首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 554 毫秒
1.
The effect of surface phenomena occurring at the interfaces between immiscible fluids and a solid on the seismic attributes of partially saturated rocks has not yet been fully studied. Meanwhile, over the past two decades considerable progress has been made in the physics of wetting to understand effects such as contact line friction, contact line pinning, contact angle hysteresis, and equilibrium contact angle. In this paper, we developed a new rock physics model considering the aforementioned effects on seismic properties of the rock with a partially saturated plane-strain crack. We demonstrated that for small wave-induced stress perturbations, the contact line of the interface meniscus will remain pinned, while the meniscus will bulge and change its shape through the change of the contact angles. When the stress perturbation is larger than a critical value, the contact line will move with advancing or receding contact angle depending on the direction of contact line motion. A critical stress perturbation predicted by our model can be in the range of ∼102−104 Pa, that is typical for linear seismic waves. Our model predicts strong seismic attenuation in the case when the contact line is moving. When the contact line is pinned, the attenuation is negligibly small. Seismic attenuation is associated with the hysteresis of loading and unloading bulk moduli, predicted by our model. The hysteresis is large when the contact line is moving and negligibly small when the contact line is pinned. Furthermore, we demonstrate that the bulk modulus of the rock with a partially saturated crack depends also on the surface tension and on the contact angle hysteresis. These parameters are typically neglected during calculation of the effecting fluid moduli by applying different averaging techniques. We demonstrate that contact line friction may be a dominant seismic attenuation mechanism in the low frequency limit (<∼10 Hz) when capillary forces dominate over viscous forces during wave-induced two-phase fluid flow.  相似文献   

2.
It is evident from the laboratory experiments that shear moduli of different porous isotropic rocks may show softening behaviour upon saturation. The shear softening means that the shear modulus of dry samples is higher than of saturated samples. Shear softening was observed both at low (seismic) frequencies and high (ultrasonic) frequencies. Shear softening is stronger at seismic frequencies than at ultrasonic frequencies, where the softening is compensated by hardening due to unrelaxed squirt flow. It contradicts to Gassmann's theory suggesting that the relaxed shear modulus of isotropic rock should not depend upon fluid saturation, provided that no chemical reaction between the solid frame and the pore fluid. Several researchers demonstrated that the shear softening effect is reversible during re-saturation of rock samples, suggesting no permanent chemical reaction between the solid frame and the pore fluid. Therefore, it is extremely difficult to explain this fluid–rock interaction mechanism theoretically, because it does not contradict to the assumptions of Gassmann's theory, but contradicts to its conclusions. We argue that the observed shear softening of partially saturated rocks by different pore fluids is related to pore-scale interfacial phenomena effects, typically neglected by the rock physics models. These interface phenomena effects are dependent on surface tension between immiscible fluids, rock wettability, aperture distribution of microcracks, compressibility of microcracks, porosity of microcracks, elastic properties of rock mineral, fluid saturation, effective stress and wave amplitude. Derived equations allow to estimate effects of pore fluids and saturation on the shear modulus and mechanical strength of rocks.  相似文献   

3.
深入了解不同压力、频率、流体含量和流体分布对岩石中弹性波传播特性的影响,对指导油气勘探开发具有重要意义.不同尺度下的波致流效应,是声波传播过程中产生速度频散和衰减的重要原因.本文以不同压力下水饱和区域改进的骨架模量为纽带,建立了联合介观尺度斑块饱和效应与微观尺度喷射流效应的部分饱和岩石声学理论模型.开展针对性声学实验,根据不同压力下部分饱和砂岩纵波速度测量数据,确定理论模型中的相关参数,从而实现对不同压力下部分饱和岩石纵波衰减的定量表征.在此基础上,通过理论与实验测量的纵波衰减的对比,分析不同压力、含水饱和度以及频率对岩石纵波衰减的影响.研究结果表明,在较低压力,较高含水饱和度以及较高频段,喷射流效应较强,因此新建模型计算的衰减明显大于斑块饱和模型的衰减.由于新建模型体现了斑块饱和效应与喷射流效应的综合影响,相比于斑块饱和模型,新建模型计算的部分饱和岩石的纵波衰减更接近于实测衰减,但受到岩石自身因素影响,新建模型计算的衰减仍略小于实测衰减.  相似文献   

4.
In heterogeneous natural gas reservoirs, gas is generally present as small patch-like pockets embedded in the water-saturated host matrix. This type of heterogeneity, alsocalled "patchy saturation", causes significant seismic velocity dispersion and attenuation. Toestablish the relation between seismic response and type of fluids, we designed a rock physicsmodel for carbonates. First, we performed CT scanning and analysis of the fluid distributionin the partially saturated rocks. Then, we predicted the quantitative relation between the waveresponse at different frequency ranges and the basic lithological properties and pore fluids.A rock physics template was constructed based on thin section analysis of pore structuresand seismic inversion. This approach was applied to the limestone gas reservoirs of the rightbank block of the Amu Darya River. Based on poststack wave impedance and prestack elasticparameter inversions, the seismic data were used to estimate rock porosity and gas saturation.The model results were in ~ood a~reement with the production regime of the wells.  相似文献   

5.
部分饱和孔隙岩石中声波传播数值研究   总被引:28,自引:1,他引:27       下载免费PDF全文
利用基于Biot理论的孔隙弹性介质的高阶交错网格有限差分算法,模拟了具有随机分布特征的多种流体饱和岩石中声波在中心频率分别为25,50,75,100kHz时的声场特点. 对于一个由两种成分(气和水)饱和的岩石模型, 假设含不同流体的孔隙介质随机分布在不同的宏观区域,该区域尺度远小于计算的声波波长;组成模型的两种随机分布介质具有相同的固体骨架参数、渗透率和孔隙度,但分别被具有不同压缩性、密度和黏滞系数特性的水和气饱和. 计算和统计分析结果表明,在两种孔隙成分随机分布的部分饱和条件下纵波速度比较复杂,除骨架参数外,其变化主要依赖于中心频率、各种孔隙成分饱和度及饱和介质的速度. 比较该随机分布模型、Gassmann理论模型和White的“气包”模型,发现三种模型得到的纵波速度和衰减规律有较好的定性对应关系. 其次,按照这种随机计算模型的处理方法,本文还首次计算了一个三种流体成分充填饱和的例子,即岩石模型中的孔隙被水、油和气部分饱和,计算时保持模型含水饱和度不变而只改变含油和含气饱和度. 在这种计算条件下,纵波速度随中心频率呈增大的趋势但有起伏变化. 声场快照显示了各种转换波在多种孔隙成分充填(两种和三种孔隙成分)岩石中的声场特征,复杂的水-油-气界面的非均匀分布对声场有重要影响,纵波能量主要转换形成了较为复杂的多种慢纵波和横波.  相似文献   

6.
Partially saturated reservoirs are one of the major sources of seismic wave attenuation, modulus defect and velocity dispersion in real seismic data. The main attenuation and dispersion phenomenon is wave induced fluid flow due to the heterogeneity in pore fluids or porous rock. The identification of pore fluid type, saturation and distribution pattern within the pore space is of great significance as several seismic and petrophysical properties of porous rocks are largely affected by fluid type, saturation and fluid distribution pattern. Based on Gassmann-Wood and Gassmann- Hill rock physics models modulus defect, velocity dispersion and attenuation in Jurassic siliclastic partially-saturated rocks are studied. For this purpose two saturation patterns - uniform and patchy - are considered within the pore spaces in two frequency regimes i.e., lower frequency and higher frequency. The results reveal that at low enough frequency where saturation of liquid and gas is uniform, the seismic velocity and bulk modulus are lower than at higher frequency where saturation of fluid mixture is in the form of patches. The velocity dispersion and attenuation is also modeled at different levels of gas saturation. It is found that the maximum attenuation and velocity dispersion is at low gas saturation. Therefore, the dispersion and attenuation can provide a potential way to predict gas saturation and can be used as a property to differentiate low from high gas saturation.  相似文献   

7.
二氧化碳地质封存是减少温室气体排放和减缓温室效应的重要手段.二氧化碳封存的一个重要组成部分是地震监测,即用地震的方法监测封存后的二氧化碳的分布变化.为了实现这个目标,需要建立储层参数与地震性质之间的关系(岩石物理模型)和从地震监测数据中反演获得储层流体的饱和度等参数.首先,本文以Biot理论为基础,结合多相流模型研究了多个物理参数(孔隙度、二氧化碳饱和度、温度和压力等)对同时含有二氧化碳和水的孔隙介质的波速和衰减等属性的影响.结果表明:孔隙度和二氧化碳饱和度对岩石的频散和衰减属性影响强烈,而温度和压力通过孔隙流体性质对岩石的波速产生影响.然后,本文基于含多相流的Biot理论,应用抗干扰能力强、且具有更好的局部搜索能力和抗早熟能力的自适应杂交遗传算法对实际数据进行了反演研究.对岩心实验数据的反演研究表明了算法的有效性,而且表明含多相流的Biot理论能够很好地解释水和二氧化碳饱和岩石的波速特征.最后,我们将自适应杂交遗传算法应用于实际封存项目的地震监测数据,获得了封存后不同时期的二氧化碳饱和度,达到了用地震方法监测二氧化碳分布的目的.  相似文献   

8.
In exploration geophysics, the efforts to extract subsurface information from wave characteristics exceedingly depend on the construction of suitable rock physics model. Analysis of different rock physics models reveals that the strength and magnitude of attenuation and dispersion of propagating wave exceedingly depend on wave-induced fluid flow at multiple scales. In current work, a comprehensive analysis of wave attenuation and velocity dispersion is carried out at broad frequency range. Our methodology is based on Biot's poroelastic relations, by which variations in wave characteristics associated with wave-induced fluid flow due to the coexistence of three fluid phases in the pore volume is estimated. In contrast to the results of previous research, our results indicate the occurrence of two-time pore pressure relaxation phenomenon at the interface between fluids of disparate nature, that is, different bulk modulus, viscosity and density. Also, the obtained results are compatible with numerical results for the same 1D model which are accounted using Biot's poroelastic and quasi-static equation in frequency domain. Moreover, the effects of change in saturation of three-phase fluids were also computed which is the key task for geophysicist. The outcomes of our research reveal that pore pressure relaxation phenomenon significantly depends on the saturation of distinct fluids and the order of saturating fluids. It is also concluded that the change in the saturation of three-phase fluid significantly influences the characteristics of the seismic wave. The analysis of obtained results indicates that our proposed approach is a useful tool for quantification, identification and discrimination of different fluid phases. Moreover, our proposed approach improves the accuracy to predict dispersive behaviour of propagating wave at sub-seismic and seismic frequencies.  相似文献   

9.
Extension of White's layered model to the full frequency range   总被引:1,自引:0,他引:1  
The low‐frequency theory of the White model to predict the dispersion and intrinsic attenuation in a single porous skeleton saturated with periodic layers of two immiscible fluids is extended to the full frequency range using the Biot theory. The extension is similar to the Dutta–Odé model for spherical inhomogeneities. Below the layer resonance frequency, the acoustic bulk properties for several gas–water fractions are in good agreement with the original White model. Deviations start to occur at higher frequencies due to the growing importance of resonance phenomena that were neglected in the original White model. The full model predicts significantly higher damping at sonic frequencies than the original White model. We also show that attenuation is significantly dependent on porosity variations. With realistic rock and fluid properties, a maximum attenuation of about 0.3 is found at seismic frequencies.  相似文献   

10.
天然气在开发过程中,储层有效压力和含气饱和度均会发生变化,研究有效压力和含气饱和度的变化对地震响应特征的影响,在基于时移地震的剩余气分布预测研究中具有重要意义。天然气和石油的声学性质有着明显的差异,油藏时移地震的研究成果不能直接应用于气藏,因此需要开展气藏的时移地震研究。利用Shapiro模型表征干岩石弹性模量随有效压力的变化,借助Batzle-Wang方程描述流体速度随压力的变化关系,联合Gassmann理论进行流体替代,表征饱和流体岩石速度随含气饱和度的变化,建立了饱和流体岩石速度随有效压力和饱和度变化的岩石物理模型。基于该模型,对不同含气饱和度和不同有效压力下的气藏储层模型进行了多波时移地震叠前振幅变化(AVO)模拟。结果表明多波时移地震AVO技术可以有效地区分有效压力变化和含气饱和度变化,为进一步开展气藏多波时移地震流体监测提供了理论参考依据。   相似文献   

11.
Saturation of porous rocks with a mixture of two fluids has a substantial effect on seismic‐wave propagation. In particular, partial saturation causes significant attenuation and dispersion of the propagating waves due to the mechanism of wave‐induced fluid‐flow. Such flow arises when a passing wave induces different fluid pressures in regions of rock saturated by different fluids. Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that fluid heterogeneities are distributed in a regular way. However, recent experimental studies show that mesoscopic heterogeneities have less idealized distributions and that the distribution itself affects attenuation and dispersion. Based on an approximation for the coherent wavefield in random porous media, we develop a model which assumes a continuous distribution of fluid heterogeneities. As this continuous random media approach assumes that there will be a distribution of different patch sizes, it is expected to be better suited to modelling experimental data. We also show how to relate the random functions to experimentally measurable parameters.  相似文献   

12.
The heterogeneous distribution of fluids in patchy-saturated rocks generates significant velocity dispersion and attenuation of seismic waves. The mesoscopic Biot–Rayleigh theory is used to investigate the relations between wave responses and reservoir fluids. Multiscale theoretical modeling of rock physics is performed for gas/water saturated carbonate reservoirs. Comparisons with laboratory measurements, log and seismic data validate the rock physics template. Using post-stack and pre-stack seismic inversion, direct estimates of rock porosity and gas saturation of reservoirs are obtained, which are in good agreement with oil production tests of the wells.  相似文献   

13.
Wavefields in porous media saturated by two immiscible fluids are simulated in this paper. Based on the sealed system theory, the medium model considers both the relative motion between the fluids and the solid skeleton and the relaxation mechanisms of porosity and saturation (capillary pressure). So it accurately simulates the numerical attenuation property of the wavefields and is much closer to actual earth media in exploration than the equivalent liquid model and the unsaturated porous medium model on the basis of open system theory. The velocity and attenuation for different wave modes in this medium have been discussed in previous literature but studies of the complete wave-field have not been reported. In our work, wave equations with the relaxation mechanisms of capillary pressure and the porosity are derived. Furthermore, the wavefield and its characteristics are studied using the numerical finite element method. The results show that the slow P3-wave in the non-wetting phase can be observed clearly in the seismic band. The relaxation of capillary pressure and the porosity greatly affect the displacement of the non-wetting phase. More specifically, the displacement decreases with increasing relaxation coefficient.  相似文献   

14.
Saturation of porous rocks with a mixture of two fluids (known as partial saturation) has a substantial effect on the seismic waves propagating through these rocks. In particular, partial saturation causes significant attenuation and dispersion of the propagating waves, due to wave-induced fluid flow. Such flow arises when a passing wave induces different fluid pressures in regions of rock saturated by different fluids. As partial fluid saturation can occur on different length scales, attenuation due to wave-induced fluid flow is ubiquitous. In particular, mesoscopic fluid flow due to heterogeneities occurring on a scale greater than porescale, but less than wavelength scale, is responsible for significant attenuation in the frequency range from 10 to 1000 Hz.Most models of attenuation and dispersion due to mesoscopic heterogeneities imply that fluid heterogeneities are distributed in a periodic/regular way. In 1D this corresponds to periodically alternating layering, in 3D as periodically distributed inclusions of a given shape (usually spheres). All these models yield very similar estimates of attenuation and dispersion.Experimental studies show that mesoscopic heterogeneities have less idealized distributions and that the distribution itself affects attenuation and dispersion. Therefore, theoretical models are required which would simulate the effect of more general and realistic fluid distributions.We have developed two theoretical models which simulate the effect of random distributions of mesoscopic fluid heterogeneities. The first model assumes that one fluid forms a random ensemble of spherical inclusions in a porous medium saturated by the other fluid. The attenuation and dispersion predicted by this model are very similar to those predicted for 3D periodic distribution. Attenuation (inverse quality factor) is proportional to ω at low frequencies for both distributions. This is in contrast to the 1D case, where random and periodically alternating layering shows different attenuation behaviour at low frequencies. The second model, which assumes a 3D continuous distribution of fluid heterogeneities, also predicts the same low-frequency asymptote of attenuation. However, the shapes of the frequency dependencies of attenuation are different. As the 3D continuous random approach assumes that there will be a distribution of different patch sizes, it is expected to be better suited to modelling experimental results. Further research is required in order to uncover how to relate the random functions to experimentally significant parameters.  相似文献   

15.
Unlike previous theories with velocity and/or elastic modulus averaging, we use a three-phase porous rock physics model developed by Santos for analyzing the seismic response of two immiscible fluids in saturated porous media. Considering reservoir reference pressure and coupling drag of two fluids in pores, the effects of frequency, porosity, and gas saturation on the phase velocities of the P-and S-waves are discussed in detail under field conditions. The effects of porosity and gas saturation on Vp/Vs are also provided. The data for our numerical experiments are from a sample of deep volcanic rock from Daqing. The numerical results show that the frequency dispersion effect can be ignored for deep volcanic rocks with low porosity and low permeability. It is concluded that for deep volcanic rocks the effect of gas content in pores on Vp/Vs is negligible but the effect of porosity is significant when there is a certain amount of water contained in the pores. The accurate estimate of lithology and porosity in this case is relatively more important.  相似文献   

16.
地震波本征衰减反映了地层及其所含流体的一些特性,对油气勘探开发有重要意义.已有的理论研究与实验发现,地震频带内的衰减主要与中观尺度(波长与颗粒尺度之间)的斑状部分饱和、完全饱和岩石弹性非均匀性情况下波诱导的局部流体流有关.这种衰减与岩石骨架、孔隙度及充填流体的性质密切相关.本文着重讨论均匀流体分布、斑状或非均匀流体分布两种情况下部分饱和岩石的纵波模量差异.以经典岩石物理理论和衰减机制认识为基础,通过分析低频松弛状态、高频非松弛状态岩石的弹性模量,讨论储层参数(如孔隙度、泥质含量以及含水饱和度等)与纵波衰减之间的确定性关系.上述方法与模型在陆相砂泥岩地层与海相碳酸盐岩地层中的适用性通过常规测井资料得到了初步验证.  相似文献   

17.
砂岩储层AVO特征影响因素的不确定性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
传统的地震AVO正演研究多采用参数固定的岩石物理模型,而实际地层属性参数在勘探范围内具有不确定性.本研究以目标地层岩芯样品的实验室测试数据为基础,通过样品孔隙度和干燥状态下纵、横波阻抗的高度线性关系对岩石物理模型进行了简化,并结合实验测量和测井解释建立了主要模型参数的概率密度函数.采用Monte-Carlo随机正演和G...  相似文献   

18.
The propagation of seismic waves through a saturated reservoir compresses the fluid in the pore spaces. During this transition, parts of seismic energy would be attenuated because of intrinsic absorption. Rock physics models make the bridge between the seismic properties and petrophysical reality in the earth. Attenuation is one of the significant seismic attributes used to describe the fluid behaviour in the reservoirs. We examined the core samples using ultrasonic experiments at the reservoir conditions. Given the rock properties of the carbonate reservoir and experiment results, the patchy saturation mechanism was solved for substituted fluid using the theory of modulus frequency. The extracted relationship between the seismic attenuation and water saturation was used in time–frequency analysis. We performed the peak frequency method to estimate the Q factor in the Gabor domain and determined the water saturation based on the computed rock physics model. The results showed how the probable fault in the reservoir has stopped the fluid movement in the reservoir and caused touching the water‐bearing zone through drilling.  相似文献   

19.
Quantitative detection of fluid distribution using time-lapse seismic   总被引:1,自引:0,他引:1  
Although previous seismic monitoring studies have revealed several relationships between seismic responses and changes in reservoir rock properties, the quantitative evaluation of time‐lapse seismic data remains a challenge. In most cases of time‐lapse seismic analysis, fluid and/or pressure changes are detected qualitatively by changes in amplitude strength, traveltime and/or Poisson's ratio. We present the steps for time‐lapse seismic analysis, considering the pressure effect and the saturation scale of fluids. We then demonstrate a deterministic workflow for computing the fluid saturation in a reservoir in order to evaluate time‐lapse seismic data. In this approach, we derive the physical properties of the water‐saturated sandstone reservoir, based on the following inputs: VP, VS, ρ and the shale volume from seismic analysis, the average properties of sand grains, and formation‐water properties. Next, by comparing the in‐situ fluid‐saturated properties with the 100% formation‐water‐saturated reservoir properties, we determine the bulk modulus and density of the in‐situ fluid. Solving three simultaneous equations (relating the saturations of water, oil and gas in terms of the bulk modulus, density and the total saturation), we compute the saturation of each fluid. We use a real time‐lapse seismic data set from an oilfield in the North Sea for a case study.  相似文献   

20.
Investigating seismic dispersion and attenuation characteristics of loosely compacted marine sandstone is essential in reconciling different geophysical measurements (surface seismic, well logging and ultrasonic) for better characterization of a shallow marine sandstone reservoir. We have experimented with a typical high-porosity and high-permeability sandstone sample, extracted from the Paleogene marine depositional setting in the Gulf of Mexico, at the low-frequency band (2–500 Hz) as well as ultrasonic point (106 Hz), to investigate the effects of varying saturation levels on a rock's elasticity. The results suggest that the Young's modulus of the measured sample with adsorbed moisture at laboratory conditions (room temperature, 60%–90% humidity) exhibits dispersive behaviours. The extensional attenuation can be as high as 0.038, and the peak frequency occurs around 60 Hz. The extensional attenuation due to moisture adsorption can be dramatically mitigated with the increase of confining pressure. For partial saturation status, extensional attenuation increases as increasing water saturation by 79% with respect to the measured frequencies. Additionally, the results show that extensional attenuation at the fully water-saturated situation is even smaller than that at adsorbed moisture conditions. The Gassmann–Wood model can overall capture the P-wave velocity-saturation trend of measured data at seismic frequencies, demonstrating that the partially saturated unconsolidated sandstone at the measured seismic frequency range is prone to be in the relaxed status. Nevertheless, the ultrasonic velocities are significantly higher than the Gassmann–Wood predictions, suggesting that the rocks are in the unrelaxed status at the ultrasonic frequency range. The poroelastic modelling results based on the patchy saturation model also indicate that the characteristic frequency of the partially saturated sample is likely beyond the measured seismic frequency range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号