首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
CHARACTERISTICSANDREGULATIONOFWANDERINGRIVERSXIEJianheng(Professr,MemberoftheChineseEngineeringAcademyofSciences,WuhanUnivers...  相似文献   

2.
l INTRODUCTIONT'he landscaPe is mainly shaPed by surface runoff of water through erosion and sedimentahon. mverflows cut the bed, scour the banks and silt the seas. All these are realized by moving sediment frOm oneplace to other places. The caPacity of the flow to remove sediment frOm one place to other places within ariver chanel is called sediment-removing caPacity. It differs frOm the well-defined sediment-capingcapacity For instance, steady flow carries sediment through the river …  相似文献   

3.
Haiyan Yang 《水文研究》2020,34(17):3702-3717
Gravel-bed braided rivers are highly energetic fluvial systems characterized by frequent in-channel avulsions, which govern the morphodynamics of such rivers and are essential for them to maintain a braided planform. However, the avulsion mechanisms within natural braided rivers remain unclear due to their complicated hydraulic and morphodynamic processes. Influenced by neighbouring channels, avulsions in braided rivers may differ from those of bifurcations in single-thread rivers, suggesting that avulsions should be studied within the context of the entire braid network. In this study, braiding evolution processes in gravel-bed rivers were simulated using a physics-based numerical model that considers graded bed-load transport by dividing sediment particles into multiple size fractions and vertical sediment sorting by dividing the riverbed into several vertical layers. The numerical model successfully produced braiding processes and avulsion activities similar to those observed in a laboratory river. Results show that bend evolution of the main channel was the fundamental process controlling the occurrence of avulsions in the numerical model, with a cyclic process of channel meandering by lateral migration that transitioned to a straight channel pattern by avulsion. The radius of bend curvature for triggering avulsions in the numerical model was measured and it was found that the highest probability for a channel bend to generate an avulsion occurs when its radius of curvature is approximately 2.0–3.3 times the average anabranch width. Other types of avulsion were also observed that did not occur specifically at meander bends, but upstream meander evolution indirectly influenced such avulsions by altering channel pattern and discharge to those locations. This study explored the processes and mechanisms of several types of avulsion, and proposed factors controlling their occurrence, namely increasing channel curvature, high shear stress, tributary discharge, riverbed gradient and upstream channel pattern, with high shear stress being a direct indicator. Furthermore, avulsions in a typical gravel-bed braided river, the Waimakariri River in New Zealand, were analysed using sequential Google Earth maps, which confirmed the conclusions derived from the numerical simulation.  相似文献   

4.
River regulation and river training have been performed for various purposes and negative effects have been shown in numerous cases. In some cases the negative effects are so serious that humans have to consider to "renaturalize" the regulated rivers. Only by using the strategy of integrated river management the diverse river uses and natural fluvial processes and ecological systems may be harmonized. Based on analysis of case studies and data collected from literatures this paper presents the concept of integrated river management and four principles of river training. The integrated river management comprises: 1) taking the watershed, upper stream basin including the tributaries, middle and lower reaches and the estuary as an integrated entity in the planning, design and management; and 2) mitigating or controlling the negative impacts on hydrology, erosion and sedimentation, fluvial processes, land use and river use, environment and ecology while in achieving economic benefit from water resources development, flood safety management and hydropower exploitation. River training and management should be in accordance with the four principles: 1) extending the duration of river water flowing on the continent, which may be achieved by extending the river course or reducing the flow velocity; 2) controlling various patterns of erosions and reducing the sediment transportation in the rivers; 3) increasing the diversity of habitat and enhancing the connectivity between the river and riparian waters; and 4) restoring natural landscapes.  相似文献   

5.
We use three different approaches of optically stimulated luminescence (OSL) to study young fluvial sediments located at the main channels of one of the largest fluvial systems of North America: the Usumacinta–Grijalva. We use the pulsed photo‐stimulated luminescence (PPSL) system also known as portable OSL reader, full OSL dating and profiling OSL dating in samples extracted from vertical sediment profiles (n = 9) of riverbanks to detect changes in depositional rates of sediments and to obtain the age of the deposits. The results of the PPSL system show that the luminescence signals of vertical sediment profiles highly scattered from the top to the bottom contrast with the luminescence pattern observed on well‐reset sequences of fluvial deposits where luminescence increase from the top to the bottom of the profile. The profiling and full OSL ages yielded large uncertainty values on their ages. Based on the inconsistencies observed in both ages and luminescence patterns of profiles we suggest that these fluvial deposits were not fully reset during their transport. As an explanation, we propose that in the Usumacinta and Grijalva rivers the cyclonic storms during the wet season promote the entrainment of large volumes of sediments due to high‐erosional episodes around the basin resulting from hyper‐concentrated and turbid flows. We conclude that the PPSL, profiling and full OSL dating of sediments are useful tools to quantify and to assess the depositional patterns in fluvial settings during the Holocene. These techniques also can yield information about sites where increases in the sediment load of rivers may produce poorly resetting of grains affecting the results of OSL dating. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Major rivers have traditionally been linked with important human settlements throughout history. The growth of cities over recent river deposits makes necessary the use of multidisciplinary approaches to characterize the evolution of drainage networks in urbanized areas. Since under‐consolidated fluvial sediments are especially sensitive to compaction, their spatial distribution, thickness, and mechanical behavior must be studied. Here, we report on subsidence in the city of Seville (Southern Spain) between 2003 and 2010, through the analysis of the results obtained with the Multi‐Temporal InSAR (MT‐InSAR) technique. In addition, the temporal evolution of the subsidence is correlated with the rainfall, the river water column and the piezometric level. Finally, we characterize the geotechnical parameters of the fluvial sediments and calculate the theoretical settlement in the most representative sectors. Deformation maps clearly indicate that the spatial extent of subsidence is controlled by the distribution of under‐consolidated fine‐grained fluvial sediments at heights comprised in the range of river level variation. This is clearly evident at the western margin of the river and the surroundings of its tributaries, and differs from rainfall results as consequence of the anthropic regulation of the river. On the other hand, this influence is not detected at the eastern margin due to the shallow presence of coarse‐grain consolidated sediments of different terrace levels. The derived results prove valuable for implementing urban planning strategies, and the InSAR technique can therefore be considered as a complementary tool to help unravel the subsidence tendency of cities located over under‐consolidated fluvial deposits. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

7.
The rivers of the world are undergoing accelerated change in the Anthropocene, and need to be managed at much broader spatial and temporal scales than before. Fluvial remote sensing now offers a technical and methodological framework that can be deployed to monitor the processes at work and to assess the trajectories of rivers in the Anthropocene. In this paper, we review research investigating past, present and future fluvial corridor conditions and processes using remote sensing and we consider emerging challenges facing fluvial and riparian research. We introduce a suite of remote sensing methods designed to diagnose river changes at reach to regional scales. We then focus on identification of channel patterns and acting processes from satellite, airborne or ground acquisitions. These techniques range from grain scales to landform scales, and from real time scales to inter-annual scales. We discuss how remote sensing data can now be coupled to catchment scale models that simulate sediment transfer within connected river networks. We also consider future opportunities in terms of datasets and other resources which are likely to impact river management and monitoring at the global scale. We conclude with a summary of challenges and prospects for remotely sensed rivers in the Anthropocene. © 2019 John Wiley & Sons, Ltd.  相似文献   

8.
Q. He  D. E. Walling 《水文研究》1998,12(7):1079-1094
River floodplains have been widely recognized as important sinks for storing suspended sediment and associated contaminants transported by river systems. The grain size composition of floodplain deposits exerts an important influence on contaminant concentrations, and commonly exhibits significant spatial variability in response to the dynamic nature of overbank flow and sediment transport. Information on the spatial variability of the grain size composition of overbank deposits is therefore essential for developing an improved understanding of the processes controlling sediment transport on floodplains, and for investigating the fate of sediment-associated contaminants. Such information is also important for validating existing floodplain sedimentation models. This paper reports the results of a study aimed at investigating the spatial variability of the grain size composition of floodplain sediments at different spatial scales, through analysis of surface sediment samples representative of contemporary floodplain deposits collected from frequently inundated floodplain sites on five British lowland rivers. Significant lateral and downstream variations in the grain size composition of the sediment deposits have been identified in the study reaches. An attempt has been made to relate the observed spatial distribution of the grain size composition of the overbank deposits to the local floodplain geometry and topography. The importance of the particle size characteristics of the suspended sediment transported by the rivers in influencing the spatial variability of the grain size composition of the overbank sediments deposited on these floodplains is also considered. © 1998 John Wiley & Sons, Ltd.  相似文献   

9.
Earth scientists have traditionally conceptualized rivers and streams as geomorphic machines, whose role is to transfer sediment and to sculpt the landscape. Steady‐state relationships between sediment supply and transport capacity have traditionally been considered normative in fluvial systems. Rivers are hydrological entities, however, whose function is to redistribute excess moisture on land. The geomorphic work of the river – erosion, transport, deposition, etc. – is a byproduct of the hydrological job of the river. There is therefore no reason to expect any particular relationship between sediment supply and transport capacity to develop as a normative condition in fluvial systems. The apparent steady‐state equilibrium slope adjustments of rivers are a byproduct of four basic phenomena: (1) hydraulic selection, which favors channels and branching networks over other flux patterns; (2) water flows along the available path of least resistance; (3) energy dissipation; and (4) finite relaxation times. Recognizing converging trends of stream power or slope and sediment supply as common (but far from inevitable) side effects rather than self‐regulation has important implications for interpreting and predicting fluvial systems, and for river management and restoration. Such trends are variable, transient, contingent, and far from universal. Where they occur, they are an emergent byproduct of fundamental physical mechanisms, not a goal function or attractor state. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The dynamics of fluvial system evolution depend on fluvial processes and their driving forces associated with climatic variations, which affect changes in the morphology of river channels and floodplains. Neither channel slope and morphology, nor the properties of fluvial sediment have previously been considered as determinants of active braidplain widening on outwash plains (formed from valley/alpine glaciers and confined by pre-existing topography) in the High Arctic region and in the forefields of retreating glaciers. Factors determining widening of braidplain activity of the Waldemar River outwash (north-western Spitsbergen, Svalbard) were analysed on the basis of geomorphological, sedimentological, glaciological and meteorological research, and indicate significant multiple correlations between meltwater discharge, precipitation, braidplain width, morphology of the braided channel and the textural features of braidplain deposits. The capability of multivariate adaptive regression splines to detect these relationships was described, and threshold values were identified. The results indicate that the rate of active braidplain widening is proportional to the meltwater outflow in proglacial rivers, which can decrease despite a growing rate of glacial ablation. A proposed model enables us to predict zones of braidplain prone to widening activity in the High Arctic (humid) outwash fans and plains as well as fans developed in arid intermountain basins. The necessary conditions to activate braidplain widening processes were (1) spatial changes in the outwash feeding system due to glacier terminus retreat and (2) crossing the thresholds in passive factors (S and d50) controlling lateral erosion intensity. As a result, the braidplain reached a new dynamic equilibrium, in which high-magnitude–low-frequency extreme meltwater discharges were of particular importance in terms of braidplain dynamics and are the dominant controls on the pattern of distributary channels.  相似文献   

11.
Although the channel morphology of upland fluvial systems is known to be strongly controlled by sediment supply from hillslopes, it is still difficult to isolate this effect from the other controlling factors of channel forms, such as the sediment transport capacity (depending notably on the size of the catchment) and local conditions (e.g. confinement, riparian vegetation, valley-floor slope). The rivers in New Caledonia offer an interesting field laboratory to isolate the morphological effect of contrasted sediment supply conditions. Some of these rivers are known to be highly impacted by the coarse sediment waves induced by the mining of nickel deposits that started in the early 1870s, which was particularly intensive between the 1940s and 1970s. The propagation of the sediment pulses from the mining sites can be traced by the presence of wide and aggraded active channels along the stream network of nickel-rich peridotite massifs. A first set of 63 undisturbed catchments in peridotite massifs distributed across the Grande Terre was used to fit a classic scaling law between active channel width and drainage area. A second set of 86 impacted sites, where the presence of sediment waves was clearly attested by recent aerial imagery, showed systematically wider active channels, with a width ratio around 5 (established from the intercept ratio of width–area power laws). More importantly, this second set of disturbed sites confirmed that the residual of active channel widths, computed from the scaling law of undisturbed sites, is statistically positively related to the catchment-scale relative area of major mining sediment sources. It is therefore confirmed that the characterization of sediment supply conditions is crucial for the understanding of spatial patterns of active channel width, and this should be more thoroughly considered in morphological studies of rivers draining environments with contrasted geomorphic activities on hillslopes. © 2018 John Wiley & Sons, Ltd.  相似文献   

12.
曾冰茹  李云良  谭志强 《湖泊科学》2023,35(5):1796-1807
由于气候变化和人类活动等多重影响,流域河湖水系格局与连通程度发生了显著变化,进而引发洪涝灾害等一系列水资源问题。本文以鄱阳湖流域为研究区,基于Google Earth Engine(GEE)提取1989—2020年5期水系数据,采用图论方法构建水系评价体系,定量分析该地区近30年来水系格局和结构连通性的时空演变特征,并结合该时期地形、土地利用和归一化植被指数(NDVI)等数据,利用连通性指数(index of connectivity,IC)评估功能连通性的动态变化,进而探讨水文连通与径流量和输沙量的联系。结果表明,近30年来鄱阳湖流域水系结构趋于复杂化,主要体现在流域北部。除干流外,其他等级河流的数量和长度均有所增加,其中Ⅲ级河流最为明显。河网密度、水面率、河网复杂度和发育系数均呈增加趋势,2000年后的变化率约为2000年前的两倍。水系连通环度、节点连接率和水系连通度总体增加,结构连通性呈好转趋势且变化幅度较小。功能连通分析表明,近30年来大部分流域IC减少,流域下游靠近主河道的平坦地区IC较高,上游远离河道的植被密集区域IC较低。此外,IC与年径流量和输沙量表现为显著的正相关性(...  相似文献   

13.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Anabranching rivers evolve in various geomorphic settings and various river planforms are present within these multi‐channel systems. In some cases, anabranches develop meandering patterns. Such river courses existed in Europe prior to intensive hydro‐technical works carried out during the last 250 years. Proglacial stream valleys, inherited from the last glaciation, provided a suitable environment for the development of anabranching rivers (wide valleys floors with abundant sand deposits). The main objective of the present study is to reconstruct the formation of an anabranching river planform characterized by meandering anabranches. Based on geophysical and geological data obtained from field research and a reconstruction of palaeodischarges, a model of the evolution of an anabranching river formed in a sandy floodplain is proposed. It is demonstrated that such a river system evolves from a meandering to an anabranching planform in periods of high flows that contribute to the formation of crevasse splays. The splay channels evolve then into new meandering flow paths that form ‘second‐order’ crevasses, avulsions and cutoffs. The efficiency of the flow is maintained by the formation of cutoffs and avulsions preventing the development of high sinuosity channels, and redirecting the flow to newly formed channels during maximum flow events. A comparison with other anabranching systems revealed that increased discharges and sediment loads are capable of forming anabranching planforms both in dryland and temperate climate zones. The sediment type available for transport, often inherited from older sedimentary environments, is an important variable determining whether the channel planform is anabranching, with actively migrating channels, or anastomosing, with stable, straight or sinuous branches. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

15.
Global peatlands store an unparalleled proportion of total global organic carbon but it is vulnerable to erosion into fluvial systems. Fluvial networks are being recognized as areas of carbon transformation, with eroded particulate organic carbon processed to dissolved organic carbon and CO2. Existing studies indicate biodegradation and photodegradation as key processes controlling the transformation of organic carbon in fluvial systems, with initial concentrations of dissolved organic carbon (DOC) identified as a control on the rate of carbon mineralization. This study manipulates temperature and incident light intensity to investigate carbon mineralization rates in laboratory simulations of peatland sediment transport into fluvial systems. By directly measuring gaseous CO2 emissions from sampled stream water, the relationship of temperature and light intensity with carbon efflux is identified. In simulations where sediment (as particulate organic matter, POM) is absent, temperature is consistently the dominant factor influencing carbon efflux rates. This influence is independent of the initial DOC concentration of the water sample. In simulations where POM was added, representing a peatland river receiving eroded terrestrial sediment, initial DOC concentration predicts 79% of the variation in total gaseous carbon efflux whereas temperature and light intensity predict 12% and 3%, respectively. When sampled stream water's mineralization rates in the presence of added POM are analysed independently, removing DOC as a model variable, the dominant variable affecting CO2 efflux is opposite for each sample. This study presents novel data suggesting peatland erosion introduces further complexity to dynamic stream systems where rates of carbon transformation processes and the influence of specific environmental variables are interdependent. Anthropogenic climate change is identified as a leading risk factor perpetuating peatland erosion; therefore, understanding the fate of terrestrial sediment in rivers and further quantifying the benefits of protecting peatland soils will be of increasing importance to carbon budgeting and ecosystem function studies.  相似文献   

16.
Rivers are natural systems whose planform pattern in alluvial reaches reflects a balance between three fundamental ingredients: flow energy, sediment calibre and supply, and vegetation. Whilst early research on river channel classification emphasised flow (stream power) and sediment controls, the impact of vegetation is now recognised in increasingly detailed classification schemes. Different planform patterns are more or less sensitive to changes in these three fundamental ingredients, which in the absence of human interventions all respond to changes in climate, allowing different morphological configurations to evolve and in some cases shift from one planform style to another. Multi-thread, braided and transitional river channel styles are common in European regions where conditions for the development of these planform styles, notably high bed material supply and steep channel gradients, exist. However, widespread, intense human impacts on European river systems, particularly over recent centuries, have caused major changes in river styles. Human activities impact on all three major controls on channel pattern: flow regime, sediment regime, vegetation (both riparian and catchment-wide). Whilst the mix of human activities may vary greatly between catchments, research from across Europe on the historical evolution of river systems has identified consistent trends in channel pattern change, particularly within rivers draining the Alps. These trends involve periods of narrowing and widening, and also switching between multi-thread and single-thread styles. Although flow regulation is often the key focus of explanations for human-induced channel change, our review suggests that human manipulation of sediment supply is a major, possibly the dominant, causal factor. We also suggest that “engineering” by riparian trees can accelerate transitions in pattern induced by flow and sediment change and can also shift transition thresholds, offering a new perspective for interpretation of channel change in addition to the focus on flow and sediment regime within existing models. Whilst the development of planform classifications of increasing complexity have been crucial in developing terminology and highlighting the main factors that control channel styles, additional approaches are needed to understand, predict and manage European Alpine river systems. A combination of field, laboratory and numerical modeling approaches are needed to advance the process understanding that is necessary to anticipate river landscape, particularly planform, changes and thus to make ecologically sound management choices.  相似文献   

17.
Erosion pattern of artificial gravel deposits   总被引:1,自引:1,他引:0  
Sediment replenishment with artificial gravel deposits is an option to compensate for sediment deficits in rivers and to improve their ecological conditions. Predicting and quantifying the erosion rate of an artificial gravel deposit is important to successfully perform river restoration projects. Laboratory experiments have been done to investigate the influence of various parameters on the erosion pattern of artificial gravel deposits. In the present paper the effects of deposit geometry, bulk density, grain size distribution, and hydraulic load on the erosion process are described. The temporal evolution of the deposit geometry and the corresponding mean erosion rates were studied. The mean erosion rate increases with deposit height, deposit width, and decreasing grain size. Furthermore, no significant impact of the bulk density was observed. Equations to predict the mean erosion rate are proposed. This investigation helps to determine the design frequency of gravel dumping and deposit volumes for restoration projects.  相似文献   

18.
The large river systems are the major transfer of continental masses to the ocean and basin, playing significant roles in global geochemical cycles. The Tibetan plateau is the birthplace of many huge rivers flowing through eastern and southern Asia, in which the fluvial deposits kept not only closely relate to the geological evolution information from the source areas, but also record the river itself building process. The low-temperature thermochronology method of detrital minerals (zircon and apatite, etc.) can be used to constrain the river's source areas, establishing its source-sink system. It can also combine regional tectonic deformation analysis to determine the potential source region of the river and the formation time of the plateau geomorphology, which is a focused issue in recent years. In this study, we have summarized the research results from the large rivers in the Tibetan plateau in recent years, suggesting that the low-temperature thermochronology analysis of the detrital minerals should be focused on the river's key locations in the upstream, midstream and downstream, respectively, combining the small tributaries analysis which can give a more detailed thermal evolution history in the whole drainage basin. On the conditions of the bedrock, it is shown that in the same river's different place we should use the same low-temperature thermochronology, while in different river's places we should take several low-temperature thermochronology methods (apatite and zircon, etc.)at a same position, so we get a complete time series related to the river incision. Combining the valley bedrock and detrital river minerals with the low-temperature thermalchronology on the Tibetan plateau, together with the chronology, structure analysis and other sedimentary studies, we can obtain detailed structures and river's evolution processes.  相似文献   

19.
20.
Hydrologic changes have a great impact on the long-term river morphology. The most common anthropic cause is the construction of dams, which often reduces both the discharge regime and sediment transport, producing a narrowing and degradation of the river bed. In this study we propose a simple, lumped morphodynamic model that describes fluvial cross-section dynamics consequent to changes in discharge and sediment transport induced by external factors. The model provides the temporal dynamics of the river width and bed quote. These dynamics result not to be trivial and can exhibit non monotonic behavior, with aggradations and degradations, and narrowing and widening. The model has been tested on real rivers using data obtained from field studies. The agreement between the outcomes and the data measured in the field works is always satisfactory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号