首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Diffractions carry valuable information about local discontinuities and small‐scale objects in the subsurface. They are still not commonly used in the process of geological interpretation. Many diffraction imaging techniques have been developed and applied for isotropic media, whereas relatively few techniques have been developed for anisotropic media. Ignoring anisotropy can result in low‐resolution images with wrongly positioned or spurious diffractors. In this article, we suggest taking anisotropy into account in two‐dimensional post‐stack domain by considering P‐wave non‐hyperbolic diffraction traveltime approximations for vertical transverse isotropy media, previously developed for reflection seismology. The accuracy of the final images is directly connected to the accuracy of the diffraction traveltime approximations. We quantified the accuracy of six different approximations, including hyperbolic moveout approximation, by the application of a post‐stack diffraction imaging technique on two‐dimensional synthetic data examples.  相似文献   

2.
VTI介质P波非双曲时差分析   总被引:5,自引:3,他引:5       下载免费PDF全文
具有垂直对称轴的横向各向同性介质模型(VTI)是目前各向异性理论研究和多波多分量地震资料叠前成像处理中最常用的一种各向异性模型.VTI介质中反射 P波时距曲线一般不再是双曲线.基于不同的相速度近似公式会得到不同的时距关系式.文中对几种典型的非双曲时距曲线与射线追踪得到的准确时距曲线在不同各向异性强度下进行了对比,结果表明Muir等和Stovas等提出的非双曲时距公式由于过高地考虑了横波垂直速度的影响与精确的时距曲线有很大偏差;Tsvankin等提出的弱各向异性非双曲时距公式在ε-δ<0时误差增大;Alkhalifah等提出的非双曲时距公式在大炮检距任意各向异性强度下都具有较高的精度,适于在实际资料处理中应用.  相似文献   

3.
A simple and accurate traveltime approximation is important in many applications in seismic data processing, inversion and modelling stages. Generalized moveout approximation is an explicit equation that approximates reflection traveltimes in general two-dimensional models. Definition of its five parameters can be done from properties of finite offset rays, for general models, or by explicit calculation from model properties, for specific models. Two versions of classical finite-offset parameterization for this approximation use traveltime and traveltime derivatives of two rays to define five parameters, which makes them asymmetrical. Using a third ray, we propose a balance between the number of rays and the order of traveltime derivatives. Our tests using different models also show the higher accuracy of the proposed method. For acoustic transversely isotropic media with a vertical symmetry axis, we calculate a new moveout approximation in the generalized moveout approximation functional form, which is explicitly defined by three independent parameters of zero-offset two-way time, normal moveout velocity and anellipticity parameter. Our test shows that the maximum error of the proposed transversely isotropic moveout approximation is about 1/6 to 1/8 of that of the moveout approximation that had been reported as the most accurate approximation in these media. The higher accuracy is the result of a novel parameterization that do not add any computational complexity. We show a simple example of its application on synthetic seismic data.  相似文献   

4.
Recently, the interest in PS-converted waves has increased for several applications, such as sub-basalt layer imaging, impedance estimates and amplitude-versus-offset analysis. In this study, we consider the problem of separation of PP- and PS-waves from pre-stacked multicomponent seismic data in two-dimensional isotropic medium. We aim to demonstrate that the finite-offset common-reflection-surface traveltime approximation is a good alternative for separating PP- and PS-converted waves in common-offset and common shot configurations by considering a two-dimensional isotropic medium. The five parameters of the finite-offset common-reflection-surface are firstly estimated through the inversion methodology called very fast simulated annealing, which estimates all parameters simultaneously. Next, the emergence angle, one of the inverted parameters, is used to build an analytical separation function of PP and PS reflection separation based on the wave polarization equations. Once the PP- and PS-converted waves were separated, the sections are stacked to increase the signal-to-noise ratio using the special curves derived from finite-offset common-reflection-surface approximation. We applied this methodology to a synthetic dataset from simple-layered to complex-structured media. The numerical results showed that the inverted parameters of the finite offset common-reflection-surface and the separation function yield good results for separating PP- and PS-converted waves in noisy common-offset and common shot gathers.  相似文献   

5.
In this paper the method for estimating the statistical parameters of the medium from traveltime measurements of refracted waves is applied to study the statistical characteristics of crystalline rocks at the Multifunctional Station Faido (Gotthard Base Tunnel, Switzerland). The method is based on the geometrical optics (GO) approximation. A covariance function for traveltime fluctuations has been obtained by considering quasihomogeneous fluctuations of sound velocity in a plain-stratified medium. Strongly anisometric (having unequal dimensions in different directions) random inhomogeneities were embedded in this medium. To estimate the statistical parameters around the tunnel, the traveltime fluctuations are calculated. It is assumed that each observation of traveltime-distance relation for a given shot-receiver group corresponds to a particular realization of a medium statistical ensemble. By calculating the variance and the zero cross intervals of the first derivative of traveltime fluctuations, the standard deviation of the velocity fluctuations and the characteristic horizontal scale of the inhomogeneities are estimated. Although the method allows to obtain the characteristic lengths of the inhomogeneities in vertical as well as in horizontal direction, the limited offset of the field data made it only possible to measure the latter. The estimated horizontal characteristic scale is about 13 m, which is reasonably close to the direct geological measurements in the studied region, where quartz lenses are dominant among the inhomogeneities. The standard deviation of the velocity is estimated as 4.5%, which might be caused by the fractured structure around the tunnel and also by the fault zone near the study area.  相似文献   

6.
This paper discusses Born/Rytov approximation tomographic velocity inversion methods constrained by the Fresnel zone. Calculations of the sensitivity kernel function and traveltime residuals are critical in tomographic velocity inversion. Based on the Born/Rytov approximation of the frequency-domain wave equation, we derive the traveltime sensitivity kernels of the wave equation on the band-limited wave field and simultaneously obtain the traveltime residuals based on the Rytov approximation. In contrast to single-ray tomography, the modified velocity inversion method improves the inversion stability. Tests of the near-surface velocity model and field data prove that the proposed method has higher accuracy and Computational efficiency than ray theory tomography and full waveform inversion methods.  相似文献   

7.
The well‐known asymptotic fractional four‐parameter traveltime approximation and the five‐parameter generalised traveltime approximation in stratified multi‐layer transversely isotropic elastic media with a vertical axis of symmetry have been widely used for pure‐mode and converted waves. The first three parameters of these traveltime expansions are zero‐offset traveltime, normal moveout velocity, and quartic coefficient, ensuring high accuracy of traveltimes at short offsets. The additional parameter within the four‐parameter approximation is an effective horizontal velocity accounting for large offsets, which is important to avoid traveltime divergence at large offsets. The two additional parameters in the above‐mentioned five‐parameter approximation ensure higher accuracy up to a given large finite offset with an exact match at this offset. In this paper, we propose two alternative five‐parameter traveltime approximations, which can be considered extensions of the four‐parameter approximation and an alternative to the five‐parameter approximation previously mentioned. The first three short‐offset parameters are the same as before, but the two additional long‐offset parameters are different and have specific physical meaning. One of them describes the propagation in the high‐velocity layer of the overburden (nearly horizontal propagation in the case of very large offsets), and the other characterises the intercept time corresponding to the critical slowness that includes contributions of the lower velocity layers only. Unlike the above‐mentioned approximations, both of the proposed traveltime approximations converge to the theoretical (asymptotic) linear traveltime at the limit case of very large (“infinite”) offsets. Their accuracy for moderate to very large offsets, for quasi‐compressional waves, converted waves, and shear waves polarised in the horizontal plane, is extremely high in cases where the overburden model contains at least one layer with a dominant higher velocity compared with the other layers. We consider the implementation of the proposed traveltime approximations in all classes of problems in which the above‐mentioned approximations are used, such as reflection and diffraction analysis and imaging.  相似文献   

8.
层析反演是速度建模中最重要的方法之一,结合偏移成像在成像域进行走时层析速度反演是当前比较成熟有效且广泛应用的技术.本文从高斯束偏移成像条件出发,在波动方程的一阶Born近似和Rytov近似下,推导了成像域走时扰动与速度扰动的线性关系,建立了成像域走时层析方程及其显式表达的层析核函数.该核函数的本质是有限频层析核函数,利用该核函数替换常规射线层析核函数可以明显提高层析反演精度.该核函数的计算关键是背景波场格林函数的计算,本文利用高斯束传播算子计算格林函数进而得到走时层析核函数,实现方式灵活高效且计算精度较高.基于高斯束传播算子的偏移成像与层析成像相结合进行深度域建模迭代,体现了速度建模与偏移成像一体化的思想.数值计算及实际数据应用证明了基于高斯束传播算子的成像域走时层析方法的有效性.  相似文献   

9.
As exploration targets have become deeper, cable lengths have increased accordingly, making the conventional two term hyperbolic traveltime approximation produce increasingly erroneous traveltimes. To overcome this problem, many traveltime formulas were proposed in the literature that provide approximations of different quality. In this paper, we concentrate on simple traveltime approximations that depend on a single anisotropy parameter. We give an overview of a collection of such traveltime approximations found in the literature and compare their quality. Moreover, we propose some new single‐parameter traveltime approximations based on the approximations found in the literature. The main advantage of our approximations is that some of them are rather simple analytic expressions that make them easy to use, while achieving the same quality as the better of the established formulas.  相似文献   

10.
共反射面元(CRS)叠加是目前认为最好的生成零炮检距剖面的方式. 共反射面元 意指地下某一反射点邻近的一个反射弧段,该弧段在时空域内的走时响应称为CRS叠加面,该 叠加面可视为反射弧段上各共反射点(CRP)的时空域内走时响应的组合. 在一般的共反射 点走时关系基础上,引入两种特征波——Normal波和Normal Incidence Point波,就可以在 傍轴近似假设下,将CRP走时关系推广到反射点邻近的各反射点,将这些反射点的CRP走时关系 加以组合就得到了关于该反射点的共反射面元的走时关系. 考察从共反射点(CRP)到共反 射面元(CRS)的过渡,这一过程提供了CRS叠加的应用理论基础.  相似文献   

11.
I introduce a new explicit form of vertical seismic profile (VSP) traveltime approximation for a 2D model with non‐horizontal boundaries and anisotropic layers. The goal of the new approximation is to dramatically decrease the cost of time calculations by reducing the number of calculated rays in a complex multi‐layered anisotropic model for VSP walkaway data with many sources. This traveltime approximation extends the generalized moveout approximation proposed by Fomel and Stovas. The new equation is designed for borehole seismic geometry where the receivers are placed in a well while the sources are on the surface. For this, the time‐offset function is presented as a sum of odd and even functions. Coefficients in this approximation are determined by calculating the traveltime and its first‐ and second‐order derivatives at five specific rays. Once these coefficients are determined, the traveltimes at other rays are calculated by this approximation. Testing this new approximation on a 2D anisotropic model with dipping boundaries shows its very high accuracy for offsets three times the reflector depths. The new approximation can be used for 2D anisotropic models with tilted symmetry axes for practical VSP geometry calculations. The new explicit approximation eliminates the need of massive ray tracing in a complicated velocity model for multi‐source VSP surveys. This method is designed not for NMO correction but for replacing conventional ray tracing for time calculations.  相似文献   

12.
Kirchhoff 3D prestack migration, as part of its execution, usually requires repeated access to a large traveltime table data base. Access to this data base implies either a memory intensive or I/O bounded solution to the storage problem. Proper compression of the traveltime table allows efficient 3D prestack migration without relying on the usually slow access to the computer hard drive. Such compression also allows for faster access to desirable parts of the traveltime table. Compression is applied to the traveltime field for each source location on the surface on a regular grid using 3D Chebyshev polynomial or cosine transforms of the traveltime field represented in the spherical coordinates or the Celerity domain. We obtain practical compression levels up to and exceeding 20 to 1. In fact, because of the smaller size traveltime table, we obtain exceptional traveltime extraction speed during migration that exceeds conventional methods. Additional features of the compression include better interpolation of traveltime tables and more stable estimates of amplitudes from traveltime curvatures. Further compression is achieved using bit encoding, by representing compression parameters values with fewer bits.  相似文献   

13.
2D inversion of refraction traveltime curves using homogeneous functions   总被引:1,自引:0,他引:1  
A method using simple inversion of refraction traveltimes for the determination of 2D velocity and interface structure is presented. The method is applicable to data obtained from engineering seismics and from deep seismic investigations. The advantage of simple inversion, as opposed to ray‐tracing methods, is that it enables direct calculation of a 2D velocity distribution, including information about interfaces, thus eliminating the calculation of seismic rays at every step of the iteration process. The inversion method is based on a local approximation of the real velocity cross‐section by homogeneous functions of two coordinates. Homogeneous functions are very useful for the approximation of real geological media. Homogeneous velocity functions can include straight‐line seismic boundaries. The contour lines of homogeneous functions are arbitrary curves that are similar to one another. The traveltime curves recorded at the surface of media with homogeneous velocity functions are also similar to one another. This is true for both refraction and reflection traveltime curves. For two reverse traveltime curves, non‐linear transformations exist which continuously convert the direct traveltime curve to the reverse one and vice versa. This fact has enabled us to develop an automatic procedure for the identification of waves refracted at different seismic boundaries using reverse traveltime curves. Homogeneous functions of two coordinates can describe media where the velocity depends significantly on two coordinates. However, the rays and the traveltime fields corresponding to these velocity functions can be transformed to those for media where the velocity depends on one coordinate. The 2D inverse kinematic problem, i.e. the computation of an approximate homogeneous velocity function using the data from two reverse traveltime curves of the refracted first arrival, is thus resolved. Since the solution algorithm is stable, in the case of complex shooting geometry, the common‐velocity cross‐section can be constructed by applying a local approximation. This method enables the reconstruction of practically any arbitrary velocity function of two coordinates. The computer program, known as godograf , which is based on this theory, is a universal program for the interpretation of any system of refraction traveltime curves for any refraction method for both shallow and deep seismic studies of crust and mantle. Examples using synthetic data demonstrate the accuracy of the algorithm and its sensitivity to realistic noise levels. Inversions of the refraction traveltimes from the Salair ore deposit, the Moscow region and the Kamchatka volcano seismic profiles illustrate the methodology, practical considerations and capability of seismic imaging with the inversion method.  相似文献   

14.
基于Chebyshev多项式的弯曲射线Kirchhoff叠前时间偏移   总被引:1,自引:0,他引:1       下载免费PDF全文
刘璐  梁光河  符超  李志远 《地球物理学报》2011,54(10):2665-2672
弯曲射线Kirchhoff叠前时间偏移被认为是一种综合了叠前时间偏移效率和叠前深度偏移精度的方法.本文以保精度地减少高阶Kirchhoff叠前时间偏移走时计算量为目标,在分析了Chebyshev正交多项式性质的基础上,建立了Chebyshev多项式约简系数表,进而用模拟退火法对转换系数进行分段优化,从而实现了在大炮检距...  相似文献   

15.
冯波  罗飞  王华忠 《地球物理学报》2019,62(6):2217-2226
传统的波动方程走时核函数(或走时Fréchet导数)多基于互相关时差测量方式及地震波场的一阶Born近似导出,其成立条件非常苛刻.然而,地震波走时与大尺度的速度结构具有良好的线性关系,对于小角度的前向散射波场,Rytov近似优于Born近似.因此,本文基于Rytov近似和互相关时差测量方式,导出了基于Rytov近似的有限频走时敏感度核函数的两种等价形式:频率积分和时间积分表达式.在此基础之上,本文提出了一种隐式矩阵向量乘方法,可以直接计算Hessian矩阵或者核函数与向量的乘积,而无需显式计算和存储核函数及Hessian矩阵.基于隐式矩阵向量乘方法,本文利用共轭梯度法求解法方程实现了一种高效的Gauss-Newton反演算法求解走时层析反问题.与传统的敏感度核函数反演方法相比,本文方法在每次迭代过程中,无需显式计算和存储核函数,极大降低了存储需求.与基于Born近似的伴随状态方法走时层析相比,本文方法具有准二阶的收敛速度,且适用范围更广.数值试验证明了本文方法的有效性.  相似文献   

16.
利用联合反演技术进行反射地震的波速成象   总被引:5,自引:0,他引:5       下载免费PDF全文
本文介绍了根据反射地震数据进行波速成象的一种方法,其基础为多种反演技术的综合。由于要求的波速图象C(x,z)具有间断性,除利用走时数据T(x,t)外,在地层比较水平的情况下,还利用了均方根速度V(x,t)和统计子波W(t)的数据来成象。计算机层析成象过程分为三步:首先重做速度分析,取得与初次反射走时一致的均方根速度数据;然后用反射走时与均方根速度联合反演对应分析道的层速度和界面深度;最后由联合反演结果和反射面走时求波速图象函数的数字化版。文中还给出了波速成象方法在我国西北某沉积盆地上的应用及验证结果。  相似文献   

17.
Converted waves require special data processing as the wave paths are asymmetrical. The CMP concept is not applicable for converted PS waves, instead a sorting algorithm for a common conversion point (CCP) has to be applied. The coordinates of the conversion points in a single homogeneous layer can be calculated as a function of the offset, the reflector depth and the velocity ratio vP/ vs. For multilayered media, an approximation for the coordinates of the conversion points can be made. Numerical tests show that the traveltime of PS reflections can be approximated with sufficient accuracy for a certain offset range by a two-term series truncation. Therefore NMO corrections can be calculated by standard routines which use the hyperbolic approximation of the reflection traveltime curves. The CCP-stacking technique has been applied to field data which have been generated by three vertical vibrators. The in-line horizontal components have been recorded. The static corrections have been estimated from additional P- and SH-wave measurements for the source and geophone locations, respectively. The data quality has been improved by processes such as spectral balancing. A comparison with the stacked results of the corresponding P- and SH-wavefield surveys shows a good coherency of structural features in P-, SH- and PS-time sections.  相似文献   

18.
冯波  王华忠  冯伟 《地球物理学报》2019,62(4):1471-1479
地震波的运动学信息(走时、斜率等)通常用于宏观速度建模.针对走时反演方法,一个基本问题是走时拾取或反射时差的估计.对于成像域反演方法,可以通过成像道集的剩余深度差近似计算反射波时差.在数据域中,反射地震观测数据是有限频带信号,如果不能准确地确定子波的起跳时间,难以精确地确定反射波的到达时间.另一方面,如果缺乏关于模型的先验信息,则很难精确测量自地下同一个反射界面的观测数据同相轴和模拟数据同相轴之间的时差.针对走时定义及时差测量问题,首先从叠前地震数据的稀疏表达出发,利用特征波场分解方法,提取反射子波并估计局部平面波的入射和出射射线参数.进一步,为了实现自动和稳定的走时拾取,用震相的包络极值对应的时间定义反射波的到达时,实现了立体数据中间的自动生成.理论上讲,利用包络极值定义的走时大于真实的反射波走时,除非观测信号具有无限带宽(即delta脉冲).然而,走时反演的目的是估计中-大尺度的背景速度结构,因此走时误差导致的速度误差仍然在可以接受的误差范围内.利用局部化传播算子及特征波聚焦成像条件将特征波数据直接投影到地下虚拟反射点,提出了一种新的反射时差估计方法.既避免了周期跳跃现象以及串层等可能性,又消除了振幅因素对时差测量的影响.最后,在上述工作基础之上,提出了一种基于特征波场分解的新型全自动反射走时反演方法(CWRTI).通过对泛函梯度的线性化近似,并用全变差正则化方法提取梯度的低波数部分,实现了背景速度迭代反演.在理论上,无需长偏移距观测数据或低频信息、对初始模型依赖性低且计算效率高,可以为后续的全波形反演提供可靠的初始速度模型.理论和实际资料的测试结果证明了本文方法的有效性.  相似文献   

19.
三维复杂山地条件下的各种地震波型的走时计算技术,可以直接用于复杂山地区域地震波运动学特性的分析、地震数据采集观测系统的设计以及直接基于三维复杂地表的地震数据处理技术的研发.为了在三维复杂地表条件下准确、灵活且稳定地计算各种地震波型的走时,提出一种多级次群推进迎风混合法.该算法利用不等距迎风差分法简洁稳定地处理三维复杂地表及附近的局部走时计算问题,利用计算精度不错的迎风双线性插值法处理绝大部分均匀正方体网格中的局部走时计算问题,利用群推进法模拟三维复杂地表条件下地震波前的扩展问题,利用多级次算法处理各种类型的地震波的走时计算问题.算法分析和计算实例表明:新方法具有很好的计算精度与效率,且能灵活稳定地处理三维复杂地表复杂介质条件下的多波型走时计算问题.  相似文献   

20.
地震射线辛几何算法初探   总被引:32,自引:10,他引:22       下载免费PDF全文
走时计算已广泛用于地震建模、成像及速度分析等诸方面.基于地震波场的Hamilton力学性质,本文探索应用适于Hamilton力学的计算方法──辛几何算法对地震射线 进行走时及路径的计算.利用辛几何算法和属于耗散算法的四阶 Runge-Kutta算法进行射线 路径和走时的计算对比,结果表明这两类算法数值精度相当,但辛几何算法的速度却快了3 倍.本文还利用二阶Euler型辛差分格式对Marmousi模型进行了射线追踪计算,结果显示所 得射线具有良好的光滑性和较强的阴影区穿透能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号