kalman滤波利用可以量测到的地面加速度激励对未来时段即将发生的地面加速度激励进行预估,并在微分方程的求解中引入精确高效的精细积分算法。考虑到实际控制中量测全部状态变量的困难,改进算法仅需量测部分状态变量。数值仿真表明,基于输出反馈的闭开环次优控制策略能大大降低结构的地震响应。  相似文献   

3.
This paper presents a highly accurate method based on the precise integration method (PIM) and on the pseudo excitation method (PEM). The method computes the propagation behaviour of partially coherent non-stationary random waves in a viscoelastic, transversely isotropic solid, which consists of a multi-layered soil resting on a homogeneous semi-infinite space. The excitation source is a local rupture between two layers, which causes a partially coherent non-stationary random field. The analysis of non-stationary random wave propagation is transformed into that for deterministic waves by using PEM. The resulting governing equations in the frequency-wavenumber domain are linear ordinary differential equations, which are solved very precisely by using PIM. The evolutionary power spectral densities of the ground level responses are investigated and some typical earthquake phenomena are explained.  相似文献   

4.
This paper deals with the determination of critical earthquake load models for linear structures subjected to single‐point seismic inputs. The primary objective of this study is to examine the realism in critical excitations and critical responses vis a vis the framework adopted for the study and constraints that these excitations are taken to satisfy. Two alternative approaches are investigated. In the first approach, the critical earthquake is expressed in terms of a Fourier series that is modulated by an enveloping function that imparts transient nature to the inputs. The Fourier coefficients are taken to be deterministic and are constrained to satisfy specified upper and lower bounds. Estimates on these bounds, for a given site, are obtained by analysing past earthquake records from the same site or similar sites. The unknown Fourier coefficients are determined such that the response of a given structure is maximized subjected to these bounds and additional constraints on intensity, peak ground acceleration, peak ground velocity and peak ground displacement. In the second approach, the critical earthquake is modelled as a partially specified non‐stationary Gaussian random process which is defined in terms of a stationary random process of unknown power spectral density (psd) function modulated by a deterministic envelope function. The input is constrained to possess specified variance and average zero crossing rate. Additionally, a new constraint in terms of entropy rate representing the expected level of disorder in the excitation is also imposed. The unknown psd function of the stationary part of the input is determined so that the response of a given structure is maximized. The optimization problem in both these approaches is solved by using sequential quadratic programming method. The procedures developed are illustrated by considering the seismic response of a tall chimney and an earth dam. It is concluded that the imposition of lower and upper bounds on Fourier coefficients in the first approach and constraints on amount of disorder in the second approach are crucial in arriving at realistic critical excitations. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

5.
Considerable effort has been devoted to develop optimal control methods for reducing structural response under seismic forces. In this study analytical solution of the linear regulator problem applied widely to the control of earthquake‐excited structures is obtained by using the sufficient conditions of optimality even though almost all of the optimal controls proposed previously for structural control are based on the necessary conditions of optimality. Since the resulting optimal closed–open‐loop control cannot be implemented for civil structures exposed to earthquake forces, the solution of the optimal closed–open‐loop control is carried out approximately based on the prediction of the seismic acceleration values in the near future. Upon obtaining the relation between the exact optimal solution and future values of seismic accelerations, it is shown numerically that the solution of the optimal closed–open‐loop control problem can be performed approximately by using only the first few predicted seismic acceleration values if a given norm criteria is satisfied. Calculated performance measures indicate that the suggested approximate solution is better than the closed‐loop control and as we predict the future values of the excitation more accurately, it will approach the optimal solution. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
救灾物资的调度是地震救灾工作中的一个重要环节。如何将地震救灾物资以时间最短、安全性最高及经济性最好的方式运送到物资需求点是救灾物资调度的关键。本文从时效性、安全性及经济性方面考虑了地震救灾物资的调度问题。建立了运力不足的条件下,时间最短、出救点数目最少、安全性最高的地震救灾物资调度数学优化模型;将问题转化为不受运力约束的情况,求解出可行方案的集合,再利用模糊规划对每个可行方案求最优解;通过比较最优解,求出"时间最短,出救点数目最少,安全性最高"的方案。最后,通过一个仿真算例阐述了本文方法的使用。  相似文献   

7.
An improved seismic hazard model for use in performance‐based earthquake engineering is presented. The model is an improved approximation from the so‐called ‘power law’ model, which is linear in log–log space. The mathematics of the model and uncertainty incorporation is briefly discussed. Various means of fitting the approximation to hazard data derived from probabilistic seismic hazard analysis are discussed, including the limitations of the model. Based on these ‘exact’ hazard data for major centres in New Zealand, the parameters for the proposed model are calibrated. To illustrate the significance of the proposed model, a performance‐based assessment is conducted on a typical bridge, via probabilistic seismic demand analysis. The new hazard model is compared to the current power law relationship to illustrate its effects on the risk assessment. The propagation of epistemic uncertainty in the seismic hazard is also considered. To allow further use of the model in conceptual calculations, a semi‐analytical method is proposed to calculate the demand hazard in closed form. For the case study shown, the resulting semi‐analytical closed form solution is shown to be significantly more accurate than the analytical closed‐form solution using the power law hazard model, capturing the ‘exact’ numerical integration solution to within 7% accuracy over the entire range of exceedance rate. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
提出了一种具有地震抑制功能的结构抗震主动控制算法。其特点是设计一组状态反馈控制律,使得闭环结构系统在具有希望极点的同时,还能够减小结构地震输人的影响。首先,在特征结构配置参数化方法的基础上,将该控制问题转化为一个含有约束条件的优化问题;其次,给出了求解该问题的算法及实施步骤,该方法直接基于结构系统原始矩阵,不涉及系统的增广或变换,便于工程应用;最后,对地震作用下三层剪切型Benchmark结构模型进行了仿真分析,结果表明本文所提具有地震干扰抑制功能算法的有效性。  相似文献   

9.
Commonly used equivalent linear models for simple yielding systems subjected to harmonic and earthquake excitations are re-evaluated. It is shown that with respect to damping, these models contain the same basic information. Reported differences in the literature are simply due to scaling: since the product of the equivalent stiffness and equivalent damping is a constant, smaller damping values would be obtained by the use of the small amplitude equivalent stiffnesses. It is argued that for harmonic excitation, the secant stiffness is an appropriate representation of equivalent stiffness, leading to large equivalent damping values that increase with ductility. For earthquake excitation the Iwan proposal is shown to be the preferred model leading to larger damping values than previously reported. A comparison of the models for harmonic and earthquake excitations shows that, in general, and at comparable ductilities, damping values due to harmonic excitation are about five times those due to earthquake excitation, and the period changes due to harmonic excitation are about twice those due to earthquake excitation.  相似文献   

10.
The dynamic response of a wind turbine on monopile is studied under horizontal and vertical earthquake excitations. The analyses are carried out using the finite element program SAP2000. The finite element model of the structure is verified against the results of shake table tests, and the earthquake response of the soil model is verified against analytical solutions of the steady‐state response of homogeneous strata. The focus of the analyses in this paper is the vertical earthquake response of wind turbines including the soil‐structure interaction effects. The analyses are carried out for both a non‐homogeneous stratum and a deep soil using the three‐step method. In addition, a procedure is implemented which allows one to perform coupled soil‐structure interaction analyses by properly tuning the damping in the tower structure. The analyses show amplification of the ground surface acceleration to the top of the tower by a factor of two. These accelerations are capable of causing damage in the turbine and the tower structure, or malfunctioning of the turbine after the earthquake; therefore, vertical earthquake excitation is considered a potential critical loading in design of wind turbines even in low‐to‐moderate seismic areas. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The response of buried pipelines to random excitation by earthquake forces is obtained using a lumped mass model. The earthquake is considered as a stationary random process characterized by a power spectral density function (PSDF). The cross spectral density function between two random inputs along the length of the pipe is defined with the help of the local earthquake PSDF which is the same for all points, and a frequency dependent exponentially decaying (with distance) function. Soil resistance to dynamic excitation along the pipelength is obtained in an approximate manner with the help of frequency independent impedance functions derived from half-space analysis and Mindlin's static stresses within the soil due to point loads. The proposed method has the advantage that it can take into consideration the cross terms in soil stiffness and damping matrices and can consider any boundary condition that needs to be satisfied at the ends of the pipe. A parametric study is also made to show the influence of cross terms in the soil stiffness and damping matrices on the response of the pipe.  相似文献   

12.
The propriety of adopting a multi-degree-of-freedom lumped mass–spring–dampers system driven by white noise support excitation as a one-dimensional model for a soil-layer–bedrock system during an earthquake is investigated by means of statistical system identification of the model with noisy measurement of the earthquake ground velocity. The present discussion also suggests that this model may not be applicable to all observed earthquake records, since the model itself depends on the statistical nature of the earthquake motion. For appropriate earthquake records, the system identification procedure may be accomplished; then dynamical properties of the soil-layer and the power spectral density for white noise excitation acting upon the bedrock can be estimated as shown in a numerical example.  相似文献   

13.
A stochastic critical excitation is defined as that excitation with a given variance that maximizes the variance in the dynamic response of a system. A non-stationary filtered shot noise is used to develop a stochastic critical excitation model of an earthquake ground motion process, and the response statistics for a linear system are determined in both time and frequency domains. The sensitivity of response to several assumed earthquake pulse arrival rate functions is examined. Responses to recorded strong ground motion and to stochastic critical excitations with the same total energy are compared to assess the degree of conservatism in the procedure. An application of the procedure to seismic qualification of equipment is presented.  相似文献   

14.
大跨度空间网格结构多维多点随机地震反应分析   总被引:4,自引:0,他引:4  
本文建立了三维正交地震动多点激励下大跨度空间网格结构的随机地震反应分析方法,依据现行抗震设计规范的有关规定,确定了平稳随机地震动功率谱密度的模型参数。数值仿真分析了一柱距80m的正方形平板网架分别在一维地震动或三维地震动的一致激励、行波激励和考虑部分相干效应的随机激励下的地震反应。结果表明:考虑地震动的空间效应会很大程度地改变结构杆件的内力,其中控制杆件的内力增幅达到30%;地震动的行波效应对结构杆件内力的影响比随机地震动的部分相干效应的影响更大;三维地震作用比一维地震作用下结构杆件的内力大。由此得出结论,对于大跨度空间网格结构,必须进行多维多点地震激励下的随机地震反应分析。  相似文献   

15.
Two equivalent semi-discrete formulations are presented for the problem of the transient response of soil-structure interaction systems to seismic excitation, considering linear behaviour of the soil material and arbitrary non-linear structural properties. One formulation results in a direct method of analysis in which the motion in the structure and the entire soil medium, rendered finite by an artificial absorbing boundary, is determined simultaneously. The other represents a substructuring technique in which the structure and the soil are analysed separately. The forces induced in the discretized system by the incident seismic motion are obtained as part of the general formulation by using the free-field motion of the unaltered soil as the earthquake input. It is shown that these forces act within the soil region in the direct method, but only on the soil-structure interface in the substructure formulation. Both sets of forces, however, involve only the displacements and tractions acting on the fictitious surface in the unaltered (linear) soil which coincides with the soil-structure interface of the complete system. It is shown, further, that the free-field displacements alone define a minimal set of data for evaluating the seismic response of the structure, since the tractions and displacements on that surface are interrelated. In practice, the minimal set must be obtained by extrapolating the available information, as the free-field ground motion at a site is usually specified at a single reference point.  相似文献   

16.
Since earthquake ground motions are very uncertain even with the present knowledge, it is desirable to develop a robust structural design method taking into account these uncertainties. Critical excitation approaches are promising and a new non‐stationary random critical excitation method is proposed. In contrast to the conventional critical excitation methods, a stochastic response index is treated as the objective function to be maximized. The power (area of power spectral density (PSD) function) and the intensity (magnitude of PSD function) are fixed and the critical excitation is found under these restrictions. It is shown that the original idea for stationary random inputs can be utilized effectively in the procedure for finding a critical excitation for non‐stationary random inputs. The key for finding the new non‐stationary random critical excitation is the exchange of the order of the double maximization procedures with respect to time and to the power spectral density function. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
平稳随机地震地面运动过程模型及其统计特征   总被引:8,自引:3,他引:5  
地震地面运动过程具有强烈的随机性,应用随机理论对实际工程结构进行地震可靠性分析和抗震设计与加固时都需要建立合理的随机地震地面运动模型,本文选择3种典型的随机地震动模型,即理想白噪声模型、金井清模型和改进的金井消模型,分析了它们的物理概念、频域特征以及适用范围。引入状态向量,建立状态方程.通过复振型叠加法分析了地震地面运动过程的时域统计特性,推导出3种随机地震动模型的相关函数的解析表达式.这些结果可为结构随机地震反应时域分析和抗震可靠性评估提供基础。  相似文献   

18.
Earthquake ground motions and their effects on structural responses are very uncertain even with the present knowledge. It is therefore desirable to develop a robust structural design method taking into account these uncertainties. Critical excitation approaches are promising and a new random critical excitation method is proposed for MDOF elastic–plastic shear‐building structures on compliant ground. The power (area of power spectral density (PSD) function) and the intensity (magnitude of PSD function) are fixed and the critical excitation is found under these restrictions. In contrast to linear elastic structures, transfer functions and simple expressions for response evaluation cannot be defined in elastic–plastic structures and difficulties arise in describing the peak responses except by laborious elastic–plastic time‐history response analysis. Statistical equivalent linearization is used to estimate the elastic–plastic stochastic peak responses approximately. The critical excitation responses are obtained for several examples and compared with those of the corresponding recorded earthquake ground motion. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

19.
The objective of this study is to investigate the effects of earthquakes on road vehicle-bridge coupling vibration systems. A two-axle highway freight vehicle is treated as a 13 degree-of-freedom system composed of several rigid bodies, which are connected by a series of springs and dampers. The framework of the earthquake-vehicle-bridge dynamic analysis system is then established using an earthquake as the external excitation. The equivalent lateral contact force serves as the judgment criteria for sideslip accidents according to reliability theory. The entire process of the vehicle crossing the bridge is considered for a very high pier continuous rigid frame bridge. The response characteristics of the vehicle and the bridge are discussed in terms of various parameters such as earthquake ground motion, PGA value of the earthquake, incident angle, pier height, vehicle speed and mass. It is found that seismic excitation is the most influential factor in the responses of the vehicle-bridge system and that the safety of vehicles crossing the bridge is seriously impacted by the dual excitations of earthquake and bridge vibration.  相似文献   

20.
This paper addresses the issue of system identification for linear structural systems using earthquake induced time histories of the structural response. The proposed methodology is based on the Eigensystem Realization Algorithm (ERA) and on the Observer/Kalman filter IDentification (OKID) approach to perform identification of structural systems using general input–output data via Markov parameters. The efficiency of the proposed technique is shown by numerical examples for the case of eight-storey building finite element models subjected to earthquake excitation and by the analysis of the data from the dynamic response of the Vincent-Thomas cable suspension bridge (Long Beach, CA) recorded during the Whittier and the Northridge earthquakes. The effects of noise in the measurements and of inadequate instrumentation are investigated. It is shown that the identified models show excellent agreement with the real systems in predicting the structural response time histories when subjected to earthquake-induced ground motion. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号