首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, mode converted shear waves (C‐waves) have been shown to enable overpressure prediction in media where primary wave acquisition is inhibited by gas and fluid effects – C‐wave moveout is analysed and a long standing relationship between differential stress and primary‐wave (P‐wave) velocity is modified and employed. Though pore‐pressure prediction based on C‐waves is supported by empirical evidence from laboratory and field experiments, a theoretical justification has yet to be developed. In this research note, we provide a supporting algebra for the original relationship between pore pressure and C‐wave velocity.  相似文献   

2.
Numerical simulation in coupled elastic and poroelastic media is important in oil and gas exploration. However, the interface between elastic and poroelastic media is a challenge to handle. In order to deal with the coupled model, the first-order velocity–stress wave equations are used to unify the elastic and poroelastic wave equations. In addition, an arbitrary high-order discontinuous Galerkin method is used to simulate the wave propagation in coupled elastic–poroelastic media, which achieves same order accuracy in time and space domain simultaneously. The interfaces between the two media are explicitly tackled by the Godunov numerical flux. The proposed forms of numerical flux can be used efficiently and conveniently to simulate the wave propagation at the interfaces of the coupled model and handle the absorbing boundary conditions properly. Numerical results on coupled elastic–poroelastic media with straight and curved interfaces are compared with those from a software that is based on finite element method and the interfaces are handled by boundary conditions, demonstrating the feasibility of the proposed scheme in dealing with coupled elastic–poroelastic media. In addition, the proposed method is used to simulate a more complex coupled model. The numerical results show that the proposed method is feasible to simulate the wave propagation in such a media and is easy to implement.  相似文献   

3.
A workflow for simultaneous joint PP‐PS prestack inversion of data from the Schiehallion field on the United Kingdom Continental Shelf is presented and discussed. The main challenge, describing reasonable PS to PP data registration before any prestack or joint PP‐PS inversion, was overcome thanks to a two‐stage process addressing the signal envelope, then working directly on the seismic data to estimate appropriate time‐variant time‐shift volumes. We evaluated the benefits of including PS along with PP prestack seismic data in a joint inversion process to improve the estimated elastic property quality and also to enable estimation of density compared with other prestack and post‐stack inversion approaches. While the estimated acoustic impedance exhibited a similar quality independent of the inversion used (PP post‐stack, PP prestack or joint PP‐PS prestack inversion) the shear impedance estimation was noticeably improved by the joint PP‐PS prestack inversion when compared to the PP prestack inversion. Finally, the density estimated from joint PP and PS prestack data demonstrated an overall good quality, even where not well‐controlled. The main outcome of this study was that despite several data‐related limitations, inverting jointly correctly processed PP and PS data sets brought extra value for reservoir delineation as opposed to PP‐only or post‐stack inversion.  相似文献   

4.
To predict the earthquake response of saturated porous media it is essential to correctly simulate the generation, redistribution, and dissipation of excess pore water pressure during and after earthquake shaking. To this end, a reliable numerical tool requires a dynamic, fully coupled formulation for solid–fluid interaction and a versatile constitutive model. Presented in this paper is a 3D finite element framework that has been developed and utilized for this purpose. The framework employs fully coupled dynamic field equations with a upU formulation for simulation of pore fluid and solid skeleton interaction and a SANISAND constitutive model for response of solid skeleton. After a detailed verification and validation of the formulation and implementation of the developed numerical tool, it is employed in the seismic response of saturated porous media. The study includes examination of the mechanism of propagation of the earthquake-induced shear waves and liquefaction phenomenon in uniform and layered profiles of saturated sand deposits.  相似文献   

5.
Passive seismic provides additional illumination sources in producing reservoirs, improving the Earth's imaging obtained by standard 3D seismic surveys. The joint tomographic inversion of surface and borehole data, both active and passive, even allows the delineation of thin reservoirs that cannot be resolved by reflection tomography. As an application example, we present a feasibility study for a real case of CO2 geological storage, showing that this operation may benefit both environment and reservoir monitoring. The origin time of micro‐earthquakes due to production operations is critical for merging active and passive data. We show here that the Wadati's method is not accurate for borehole data in a layered earth model, when the ratio between P and S velocities is not constant, as occurs in most hydrocarbon reservoirs. This drawback can be solved by deploying a few receivers at the surface close to the well.  相似文献   

6.
The added value of the joint pre-stack inversion of PP (incident P-wave and reflected P-wave) and PS (incident P-wave and reflected S-wave) seismic data for the time-lapse application is shown. We focus on the application of this technique to the time-lapse (four-dimensional) multicomponent Jubarte field permanent reservoir monitoring seismic data. The joint inversion results are less sensitive to noise in the input data and show a better match with the rock physics models calibrated for the field. Further, joint inversion improves S-impedance estimates and provides a more robust quantitative interpretation, allowing enhanced differentiation between pore pressure and fluid saturation changes, which will be extremely useful for reservoir management. Small changes in reservoir properties are expected in the short time between the time-lapse seismic acquisitions used in the Jubarte project (only 1 year apart). The attempt to recover subtle fourth-dimensional effects via elastic inversion is recurrent in reservoir characterization projects, either due to the small sensitivity of the reservoirs to fluid and pressure changes or the short interval between the acquisitions. Therefore, looking for methodologies that minimize the uncertainty of fourth-dimensional inversion outputs is of fundamental importance. Here, we also show the differences between PP only and joint PP–PS inversion workflows and parameterizations that can be applied in other projects. We show the impact of using multicomponent data as input for elastic seismic inversions in the analysis of the time-lapse differences of the elastic properties. The larger investment in the acquisition and processing of multicomponent seismic data is shown to be justified by the improved results from the fourth-dimensional joint inversion.  相似文献   

7.
We investigated the seismic attenuation of compressional (P‐) and converted shear (S‐) waves through stacked basalt flows using short‐offset vertical seismic profile (VSP) recordings from the Brugdan (6104/21–1) and William (6005/13–1A) wells in the Faroe‐Shetland Trough. The seismic quality factors (Q) were evaluated with the classical spectral ratio method and a root‐mean‐square time‐domain amplitude technique. We found the latter method showed more robust results when analysing signals within the basalt sequence. For the Brugdan well we calculated effective Q estimates of 22–26 and 13–17 for P‐ and S‐waves, respectively, and 25–33 for P‐waves in the William well. An effective QS/QP ratio of 0.50–0.77 was found from a depth interval in the basalt flow sequence where we expect fully saturated rocks. P‐wave quality factor estimates are consistent with results from other VSP experiments in the North Atlantic Margin, while the S‐wave quality factor is one of the first estimates from a stacked basalt formation using VSP data. Synthetic modelling demonstrates that seismic attenuation for P‐ and S‐waves in the stacked basalt flow sequence is mainly caused by one‐dimensional scattering, while intrinsic absorption is small.  相似文献   

8.
An understanding of strain wave propagation in fluid containing porous rocks is important in reservoir geophysics and in the monitoring in underground water in the vicinity of nuclear and toxic waste sites, earthquake prediction, etc. Both experimental and theoretical research are far from providing a complete explanation of dissipation mechanisms, especially the observation of an unexpectedly strong dependence of attenuationQ –1 on the chemistry of the solid and liquid phase involved. Traditional theories of proelasticity do not take these effects into account. In this paper the bulk of existing experimental data and theoretical models is reviewed briefly in order to elecidate the effect of environmental factors on the attenuation of seismic waves. Low fluid concentrations are emphasized. Thermodynamical analysis shows that changes in surface energy caused by weak mechanical disturbances can explain observed values of attenuation in real rocks. Experimental dissipation isotherms are interpreted in terms of monolayered surface adsorption of liquid films as described by Langmuir's equation.In order to describe surface dissipation in consolidated rocks, a surface tension term is added to the pore pressure term in the O'Connell-Budiansky proelastic equation for effective moduli of porous and fractured rocks. Theoretical calculations by this modified model, using reasonable values for elastic parameters, surface energy, crack density and their geometry, lead to results which qualitatively agree with experimental data obtained at low fluid contents.  相似文献   

9.
Generally, local stress induced by individual crack hardly disturbs their neighbours for small crack densities, which, however, could not be neglected as the crack density increases. The disturbance becomes rather complex in saturated porous rocks due to the wave-induced diffusion of fluid pressures. The problem is addressed in this study by the comparison of two solutions: the analytical solution without stress interactions and the numerical method with stress interactions. The resultant difference of effective properties can be used to estimate the effect of stress interactions quantitatively. Numerical experiments demonstrate that the spatial distribution pattern of cracks strongly affects stress interactions. For regularly distributed cracks, the resulting stress interaction (shielding or amplification) shows strong anisotropy, depending on the arrangement and density of cracks. It has an important role in the estimation of effective anisotropic parameters as well as the incident-angle-dependency of P- and SV-wave velocities. Contrarily, randomly distributed cracks with a relative small crack density generally lead to a strong cancellation of stress interactions across cracks, where both the numerical and analytical solutions show a good agreement for the estimation of effective parameters. However, for a higher crack density, the incomplete cancellation of stress interactions is expected, exhibiting an incidence-angle dependency, slightly affecting effective parameters, and differentiating the numerical and analytical solutions.  相似文献   

10.
Updating of reservoir models by history matching of 4D seismic data along with production data gives us a better understanding of changes to the reservoir, reduces risk in forecasting and leads to better management decisions. This process of seismic history matching requires an accurate representation of predicted and observed data so that they can be compared quantitatively when using automated inversion. Observed seismic data is often obtained as a relative measure of the reservoir state or its change, however. The data, usually attribute maps, need to be calibrated to be compared to predictions. In this paper we describe an alternative approach where we normalize the data by scaling to the model data in regions where predictions are good. To remove measurements of high uncertainty and make normalization more effective, we use a measure of repeatability of the monitor surveys to filter the observed time‐lapse data. We apply this approach to the Nelson field. We normalize the 4D signature based on deriving a least squares regression equation between the observed and synthetic data which consist of attributes representing measured acoustic impedances and predictions from the model. Two regression equations are derived as part of the analysis. For one, the whole 4D signature map of the reservoir is used while in the second, 4D seismic data is used from the vicinity of wells with a good production match. The repeatability of time‐lapse seismic data is assessed using the normalized root mean square of measurements outside of the reservoir. Where normalized root mean square is high, observations and predictions are ignored. Net: gross and permeability are modified to improve the match. The best results are obtained by using the normalized root mean square filtered maps of the 4D signature which better constrain normalization. The misfit of the first six years of history data is reduced by 55 per cent while the forecast of the following three years is reduced by 29 per cent. The well based normalization uses fewer data when repeatability is used as a filter and the result is poorer. The value of seismic data is demonstrated from production matching only where the history and forecast misfit reductions are 45% and 20% respectively while the seismic misfit increases by 5%. In the best case using seismic data, it dropped by 6%. We conclude that normalization with repeatability based filtering is a useful approach in the absence of full calibration and improves the reliability of seismic data.  相似文献   

11.
A new wave equation is derived for modelling viscoacoustic wave propagation in transversely isotropic media under acoustic transverse isotropy approximation. The formulas expressed by fractional Laplacian operators can well model the constant-Q (i.e. frequency-independent quality factor) attenuation, anisotropic attenuation, decoupled amplitude loss and velocity dispersion behaviours. The proposed viscoacoustic anisotropic equation can keep consistent velocity and attenuation anisotropy effects with that of qP-wave in the constant-Q viscoelastic anisotropic theory. For numerical simulations, the staggered-grid pseudo-spectral method is implemented to solve the velocity–stress formulation of wave equation in the time domain. The constant fractional-order Laplacian approximation method is used to cope with spatial variable-order fractional Laplacians for efficient modelling in heterogeneous velocity and Q media. Simulation results for a homogeneous model show the decoupling of velocity dispersion and amplitude loss effects of the constant-Q equation, and illustrate the influence of anisotropic attenuation on seismic wavefields. The modelling example of a layered model illustrates the accuracy of the constant fractional-order Laplacian approximation method. Finally, the Hess vertical transversely isotropic model is used to validate the applicability of the formulation and algorithm for heterogeneous media.  相似文献   

12.
本文采用Rayleigh理论描述纵波激励下非饱和岩石中气泡的局域流体流动,从经典力学的哈密顿原理导出了双重孔隙介质中的波传播方程,即Biot-Rayleigh方程.方程的格式简洁,参数少,所有相关参数物理可测,因此,方程具有较好的物理可实现性.基于相同的岩石与前人理论对比,初步验证了本理论的有效性.对三个地区的砂岩储层进行了分析,结果显示:地震频段内纵波对储层是否含气非常敏感,但对含气饱和度指示性不佳,且随着孔隙度降低,纵波频散与衰减在中低频段更为显著;含甲烷与含二氧化碳的砂岩储层均呈第三类AVO响应特征,很难从叠前分析技术中鉴别;理论预测的纵波频散随饱和度与频率变化的趋势与特征,与多频段实验观测结果一致.  相似文献   

13.
At the geothermal test site near Groß Schönebeck (NE German Basin), a new 3D seismic reflection survey was conducted to study geothermal target layers at around 4 km depth and 150°C. We present a workflow for seismic facies classification and modelling which is applied to a prospective sandstone horizon within the Rotliegend formation. Signal attributes are calculated along the horizon using the continuous Morlet wavelet transform. We use a short mother wavelet to allow for the temporal resolution of the relatively short reflection signals to be analysed. Time-frequency domain data patterns form the input of a neural network clustering using self-organizing maps. Neural model patterns are adopted during iterative learning to simulate the information inherent in the input data. After training we determine a gradient function across the self-organizing maps and apply an image processing technique called watershed segmentation. The result is a pattern clustering based on similarities in wavelet transform characteristics. Three different types of wavelet transform patterns were found for the sandstone horizon. We apply seismic waveform modelling to improve the understanding of the classification results. The modelling tests indicate that thickness variations have a much stronger influence on the wavelet transform response of the sandstone horizon compared with reasonable variations of seismic attenuation. In our interpretation, the assumed thickness variations could be a result of variable paleo-topography during deposition of predominantly fluvial sediments. A distinct seismic facies distribution is interpreted as a system of thicker paleo-channels deposited within a deepened landscape. The results provide constraints for the ongoing development of the geothermal test site.  相似文献   

14.
This paper tests the ability of various rock physics models to predict seismic velocities in shallow unconsolidated sands by comparing the estimates to P and S sonic logs collected in a shallow sand layer and ultrasonic laboratory data of an unconsolidated sand sample. The model fits are also evaluated with respect to the conventional model for unconsolidated sand. Our main approach is to use Hertz‐Mindlin and Walton contact theories, assuming different weight fractions of smooth and rough contact behaviours, to predict the elastic properties of the high porosity point. Using either the Hertz‐Mindlin or Walton theories with rough contact behaviour to define the high porosity endpoint gives an over‐prediction of the velocities. The P‐velocity is overpredicted by a factor of ~1.5 and the S‐velocity by a factor of ~1.8 for highly porous gas‐sand. The degree of misprediction decreases with increasing water saturation and porosity.Using the Hertz‐Mindlin theory with smooth contact behaviour or weighted Walton models gives a better fit to the data, although the data are best described using the Walton smooth model. To predict the properties at the lower porosities, the choice of bounding model attached to the Walton Smooth model controls the degree of fit to the data, where the Reuss bound best captures the porosity variations of dry and wet sands in this case since they are caused by depositional differences. The empirical models based on lab experiments on unconsolidated sand also fit the velocity data measured by sonic logs in situ, which gives improved confidence in using lab‐derived results.  相似文献   

15.
In exploration geophysics, the efforts to extract subsurface information from wave characteristics exceedingly depend on the construction of suitable rock physics model. Analysis of different rock physics models reveals that the strength and magnitude of attenuation and dispersion of propagating wave exceedingly depend on wave-induced fluid flow at multiple scales. In current work, a comprehensive analysis of wave attenuation and velocity dispersion is carried out at broad frequency range. Our methodology is based on Biot's poroelastic relations, by which variations in wave characteristics associated with wave-induced fluid flow due to the coexistence of three fluid phases in the pore volume is estimated. In contrast to the results of previous research, our results indicate the occurrence of two-time pore pressure relaxation phenomenon at the interface between fluids of disparate nature, that is, different bulk modulus, viscosity and density. Also, the obtained results are compatible with numerical results for the same 1D model which are accounted using Biot's poroelastic and quasi-static equation in frequency domain. Moreover, the effects of change in saturation of three-phase fluids were also computed which is the key task for geophysicist. The outcomes of our research reveal that pore pressure relaxation phenomenon significantly depends on the saturation of distinct fluids and the order of saturating fluids. It is also concluded that the change in the saturation of three-phase fluid significantly influences the characteristics of the seismic wave. The analysis of obtained results indicates that our proposed approach is a useful tool for quantification, identification and discrimination of different fluid phases. Moreover, our proposed approach improves the accuracy to predict dispersive behaviour of propagating wave at sub-seismic and seismic frequencies.  相似文献   

16.
A two-dimensional walkaway vertical seismic profiling survey using distributed acoustic sensing was conducted at an onshore site in Japan. The maximum depth and the deviation of the observation well were more than 4,000 m and 81 degrees, respectively. Among the several methods for installing fibre optic cables, we adopted the inside coiled tubing method, in which coiled tubing containing a fibre optic cable is deployed. The signal-to-noise ratio of the raw shot gather was low, possibly due to poor coupling between the fibre optic cable and the subsurface formation resulting from the fibre optic cable deployment method and the existence of considerable tubewave noise. Nevertheless, direct P-wave arrivals, P–P reflections and P–S converted waves exhibited acceptable signal-to-noise ratios after careful optimization of gauge length for distributed acoustic sensing optical processing and the application of carefully parameterized tubewave noise suppression. One of the challenges in current distributed acoustic sensing vertical seismic profile data processing is the separation of P- and S-waves using only one-component measurements. Hence, we applied moveout correction using two-dimensional ray tracing. This process effectively highlights only reflected P-waves, which are used in subsequent subsurface imaging. Comparison with synthetic well seismograms and two-dimensional surface seismic data confirms that the final imaging result has a sufficiently high quality for subsurface monitoring. We acquired distributed acoustic sensing vertical seismic profile data under both flowing conditions and closed conditions, in which the well was shut off and no fluid flow was allowed. The two imaging results are comparable and suggest the possibility of subsurface imaging and time-lapse monitoring using data acquired under flowing conditions. The results of this study suggest that, by adopting the inside coiled tubing method without drilling a new observation well, more affordable distributed acoustic sensing vertical seismic profile monitoring can be achieved in fields such as CO2 capture and storage and unconventional shale projects, where monitoring costs have to be minimized.  相似文献   

17.
多孔岩石波传播的热弛豫模型修正   总被引:1,自引:1,他引:1       下载免费PDF全文
经研究发现热弛豫模型的衰减比BISQ模型大得较多,与地球介质相比衰减量也过大;反演与实验结果相比在虚模量的低频(或低温)端和高频(或高温)端相差较大,仅在峰值附近符合较好.针对上述不足,将Arrhenius关系直接引进Biot模型,替换原模型引进的峰值点的频率对数和温度关系,并重新调整了模型参数.这样既改善了原模型衰减量过大,又克服了模型反演中虚模量峰值曲线两侧差异较大的缺点.进行了P波和S波的波传播分析,仍然在频率谱和温度谱上获得热弛豫峰和Biot峰.分析显示热弛豫峰导致波速随频率升高而上升的普遍规律,Biot峰导致波速随温度升高而上升的异常现象.在相同条件下对Biot模型,BISQ模型和热弛豫模型的P波波速和衰减进行了对比.热弛豫模型得到的速度频散更强,频散范围更宽,所得的衰减峰值频率比BISQ模型要低,衰减幅度比BISQ模型稍大.这些结果与实验结果相近,更符合实际.  相似文献   

18.
Nowadays, full-waveform inversion, based on fitting the measured surface data with modelled data, has become the preferred approach to recover detailed physical parameters from the subsurface. However, its application is computationally expensive for large inversion domains. Furthermore, when the subsurface has a complex geological setting, the inversion process requires an appropriate pre-conditioning scheme to retrieve the medium parameters for the desired target area in a reliable manner. One way of dealing with both aspects is by waveform inversion schemes in a target-oriented fashion. Therefore, we propose a prospective application of the convolution-type representation for the acoustic wavefield in the frequency–space domain formulated as a target-oriented waveform inversion method. Our approach aims at matching the observed and modelled upgoing wavefields at a target depth level in the subsurface, where the seismic wavefields, generated by sources distributed above this level, are available. The forward modelling is performed by combining the convolution-type representation for the acoustic wavefield with solving the two-way acoustic wave-equation in the frequency–space domain for the target area. We evaluate the effectiveness of our inversion method by comparing it with the full-domain full-waveform inversion process through some numerical examples using synthetic data from a horizontal well acquisition geometry, where the sources are located at the surface and the receivers are located along a horizontal well at the target level. Our proposed inversion method requires less computational effort and, for this particular acquisition, it has proven to provide more accurate estimates of the target zone below a complex overburden compared to both full-domain full-waveform inversion process and local full-waveform inversion after applying interferometry by multidimensional deconvolution to get local-impulse responses.  相似文献   

19.
Seismic wave propagation through a fluid-saturated poroelastic layer might be strongly affected by media heterogeneities. Via incorporating controlled laboratory simulation experiments, we extend previous studies of time-lapse seismic effects to evaluate the wave scattering influence of the heterogeneous nature of porous permeable media and the associated amplification effects on 4D seismic response characteristics of reservoir fluid substitution. A physical model consisted of stratified thin layers of shale and porous sandstone reservoir with rock heterogeneities was built based on the geological data of a real hydrocarbon-saturated reservoir in Northeast China. Multi-surveys data of good quality were acquired by filling poroelastic reservoir layers with gas, water and oil in sequence. Experimental observations show that reservoir heterogeneity effect causes significantly magnified abnormal responses to the fluid-saturated media. Specifically, reflection signatures of the gas-filled reservoir are dramatically deviated from those of the liquid fluid-filled reservoir, compared with ones of the homogeneous media. By removing the influences unrelated to reservoir property alterations, 4D seismic estimates of travel-time and frequency-dependent characteristic are reasonably consistent with fluid variations. Nevertheless, strong 4D amplitude difference anomalies might not correspond to the regions where fluid variations occur. We also find that 4D seismic difference attributes are evident between oil- and water-filled models, whereas significant between oil- and gas-filled models. Meanwhile, rock physics modelling results reveal the predicted 4D seismic differences are obviously smaller than those calculated from seismic observations. The results in this paper, therefore, implicate that the effect of a reservoir's heterogeneous nature might be beneficial for hydrocarbons detection as well as monitoring small variations in pore fluids.  相似文献   

20.
At the CO2CRC Otway geosequestration site, the abundance of borehole seismic and logging data provides a unique opportunity to compare techniques of Q (measure of attenuation) estimation and validate their reliability. Specifically, we test conventional time-domain amplitude decay and spectral-domain centroid frequency shift methods versus the 1D waveform inversion constrained by well logs on a set of zero-offset vertical seismic profiles. The amplitude decay and centroid frequency shift methods of Q estimation assume that a seismic pulse propagates in a homogeneous medium and ignore the interference of the propagating wave with short-period multiples. The waveform inversion explicitly models multiple scattering and interference on a stack of thin layers using high-resolution data from sonic and density logs. This allows for stable Q estimation in small depth windows (in this study, 150 m), and separation of the frequency-dependent layer-induced scattering from intrinsic absorption. Besides, the inversion takes into account band-limited nature of seismic data, and thus, it is less dependent on the operating frequency bandwidth than on the other methods. However, all considered methods of Q estimation are unreliable in the intervals where subsurface significantly deviates from 1D geometry. At the Otway site, the attenuation estimates are distorted by sub-vertical faults close to the boreholes. Analysis of repeated vertical seismic profiles reveals that 15 kt injection of the CO2-rich fluid into a thin saline aquifer at 1.5 km depth does not induce detectable absorption of P-waves at generated frequencies 5–150 Hz, most likely because the CO2 plume in the monitoring well is thin, <15 m. At the Otway research site, strong attenuation Q ≈ 30–50 is observed only in shaly formations (Skull Creek Mudstone, Belfast Mudstone). Layer-induced scattering attenuation is negligible except for a few intervals, namely 500–650 m from the surface, and near the injection interval, at around 1400–1550 m, where Qscat ≈ 50–65.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号