首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In an acoustic transversely isotropic medium, there are two waves that propagate. One is the P-wave and another one is the S-wave (also known as S-wave artefact). This paper is devoted to analyse the S-wave in two-dimensional acoustic transversely isotropic media with a tilted symmetry axis. We derive the S-wave slowness surface and traveltime function in a homogeneous acoustic transversely isotropic medium with a tilted symmetry axis. The S-wave traveltime approximations in acoustic transversely isotropic media with a tilted symmetry axis can be mapped from the counterparts for acoustic transversely isotropic media with a vertical symmetry axis. We consider a layered two-dimensional acoustic transversely isotropic medium with a tilted symmetry axis to analyse the S-wave moveout. We also illustrate the behaviour of the moveout for reflected S-wave and converted waves.  相似文献   

2.
For pre‐stack phase‐shift migration in homogeneous isotropic media, the offset‐midpoint travel time is represented by the double‐square‐root equation. The travel time as a function of offset and midpoint resembles the shape of Cheops’ pyramid. This is also valid for transversely isotropic media with a vertical symmetry axis. In this study, we extend the offset‐midpoint travel‐time pyramid to the case of 2D transversely isotropic media with a tilted symmetry axis. The P‐wave analytical travel‐time pyramid is derived under the assumption of weak anelliptical property of the tilted transverse isotropy media. The travel‐time equation for the dip‐constrained transversely isotropic model is obtained from the depth‐domain travel‐time pyramid. The potential applications of the derived offset‐midpoint travel‐time equation include pre‐stack Kirchhoff migration, anisotropic parameter estimation, and travel‐time calculation in transversely isotropic media with a tilted symmetry axis.  相似文献   

3.
Characterizing the expressions of seismic waves in elastic anisotropic media depends on multiparameters. To reduce the complexity, decomposing the P-mode wave from elastic seismic data is an effective way to describe the considerably accurate kinematics with fewer parameters. The acoustic approximation for transversely isotropic media is widely used to obtain P-mode wave by setting the axial S-wave phase velocity to zero. However, the separated pure P-wave of this approach is coupled with undesired S-wave in anisotropic media called S-wave artefacts. To eliminate the S-wave artefacts in acoustic waves for anisotropic media, we set the vertical S-wave phase velocity as a function related to propagation directions. Then, we derive a pure P-wave equation in transversely isotropic media with a horizontal symmetry axis by introducing the expression of vertical S-wave phase velocity. The differential form of new expression for pure P-wave is reduced to second-order by inserting the expression of S-wave phase velocity as an auxiliary operator. The results of numerical simulation examples by finite difference illustrate the stability and accuracy of the derived pure P-wave equation.  相似文献   

4.
Anisotropic reverse-time migration for tilted TI media   总被引:1,自引:0,他引:1  
Seismic anisotropy in dipping shales results in imaging and positioning problems for underlying structures. We develop an anisotropic reverse‐time depth migration approach for P‐wave and SV‐wave seismic data in transversely isotropic (TI) media with a tilted axis of symmetry normal to bedding. Based on an accurate phase velocity formula and dispersion relationships for weak anisotropy, we derive the wave equation for P‐wave and SV‐wave propagation in tilted transversely isotropic (TTI) media. The accuracy of the P‐wave equation and the SV‐wave equation is analyzed and compared with other acoustic wave equations for TTI media. Using this analysis and the pseudo‐spectral method, we apply reverse‐time migration to numerical and physical‐model data. According to the comparison between the isotropic and anisotropic migration results, the anisotropic reverse‐time depth migration offers significant improvements in positioning and reflector continuity over those obtained using isotropic algorithms.  相似文献   

5.
Tilted transversely isotropic formations cause serious imaging distortions in active tectonic areas (e.g., fold‐and‐thrust belts) and in subsalt exploration. Here, we introduce a methodology for P‐wave prestack depth imaging in tilted transversely isotropic media that properly accounts for the tilt of the symmetry axis as well as for spatial velocity variations. For purposes of migration velocity analysis, the model is divided into blocks with constant values of the anisotropy parameters ε and δ and linearly varying symmetry‐direction velocity VP0 controlled by the vertical (kz) and lateral (kx) gradients. Since determination of tilt from P‐wave data is generally unstable, the symmetry axis is kept orthogonal to the reflectors in all trial velocity models. It is also assumed that the velocity VP0 is either known at the top of each block or remains continuous in the vertical direction. The velocity analysis algorithm estimates the velocity gradients kz and kx and the anisotropy parameters ε and δ in the layer‐stripping mode using a generalized version of the method introduced by Sarkar and Tsvankin for factorized transverse isotropy with a vertical symmetry axis. Synthetic tests for several models typical in exploration (a syncline, uptilted shale layers near a salt dome and a bending shale layer) confirm that if the symmetry‐axis direction is fixed and VP0 is known, the parameters kz, kx, ε and δ can be resolved from reflection data. It should be emphasized that estimation of ε in tilted transversely isotropic media requires using nonhyperbolic moveout for long offsets reaching at least twice the reflector depth. We also demonstrate that application of processing algorithms designed for a vertical symmetry axis to data from tilted transversely isotropic media may lead to significant misfocusing of reflectors and errors in parameter estimation, even when the tilt is moderate (30°). The ability of our velocity analysis algorithm to separate the anisotropy parameters from the velocity gradients can be also used in lithology discrimination and geologic interpretation of seismic data in complex areas.  相似文献   

6.
Results from walkaway VSP and shale laboratory experiments show that shale anisotropy can be significantly anelliptic. Heterogeneity and anellipticity both lead to non-hyperbolic moveout curves and the resulting ambiguity in velocity analysis is investigated for the case of a factorizable anisotropic medium with a linear dependence of velocity on depth. More information can be obtained if there are several reflectors. The method of Dellinger et al. for anisotropic velocity analysis in layered transversely isotropic media is examined and is shown to be restricted to media having relatively small anellipticity. A new scheme, based on an expansion of the inverse-squared group velocity in spherical harmonics, is presented. This scheme can be used for larger anellipticity, and is applicable for horizontal layers having monoclinic symmetry with the symmetry plane parallel to the layers. The method is applied to invert the results of anisotropic ray tracing on a model Sand/shale sequence. For transversely isotropic media with small anisotropy, the scheme reduces to the method of Byun et al. and Byun and Corrigan. The expansion in spherical harmonics allows the P-phase slowness surface of each layer to be determined in analytic form from the layer parameters obtained by inversion without the need to assume that the anisotropy is weak.  相似文献   

7.
Existing and commonly used in industry nowadays, closed‐form approximations for a P‐wave reflection coefficient in transversely isotropic media are restricted to cases of a vertical and a horizontal transverse isotropy. However, field observations confirm the widespread presence of rock beds and fracture sets tilted with respect to a reflection boundary. These situations can be described by means of the transverse isotropy with an arbitrary orientation of the symmetry axis, known as tilted transversely isotropic media. In order to study the influence of the anisotropy parameters and the orientation of the symmetry axis on P‐wave reflection amplitudes, a linearised 3D P‐wave reflection coefficient at a planar weak‐contrast interface separating two weakly anisotropic tilted tranversely isotropic half‐spaces is derived. The approximation is a function of the incidence phase angle, the anisotropy parameters, and symmetry axes tilt and azimuth angles in both media above and below the interface. The expression takes the form of the well‐known amplitude‐versus‐offset “Shuey‐type” equation and confirms that the influence of the tilt and the azimuth of the symmetry axis on the P‐wave reflection coefficient even for a weakly anisotropic medium is strong and cannot be neglected. There are no assumptions made on the symmetry‐axis orientation angles in both half‐spaces above and below the interface. The proposed approximation can be used for inversion for the model parameters, including the orientation of the symmetry axes. Obtained amplitude‐versus‐offset attributes converge to well‐known approximations for vertical and horizontal transverse isotropic media derived by Rüger in corresponding limits. Comparison with numerical solution demonstrates good accuracy.  相似文献   

8.
由所建立的三维qP波相速度表示式出发,导出并解析求解各向异性介质中的频散方程,得到三维各向异性介质中的相移算子,进而将以相移算子为基础的对称非平稳相移方法推广到各向异性介质,发展了一个三维各向异性介质的深度偏移方法. 文中使用的各向异性介质的速度模型与现行的各向异性构造的速度估计方法一致,将各向同性、弱各向异性及强各向异性统一在一个模型中. 所建立的各向异性介质对称非平稳相移波场延拓算子可以同时适应速度及各向异性参数横向变化;文中给出的算例虽然是针对二维VTI介质的,但所提出的算法同样适用于三维TI介质.  相似文献   

9.
Rayleigh wave dispersion can be induced in an anisotropic medium or a layered isotropic medium. For a layered azimuthally anisotropic structure, traditional wave equation of layered structure can be modified to describe the dispersion behavior of Rayleigh waves. Numerical stimulation results show that for layered azimuthal anisotropy both the dispersion velocities and anisotropic parameters depend principally on anisotropic S-wave velocities. The splitting S-wave velocities may produce dispersion splitting of Rayleigh waves. Such dispersion splitting appears noticeable at azimuthal angle 45°. This feature was confirmed by the measured results of a field test. The fundamental mode splits into two branches at azimuthal angle 45° to the symmetry axis for some frequencies, and along the same direction the difference of splitting-phase velocities of the fundamental model reaches the maximum. Dispersion splitting of Rayleigh waves was firstly displayed for anisotropy study in dispersion image by means of multichannel analysis of surface waves, the image of which provides a new window for studying the anisotropic property of media.  相似文献   

10.
Subsurface rocks (e.g. shale) may induce seismic anisotropy, such as transverse isotropy. Traveltime computation is an essential component of depth imaging and tomography in transversely isotropic media. It is natural to compute the traveltime using the wavefront marching method. However, tracking the 3D wavefront is expensive, especially in anisotropic media. Besides, the wavefront marching method usually computes the traveltime using the eikonal equation. However, the anisotropic eikonal equation is highly non‐linear and it is challenging to solve. To address these issues, we present a layer‐by‐layer wavefront marching method to compute the P‐wave traveltime in 3D transversely isotropic media. To simplify the wavefront tracking, it uses the traveltime of the previous depth as the boundary condition to compute that of the next depth based on the wavefront marching. A strategy of traveltime computation is designed to guarantee the causality of wave propagation. To avoid solving the non‐linear eikonal equation, it updates traveltime along the expanding wavefront by Fermat's principle. To compute the traveltime using Fermat's principle, an approximate group velocity with high accuracy in transversely isotropic media is adopted to describe the ray propagation. Numerical examples on 3D vertical transverse isotropy and tilted transverse isotropy models show that the proposed method computes the traveltime with high accuracy. It can find applications in modelling and depth migration.  相似文献   

11.
Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source‐dependent effective velocities for the elliptic medium using kinematic high‐frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high‐frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade‐off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear‐wave artefacts as opposed to the conventional finite‐difference‐based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.  相似文献   

12.
13.
A single set of vertically aligned cracks embedded in a purely isotropic background may be considered as a long-wavelength effective transversely isotropy (HTI) medium with a horizontal symmetry axis. The crack-induced HTI anisotropy can be characterized by the weakly anisotropic parameters introduced by Thomsen. The seismic scattering theory can be utilized for the inversion for the anisotropic parameters in weakly anisotropic and heterogeneous HTI media. Based on the seismic scattering theory, we first derived the linearized PP- and PS-wave reflection coefficients in terms of P- and S-wave impedances, density as well as three anisotropic parameters in HTI media. Then, we proposed a novel Bayesian Markov chain Monte Carlo inversion method of PP- and PS-wave for six elastic and anisotropic parameters directly. Tests on synthetic azimuthal seismic data contaminated by random errors demonstrated that this method appears more accurate, anti-noise and stable owing to the usage of the constrained PS-wave compared with the standards inversion scheme taking only the PP-wave into account.  相似文献   

14.
We use Kirchhoff prestack depth migration to calculate migrated sections in 3-D simple anisotropic homogeneous velocity models in order to demonstrate the impact of anisotropy on migrated images. The recorded wave field is generated in models composed of two homogeneous layers separated by one either non-inclined or inclined curved interface. The anisotropy in the upper layer is triclinic. We apply Kirchhoff prestack depth migration to velocity models with different types of anisotropy: a triclinic anisotropic medium, an isotropic medium, transversely isotropic media with a horizontal (HTI) and vertical (VTI) symmetry axis. We observe asymmetry in migration caused by triclinic anisotropy and we show the errors of the migrated interface caused by inaccurate velocity models used for migration. The study is limited to P-waves.  相似文献   

15.
Transverse isotropy with a tilted axis of symmetry (TTI) causes image distortion if isotropic models are assumed during data processing. A simple anisotropic migration approach needs long computational times and is sensitive to the signal-to-noise ratio. This paper presents an efficient, general approach to common-depth-point (CDP) mapping to image the subsurface in TTI media from qP-wave seismic data by adding anisotropic and dip parameters to the velocity model. The method consists of three steps: (i) calculating traveltimes and positions of the CDP points; (ii) determining CDP trajectories; (iii) CDP imaging. A crucial step is the rapid computation of traveltimes and raypaths in the TTI media, which is achieved by the Fermat method, specially adapted for anisotropic layered media. The algorithm can image the subsurface of a given model quickly and accurately, and is suitable for application to a bending reflector. The effectiveness of the method is demonstrated by comparing the raypaths, the traveltimes and the results of CDP mapping, when assuming isotropic media, transversely isotropic media with a vertical axis of symmetry (TIV), and TTI media.  相似文献   

16.
Pure-mode wave propagation is important for applications ranging from imaging to avoiding parameter tradeoff in waveform inversion. Although seismic anisotropy is an elastic phenomenon, pseudo-acoustic approximations are routinely used to avoid the high computational cost and difficulty in decoupling wave modes to obtain interpretable seismic images. However, such approximations may result in inaccuracies in characterizing anisotropic wave propagation. We propose new pure-mode equations for P- and S-waves resulting in an artefact-free solution in transversely isotropic medium with a vertical symmetry axis. Our approximations are more accurate than other known approximations as they are not based on weak anisotropy assumptions. Therefore, the S-wave approximation can reproduce the group velocity triplications in strongly anisotropic media. The proposed approximations can be used for accurate modelling and imaging of pure P- and S-waves in transversely isotropic media.  相似文献   

17.
An important cause of seismic anisotropic attenuation is the interbedding of thin viscoelastic layers. However, much less attention has been devoted to layer‐induced anisotropic attenuation. Here, we derive a group of unified weighted average forms for effective attenuation from a binary isotropic, transversely isotropic‐ and orthorhombic‐layered medium in the zero‐frequency limit by using the Backus averaging/upscaling method and analyse the influence of interval parameters on effective attenuation. Besides the corresponding interval attenuation and the real part of stiffness, the contrast in the real part of the complex stiffness is also a key factor influencing effective attenuation. A simple linear approximation can be obtained to calculate effective attenuation if the contrast in the real part of stiffness is very small. In a viscoelastic medium, attenuation anisotropy and velocity anisotropy may have different orientations of symmetry planes, and the symmetry class of the former is not lower than that of the latter. We define a group of more general attenuation‐anisotropy parameters to characterize not only the anisotropic attenuation with different symmetry classes from the anisotropic velocity but also the elastic case. Numerical tests reveal the influence of interval attenuation anisotropy, interval velocity anisotropy and the contrast in the real part of stiffness on effective attenuation anisotropy. Types of effective attenuation anisotropy for interval orthorhombic attenuation and interval transversely isotropic attenuation with a vertical symmetry (vertical transversely isotropic attenuation) are controlled only by the interval attenuation anisotropy. A type of effective attenuation anisotropy for interval TI attenuation with a horizontal symmetry (horizontal transversely isotropic attenuation) is controlled by the interval attenuation anisotropy and the contrast in the real part of stiffness. The type of effective attenuation anisotropy for interval isotropic attenuation is controlled by all three factors. The magnitude of effective attenuation anisotropy is positively correlated with the contrast in the real part of the stiffness. Effective attenuation even in isotropic layers with identical isotropic attenuation is anisotropic if the contrast in the real part of stiffness is non‐zero. In addition, if the contrast in the real part of stiffness is very small, a simple linear approximation also can be performed to calculate effective attenuation‐anisotropy parameters for interval anisotropic attenuation.  相似文献   

18.
忽略TTI介质对称轴倾角的可行性   总被引:1,自引:1,他引:0       下载免费PDF全文
李磊  郝重涛 《地球物理学报》2012,55(6):2004-2013
假设横向各向同性(TI)介质的对称轴是垂直的(VTI)或者水平的(HTI)能给实际资料处理带来便利,然而实际TI介质的对称轴往往是倾斜的(TTI),忽略对称轴倾角可能给各向异性参数提取和成像带来偏差,因此需要研究是否能、以及什么条件下能忽略TTI介质对称轴倾角.本文通过理论研究和数值分析研究了与TTI介质弹性性质最接近的VTI介质(OAVTI)的弹性常数和各向异性参数与原TTI介质的弹性常数和各向异性参数之间的联系与差别.结果表明:OAVTI介质各向异性参数与原TTI介质各向异性参数之间的差别可统一表示成F(α00,ε,δ,γ)ξ2的形式,其中F(α00,ε,δ,γ)是无量纲各向异性参数(ε, δ, γ)的线性函数,ξ是对称轴倾角;ξ的大小对各参数的误差起主导作用,一般不建议忽略20°~25°以上的对称轴倾角;当ξ较小时,即使是对强各向异性的TTI介质作VTI近似,引起的P波各向异性参数误差也很小,因此在纵波资料处理中忽略TTI介质对称轴倾角通常是可行的;即使在小ξ条件下,倾斜对称轴对SV波也有显著影响,因此在转换波资料处理中,不建议忽略TTI介质的对称轴倾角.本文的研究为分析忽略TTI介质对称轴倾角的可行性提供了理论依据和简便的判据.  相似文献   

19.
Two-dimensional seismic processing is successful in media with little structural and velocity variation in the direction perpendicular to the plane defined by the acquisition direction and the vertical axis. If the subsurface is anisotropic, an additional limitation is that this plane is a plane of symmetry. Kinematic ray propagation can be considered as a two-dimensional process in this type of medium. However, two-dimensional processing in a true-amplitude sense requires out-of-plane amplitude corrections in addition to compensation for in-plane amplitude variation. We provide formulae for the out-of-plane geometrical spreading for P- and S-waves in transversely isotropic and orthorhombic media. These are extensions of well-known isotropic formulae.
For isotropic and transversely isotropic media, the ray propagation is independent of the azimuthal angle. The azimuthal direction is defined with respect to a possibly tilted axis of symmetry. The out-of-plane spreading correction can then be calculated by integrating quantities which describe in-plane kinematics along in-plane rays. If, in addition, the medium varies only along the vertical direction and has a vertical axis of symmetry, no ray tracing need be carried out. All quantities affecting the out-of-plane geometrical spreading can be derived from traveltime information available at the observation surface.
Orthorhombic media possess no rotational symmetry and the out-of-plane geometrical spreading includes parameters which, even in principle, are not invertible from in-plane experiments. The exact and approximate formulae derived for P- and S-waves are nevertheless useful for modelling purposes.  相似文献   

20.
The western part of the Bohemian Massif (West Bohemia/Vogtland region) is characteristic in the relatively frequent recurrence of intraplate earthquake swarms and in other manifestations of past-to-recent geodynamic activity. In this study we derived 1D anisotropic qP-wave model of the upper crust in the seismogenic West Bohemia/Vogtland region by means of joint inversion of two independent data sets - travel times from controlled shots and arrival times from local earthquakes extracted from the WEBNET seismograms. We derived also simple 1-D P-wave and S-wave isotropic models. Reasons for deriving these models were: (a) only simplified crustal velocity models, homogeneous half-space or 1D isotropic layered models of this region, have been derived up to now and (b) a significant effective anisotropy of the upper crust in the region which was indicated recently by S-wave splitting. Both our anisotropic qP-wave and isotropic P-and S-wave velocity models are constrained by four layers with the constant velocity gradient. Weak anisotropy for P-waves is assumed. The isotropic model is represented by 9 parameters and the anisotropic one is represented by 24 parameters. A new robust and effective optimization algorithm - isometric algorithm - was used for the joint inversion. A two-step inversion algorithm was used. During the first step the isotropic P- and S-wave velocity model was derived. In the second step, it was used as a background model and the parameters of anisotropy were sought. Our 1D models are adequate for the upper crust in the West Bohemia/Vogtland swarm region up to a depth of 15 km. The qP-wave velocity model shows 5% anisotropy, the minimum velocity in the horizontal direction corresponds to an azimuth of 170°. The isotropic model indicates the VP/VS ratio variation with depth. The difference between the hypocentre locations based on the derived isotropic and anisotropic models was found to be several hundreds of meters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号