共查询到20条相似文献,搜索用时 15 毫秒
1.
Constantin Mildner Filippo Broggini Carlos Alberto da Costa Filho Johan O.A. Robertsson 《Geophysical Prospecting》2019,67(8):2085-2103
Imaging a target zone below a salt body can be challenging because large velocity contrasts in the overburden between the salt and surrounding sediments generate internal multiples, which interfere with primary reflections from the target level in the imaging process. This can lead to an erroneous interpretation of reflections in the sub-salt area if multiples are misinterpreted as primaries. The Marchenko redatuming method may enable imaging of the sub-salt target area where the effect of the multiply-scattering overburden is removed. This is achieved by creating a redatumed reflection response where virtual sources and receivers are located below the overburden using a macromodel of the velocity field and the surface reflection data. The accuracy of the redatumed data and the associated internal multiple removal, however, depends on the accurate knowledge of the source wavelet of the acquired reflection data. For the first time, we propose a method which can accurately and reliably correct the amplitudes of the reflection response in field data as required by the Marchenko method. Our method operates by iteratively and automatically updating the source function so as to cancel the most artefact energy in the focusing functions, which are also generated by the Marchenko method. We demonstrate the method on a synthetic dataset and successfully apply it to a field dataset acquired in a deep-water salt environment in the Gulf of Mexico. After the successful source wavelet estimation for the field dataset, we create sub-salt target-oriented images with Marchenko redatumed data. Marchenko images using the proposed source wavelet estimation show clear improvements, such as increased continuity of reflectors, compared to surface-based images and to conventional Marchenko images computed without the inverted source wavelet. Our improvements are corroborated by evidence in the literature and our own synthetic results. 相似文献
2.
Reverse time migration of multiples can be used to construct subsurface structures where primaries cannot illuminate well. However, the images generated using multiples suffer from severe artefacts due to the cross-talks created by interference among unrelated multiples. We developed a migration approach using water-bottom-related multiples to reduce these cross-talk artefacts. This approach first isolates primaries from the original data and predicts water-column primaries. The nth-order water-column multiples can be obtained by auto-convolving the water-column primaries n times, followed by convolving the nth-order water-column multiples with the primaries to extract the (n+1)th-order water-bottom-related multiples. The approach takes the nth-order water-column multiples as the secondary source and regards the (n+1)th-order water-bottom-related multiples as the receiver wavefield, followed by a cross-correlation imaging condition. Numerical examples from synthetic and field data sets reveal that our approach can provide images with substantially fewer cross-talk artefacts than conventional reverse time migration using multiples, as well as greatly improving shallow imaging compared with reverse time migration of primaries. 相似文献
3.
In this paper, we deduced the corresponding first-order velocity–stress equation for curvilinear coordinates from the first-order velocity–stress equation based on the modified Biot/squirt model for a two-dimensional two-phase medium. The equations are then numerically solved by an optimized high-order non-staggered finite difference scheme, that is, the dispersion relation preserving/optimization MacCormack scheme. To implement undulating free-surface topography, we derive an analytical relationship between the derivatives of the particle velocity components and use the compact finite-difference scheme plus a traction-image method. In the undulating free surface and the undulating subsurface interface of two-phase medium, the complex reflected wave and transmitted wave can be clearly recognized in the numerical simulation results. The simulation results show that the curvilinear-grid finite-difference method, which uses a body-conforming grid to describe the undulating surface, can accurately reduce the numerical scattering effect of seismic wave propagation caused by the use of ladder-shaped grid to fit the surfaces when undulating topography is present in a two-phase isotropic medium. 相似文献
4.
Valentin Tschannen Norman Ettrich Matthias Delescluse Janis Keuper 《Geophysical Prospecting》2020,68(3):830-844
Diffracted waves carry high-resolution information that can help interpreting fine structural details at a scale smaller than the seismic wavelength. However, the diffraction energy tends to be weak compared to the reflected energy and is also sensitive to inaccuracies in the migration velocity, making the identification of its signal challenging. In this work, we present an innovative workflow to automatically detect scattering points in the migration dip angle domain using deep learning. By taking advantage of the different kinematic properties of reflected and diffracted waves, we separate the two types of signals by migrating the seismic amplitudes to dip angle gathers using prestack depth imaging in the local angle domain. Convolutional neural networks are a class of deep learning algorithms able to learn to extract spatial information about the data in order to identify its characteristics. They have now become the method of choice to solve supervised pattern recognition problems. In this work, we use wave equation modelling to create a large and diversified dataset of synthetic examples to train a network into identifying the probable position of scattering objects in the subsurface. After giving an intuitive introduction to diffraction imaging and deep learning and discussing some of the pitfalls of the methods, we evaluate the trained network on field data and demonstrate the validity and good generalization performance of our algorithm. We successfully identify with a high-accuracy and high-resolution diffraction points, including those which have a low signal to noise and reflection ratio. We also show how our method allows us to quickly scan through high dimensional data consisting of several versions of a dataset migrated with a range of velocities to overcome the strong effect of incorrect migration velocity on the diffraction signal. 相似文献
5.
R.M. Laws D. Halliday J.-F. Hopperstad D. Gerez M. Supawala A. Özbek T. Murray E. Kragh 《Geophysical Prospecting》2019,67(6):1443-1471
Marine seismic vibrators are generally considered to be less intrusive than airguns from an environmental perspective. This is because they emit their energy spread out in time, rather than in a single, high-intensity pulse. There are also significant geophysical benefits associated with marine vibrators, and they stem from the ability to specify in detail the output acoustic waveform. The phase can be specified independently at each frequency. Such detailed control cannot be achieved with conventional airgun sources, where the phase can only be modified using simple overall time delays. The vibrator phase can be employed in several different ways: it can be applied to the overall source phase in a sequence so that it varies from one source point to the next; it can be applied to the individual vibrators within the source array so the source directivity is changed; it can be applied to the overall source phase of each source in a simultaneous source acquisition. Carefully designed phase sequences can attenuate the residual source noise, and this in turn allows extra source points to be interleaved between the conventional ones. For these extra source points, the relative phase of the vibrators within the array can be chosen to create a transverse gradient source, which illuminates the earth predominantly in directions out of the plane of the sail line without left/right ambiguity. If seismic vibrator data are acquired using interleaved conventional and transverse gradient sweeps, more information is collected per kilometre of vessel travel than is the case in conventional acquisition. This richer data acquisition leads to the possibility of acquiring all the necessary seismic data in a shorter time. Three-dimensional reconstruction techniques are used to recover the same image quality that would have been obtained using the conventional, more time-consuming acquisition. For a marine vibrator to be suitable for these techniques it must, in general terms, have ‘high fidelity’. The precise device specifications are defined through realistic end-to-end simulations of the physical systems and the processing. The specifications are somewhat more onerous than for a conventional vibrator, but they are achievable. A prototype vibrator that satisfies these requirements has been built. In a simulated case study of a three-dimensional deep-water ocean bottom node survey, the seismic data could have been acquired using marine vibrators in one third of the time that it would have taken using airguns. 相似文献
6.
Retrieving virtual reflection responses at drill‐bit positions using seismic interferometry with drill‐bit noise 下载免费PDF全文
In the field of seismic interferometry, researchers have retrieved surface waves and body waves by cross‐correlating recordings of uncorrelated noise sources to extract useful subsurface information. The retrieved wavefields in most applications are between receivers. When the positions of the noise sources are known, inter‐source interferometry can be applied to retrieve the wavefields between sources, thus turning sources into virtual receivers. Previous applications of this form of interferometry assume impulsive point sources or transient sources with similar signatures. We investigate the requirements of applying inter‐source seismic interferometry using non‐transient noise sources with known positions to retrieve reflection responses at those positions and show the results using synthetic drilling noise as source. We show that, if pilot signals (estimates of the drill‐bit signals) are not available, it is required that the drill‐bit signals are the same and that the phases of the virtual reflections at drill‐bit positions can be retrieved by deconvolution interferometry or by cross‐coherence interferometry. Further, for this case, classic interferometry by cross‐correlation can be used if the source power spectrum can be estimated. If pilot signals are available, virtual reflection responses can be obtained by first using standard seismic‐while‐drilling processing techniques such as pilot cross‐correlation and pilot deconvolution to remove the drill‐bit signatures in the data and then applying cross‐correlation interferometry. Therefore, provided that pilot signals are reliable, drill‐bit data can be redatumed from surface to borehole depths using this inter‐source interferometry approach without any velocity information of the medium, and we show that a well‐positioned image below the borehole can be obtained using interferometrically redatumed reflection responses with just a simple velocity model. We discuss some of the practical hurdles that restrict the application of the proposed method offshore. 相似文献
7.
Pre-stack Kirchhoff depth migration local space-shift imaging condition: synthetic and data examples
Extracting accurate common image angle gathers from pre-stack depth migrations is important in the generation of any incremental uplift to the amplitude versus angle attributes and seismic inversions that can lead to significant impacts in exploration and development success. The commonly used Kirchhoff migration outputs surface common offset image gathers that require a transformation to angle gathers for amplitude versus angle analysis. The accuracy of this transformation is one of the factors that determine the robustness of the amplitude versus angle measurements. Here, we investigate the possibility of implementing an extended imaging condition, focusing on the space-lag condition, for generating subsurface reflection angle gathers within a Kirchhoff migration. The objective is to determine if exploiting the spatial local shift imaging condition can provide any increase in angle gather fidelity relative to the common offset image gathers. The same restrictions with a ray-based approach will apply using the extended imaging condition as both the offset and extended imaging condition method use travel times derived from solutions to an Eikonal equation. The aims are to offer an alternative ray-based method to generate subsurface angle gathers and to understand the impact on the amplitude versus angle response. To this end, the implementation of the space-shift imaging condition is discussed and results of three different data sets are presented. A layered three-dimensional model and a complex two-dimensional model are used to assess the space shift image gathers output from such a migration scheme and to evaluate the seismic attributes relative to the traditional surface offset common image gathers. The synthetic results show that the extended imaging condition clearly provides an uplift in the measured amplitude versus angle over the surface offset migration. The noise profile post-migration is also improved for the space-lag migration due to the double summation inside the migration. Finally, we show an example of a space-lag gather from deep marine data and compare the resultant angle gathers with those generated from an offset migration and a time-shift imaging condition Kirchhoff migration. The comparison of the real data with a well log shows that the space-lag result is a better match to the well compared to the time-lag extended imaging condition and the common offset Kirchhoff migration. Overall, the results from the synthetics and real data show that a Kirchhoff migration with an extended imaging condition is capable of generating subsurface angle gathers with an incremental improvement in amplitude versus angle fidelity and lower noise but comes at a higher computational cost. 相似文献
8.
We present an original implementation of the free-surface boundary condition in a mesh-free finite-difference method for simulating elastic wave propagation in the frequency domain. For elastic wave modelling in the frequency domain, the treatment of free surfaces is a key issue which requires special consideration. In the present study, the free-surface boundary condition is directly implemented at node positions located on the free-surface. Flexible nature of the mesh-free method for nodal distribution enables us to introduce topography into numerical models in an efficient manner. We investigate the accuracy of the proposed implementation by comparing numerical results with an analytical solution. The results show that the proposed method can calculate surface wave propagation even for an inclined free surface with substantial accuracy. Next, we calculate surface wave propagation in a model with a topographic surface using our method, and compare the numerical result with that using the finite-element method. The comparison shows the excellent agreement with each other. Finally, we apply our method to the SEG foothill model to investigate the effectiveness of the proposed method. Since the mesh-free method has high flexibility of nodal distribution, the proposed implementation would deal with models of topographic surface with sufficient accuracy and efficiency. 相似文献
9.
Multiple scattering is usually ignored in migration algorithms, although it is a genuine part of the physical reflection response. When properly included, multiples can add to the illumination of the subsurface, although their crosstalk effects are removed. Therefore, we introduce full‐wavefield migration. It includes all multiples and transmission effects in deriving an image via an inversion approach. Since it tries to minimize the misfit between modeled and observed data, it may be considered a full waveform inversion process. However, full‐wavefield migration involves a forward modelling process that uses the estimated seismic image (i.e., the reflectivities) to generate the modelled full wavefield response, whereas a smooth migration velocity model can be used to describe the propagation effects. This separation of modelling in terms of scattering and propagation is not easily achievable when finite‐difference or finite‐element modelling is used. By this separation, a more linear inversion problem is obtained. Moreover, during the forward modelling, the wavefields are computed separately in the incident and scattered directions, which allows the implementation of various imaging conditions, such as imaging reflectors from below, and avoids low‐frequency image artefacts, such as typically observed during reverse‐time migration. The full wavefield modelling process also has the flexibility to image directly the total data (i.e., primaries and multiples together) or the primaries and the multiples separately. Based on various numerical data examples for the 2D and 3D cases, the advantages of this methodology are demonstrated. 相似文献
10.
George A. Donoso Alireza Malehmir Nelson Pacheco Vitor Araujo Matthew Penney Joao Carvalho Bill Spicer Steve Beach 《Geophysical Prospecting》2020,68(1):44-61
Seismic methods are becoming an established choice for deep mineral exploration after being extensively tested and employed for the past two decades. To investigate whether the early European mineral-exploration datasets had potential for seismic imaging that was overlooked, we recovered a low-fold legacy seismic dataset from the Neves–Corvo mine site in the Iberian Pyrite Belt in southern Portugal. This dataset comprises six 4–6 km long profiles acquired in 1996 for deep targeting. Using today's industry-scale processing algorithms, the world-class, ca. 150 Mt, Lombador massive sulphide and other smaller deposits were better imaged. Additionally, we also reveal a number of shallow but steeply dipping reflections that were absent in the original processing results. This study highlights that legacy seismic data are valuable and should be revisited regularly to take advantage of new processing algorithms and the experiences gained from processing such data in hard-rock environments elsewhere. Remembering that an initial processing job in hard rock should always aim to first obtain an overall image of the subsurface and make reflections visible, and then subsequent goals of the workflow could be set to, for example understanding relative amplitude ratios. The imaging of the known mineralization implies that this survey could likely have been among one of the pioneer studies in the world that demonstrated the capability of directly imaging massive sulphide deposits using the seismic method. 相似文献
11.
Utilising ambient seismic energy naturally propagating in the Earth as an alternative approach to active body-wave seismic investigations has been a topic of interest for a number of decades. However, because ambient surface-wave arrivals typically are of much greater amplitude than ambient body-wave energy, significant data signal processing and long recording times are required to mitigate this and other coherent noise sources, and to correlate sufficient reflected body-wave energy to converge to a stable image. Even for these scenarios, identifying and validating imaged body-wave reflection events remain challenging. In active-source investigations, extended imaging condition gathers are used to examine velocity (in)accuracy. Herein, we develop an ambient direct migration approach that uses a novel ambient (deconvolution) extended imaging condition. We simulate synthetic ambient-wavefield seismic data for two different models and use a field data set from Lalor Lake in Manitoba, Canada, to conduct a series of numerical experiments to demonstrate the velocity sensitivity and long-term stationarity of ambient-wavefield seismic data in the migration image domain. Tests with varying global velocity perturbations show a characteristic reflector moveout in deconvolution extended imaging condition gathers that can serve as a diagnostic of reflected ambient body-wave energy. We illustrate that this imaging formalism, under idealised circumstances, gives comparable results to conventional seismic methods, which extends the use of extended imaging condition gather-based image validation to ambient-wavefield seismic data scenarios. We assert that this may be a valuable tool for the validation of ambient migration techniques that to date have yielded largely inconclusive results. 相似文献
12.
CO2 storage in the high Arctic: efficient modelling of pre‐stack depth‐migrated seismic sections for survey planning 下载免费PDF全文
P. Lubrano Lavadera D. Kühn B.D.E. Dando I. Lecomte K. Senger Å. Drottning 《Geophysical Prospecting》2018,66(6):1180-1200
The sequestration of CO2 in subsurface reservoirs constitutes an immediate counter‐measure to reduce anthropogenic emissions of CO2, now recognized by international scientific panels to be the single most critical factor driving the observed global climatic warming. To ensure and verify the safe geological containment of CO2 underground, monitoring of the CO2 site is critical. In the high Arctic, environmental considerations are paramount and human impact through, for instance, active seismic surveys, has to be minimized. Efficient seismic modelling is a powerful tool to test the detectability and imaging capability prior to acquisition and thus improve the characterization of CO2 storage sites, taking both geological setting and seismic acquisition set‐up into account. The unique method presented here avoids the costly generation of large synthetic data sets by employing point spread functions to directly generate pre‐stack depth‐migrated seismic images. We test both a local‐target approach using an analytical filter assuming an average velocity and a full‐field approach accounting for the spatial variability of point spread functions. We assume a hypothetical CO2 plume emplaced in a sloping aquifer inspired by the conditions found at the University of Svalbard CO2 lab close to Longyearbyen, Svalbard, Norway, constituting an unconventional reservoir–cap rock system. Using the local‐target approach, we find that even the low‐to‐moderate values of porosity (5%–18%) measured in the reservoir should be sufficient to induce significant change in seismic response when CO2 is injected. The sensitivity of the seismic response to changes in CO2 saturation, however, is limited once a relatively low saturation threshold of 5% is exceeded. Depending on the illumination angle provided by the seismic survey, the quality of the images of five hypothetical CO2 plumes of varying volume differs depending on the steepness of their flanks. When comparing the resolution of two orthogonal 2D surveys to a 3D survey, we discover that the images of the 2D surveys contain significant artefacts, the CO2‐brine contact is misplaced and an additional reflector is introduced due to the projection of the point spread function of the unresolvable plane onto the imaging plane. All of these could easily lead to a misinterpretation of the behaviour of the injected CO2. Our workflow allows for testing the influence of geological heterogeneities in the target aquifer (igneous intrusions, faults, pervasive fracture networks) by utilizing increasingly complex and more realistic geological models as input as more information on the subsurface becomes available. 相似文献
13.
A method for classifying pre‐stack seismic data based on amplitude–frequency attributes and self‐organizing maps 下载免费PDF全文
Erik Molino‐Minero‐Re Ernesto Rubio‐Acosta Héctor Benítez‐Pérez Juan Marcos Brandi‐Purata Nora Isabel Pérez‐Quezadas Demetrio Fabián García‐Nocetti 《Geophysical Prospecting》2018,66(4):673-687
14.
Lena Bräunig Stefan Buske Alireza Malehmir Emma Bäckström Monica Schön Paul Marsden 《Geophysical Prospecting》2020,68(1):24-43
The development of cost-effective and environmentally acceptable geophysical methods for the exploration of mineral resources is a challenging task. Seismic methods have the potential to delineate the mineral deposits at greater depths with sufficiently high resolution. In hardrock environments, which typically host the majority of metallic mineral deposits, seismic depth-imaging workflows are challenged by steeply dipping structures, strong heterogeneity and the related wavefield scattering in the overburden as well as the often limited signal-to-noise ratio of the acquired data. In this study, we have developed a workflow for imaging a major iron-oxide deposit at its accurate position in depth domain while simultaneously characterizing the near-surface glacial overburden including surrounding structures like crossing faults at high resolution. Our workflow has successfully been showcased on a 2D surface seismic legacy data set from the Ludvika mining area in central Sweden acquired in 2016. We applied focusing prestack depth-imaging techniques to obtain a clear and well-resolved image of the mineralization down to over 1000 m depth. In order to account for the shallow low-velocity layer within the depth-imaging algorithm, we carefully derived a migration velocity model through an integrative approach. This comprised the incorporation of the tomographic near-surface model, the extension of the velocities down to the main reflectors based on borehole information and conventional semblance analysis. In the final step, the evaluation and update of the velocities by investigation of common image gathers for the main target reflectors were used. Although for our data set the reflections from the mineralization show a strong coherency and continuity in the seismic section, reflective structures in a hardrock environment are typically less continuous. In order to image the internal structure of the mineralization and decipher the surrounding structures, we applied the concept of reflection image spectroscopy to the data, which allows the imaging of wavelength-specific characteristics within the reflective body. As a result, conjugate crossing faults around the mineralization can directly be imaged in a low-frequency band while the internal structure was obtained within the high-frequency bands. 相似文献
15.
In hydraulic fracturing experiments, perforation shots excite body and tube waves that sample, and thus can be used to characterize, the surrounding medium. While these waves are routinely employed in borehole operations, their resolving power is limited by the experiment geometry, the signal‐to‐noise ratio, and their frequency content. It is therefore useful to look for additional, complementary signals that could increase this resolving power. Tube‐to‐body‐wave conversions (scattering of tube to compressional or shear waves at borehole discontinuities) are one such signal. These waves are not frequently considered in hydraulic fracture settings, yet they possess geometrical and spectral attributes that greatly complement the resolution afforded by body and tube waves alone. Here, we analyze data from the Jonah gas field (Wyoming, USA) to demonstrate that tube‐to‐shear‐wave conversions can be clearly observed in the context of hydraulic fracturing experiments. These waves are identified primarily on the vertical and radial components of geophones installed in monitoring wells surrounding a treatment well. They exhibit a significantly lower frequency content (10–100 Hz) than the primary compressional waves (100–1000 Hz). Tapping into such lower frequencies could help to better constrain velocity in the formation, thus allowing better estimates of fracture density, porosity and permeability. Moreover, the signals of tube‐to‐shear‐wave conversion observed in this particular study provide independent estimates of the shear wave velocity in the formation and of the tube wave velocity in the treatment well. 相似文献
16.
Michael Westgate Musa S.D. Manzi Ian James Wesley Harrison 《Geophysical Prospecting》2020,68(7):2119-2140
Two overlapping legacy seismic profiles, 130 km long end to end, were shot in the 1990s over the Kuruman Hills on the western margin of the Kaapvaal Craton in southern Africa. The 6-s profiles were aimed at investigating the crustal structure of the western Kaapvaal Craton as well as to locate potential continuation of the Witwatersrand gold-bearing horizons beneath the cover rocks, the latter of which was unsuccessful. In this study, the legacy seismic data are reprocessed and used to image the iron-oxide (mainly haematite) mineralization found in the Kuruman Formation of the Griqualand-West Supergroup, which outcrops along the two seismic profiles. The seismic profiles are located close to the Sishen open pit iron mine, where one of the world's largest iron ore concentrations (986 Mt) is mined. The reprocessed and merged seismic data are combined with magnetic, magnetotelluric, borehole and outcrop data to constrain the interpretation, and all indicate the mineralization host rocks to have ∼500 m thickness and 950 m depth. The seismic data further reveal seismic reflections associated with multiple iron ore horizons, which are affected by a first-order scale syncline and numerous near-vertically dipping (∼65–80°) normal and reverse faults of various orientations and throws, thus providing insight into the structurally controlled iron ore mineralization in the area. Seismic tomography and magnetotellurics characterize the sediments to have a velocity ranging between 5000 and 6000 m/s and a resistivity of <10 Ωm. The seismic imaging of the syncline and associated structural disruptions is important for future mining purposes and plans in the area as these structures might have preserved iron-oxide mineralization from erosion. The reprocessed data thus provide information that could be incorporated in potential future underground mine planning in the area, improving the resource evaluation of the iron-oxide deposit. Legacy seismic data are thus shown to hold intrinsic quality and possible untapped potential that can be realized via data reprocessing. 相似文献
17.
Anatoly A. Nikitin Boris D. Plyushchenkov Arkady Yu. Segal 《Geophysical Prospecting》2016,64(5):1335-1349
We derived the velocity and attenuation of a generalized Stoneley wave being a symmetric trapped mode of a layer filled with a Newtonian fluid and embedded into either a poroelastic or a purely elastic rock. The dispersion relation corresponding to a linearized Navier–Stokes equation in a fracture coupling to either Biot or elasticity equations in the rock via proper boundary conditions was rigorously derived. A cubic equation for wavenumber was found that provides a rather precise analytical approximation of the full dispersion relation, in the frequency range of 10?3 Hz to 103 Hz and for layer width of less than 10 cm and fluid viscosity below 0.1 Pa· s [100 cP]. We compared our results to earlier results addressing viscous fluid in either porous rocks with a rigid matrix or in a purely elastic rock, and our formulae are found to better match the numerical solution, especially regarding attenuation. The computed attenuation was used to demonstrate detectability of fracture tip reflections at wellbore, for a range of fracture lengths and apertures, pulse frequencies, and fluid viscosity. 相似文献
18.
The complex‐valued first‐arrival traveltime can be used to describe the properties of both velocity and attenuation as seismic waves propagate in attenuative elastic media. The real part of the complex‐valued traveltime corresponds to phase arrival and the imaginary part is associated with the amplitude decay due to energy absorption. The eikonal equation for attenuative vertical transversely isotropic media discretized with rectangular grids has been proven effective and precise to calculate the complex‐valued traveltime, but less accurate and efficient for irregular models. By using the perturbation method, the complex‐valued eikonal equation can be decomposed into two real‐valued equations, namely the zeroth‐ and first‐order traveltime governing equations. Here, we first present the topography‐dependent zeroth‐ and first‐order governing equations for attenuative VTI media, which are obtained by using the coordinate transformation from the Cartesian coordinates to the curvilinear coordinates. Then, we apply the Lax–Friedrichs sweeping method for solving the topography‐dependent traveltime governing equations in order to approximate the viscosity solutions, namely the real and imaginary parts of the complex‐valued traveltime. Several numerical tests demonstrate that the proposed scheme is efficient and accurate in calculating the complex‐valued P‐wave first‐arrival traveltime in attenuative VTI media with an irregular surface. 相似文献
19.
Musa S.D. Manzi Gordon R.J. Cooper Alireza Malehmir Raymond J. Durrheim 《Geophysical Prospecting》2020,68(1):145-163
Seismic detection of faults, dykes, potholes and iron-rich ultramafic pegmatitic bodies is of great importance to the platinum mining industry, as these structures affect safety and efficiency. The application of conventional seismic attributes (such as instantaneous amplitude, phase and frequency) in the hard-rock environment is more challenging than in soft-rock settings because the geology is often complex, reflections disrupted and the seismic energy strongly scattered. We have developed new seismic attributes that sharpen seismic reflections, enabling additional structural information to be extracted from hard-rock seismic data. The symmetry attribute is based on the invariance of an object with respect to transformations such as rotation and reflection; it is independent of the trace reflection amplitude, and hence a better indicator of the lateral continuity of thin and weak reflections. The reflection-continuity detector attribute is based on the Hilbert transform; it enhances the visibility of the peaks and troughs of the seismic traces, and hence the continuity of weak reflections. We demonstrate the effectiveness of these new seismic attributes by applying them to a legacy 3D seismic data set from the Bushveld Complex in South Africa. These seismic attributes show good detection of deep-seated thin (∼1.5 m thick) platinum ore bodies and their associated complex geological structures (faults, dykes, potholes and iron-rich ultramafic pegmatites). They provide a fast, cost-effective and efficient interpretation tool that, when coupled with horizon-based seismic attributes, can reveal structures not seen in conventional interpretations. 相似文献
20.
Seismic modelling of the shallow subsurface (within the first few metres) is often challenging when the data are dominated by ground-roll and devoid of reflection. We showed that, even when transmission is the only available phase for analysis, fine-scale and interpretable P-wave velocity (VP) and attenuation (QP−1) models can still be prepared using full-waveform inversion, with data being preconditioned for ground-roll. To prove this idea, we suppressed the ground-roll in two different ways before full-waveform inversion modelling: first, through a bottom mute; second, through a novel wavelet transform-based method known as the redundant-lifting scheme. The applicability of full-waveform inversion is tested through imaging two buried targets. These include a pair of utility water pipes with known diameters of 0.8 m and burial depths of 1.5 m, respectively. The second target is the poorly documented backfill, which was the former location of the pipe(s). The data for full-waveform inversion are acquired along a 2D profile using a static array of 24, 40 Hz vertical component geophones and a buried point source. The results show that (a) the redundant-lifting scheme better suppresses the ground roll, which in turn provides better images of the targets in full-waveform inversion; and (b) the VP and QP−1 models from full-waveform inversion of redundant-lifting scheme data could detect the two targets adequately. 相似文献