首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents an analytical solution for cavity expansion in thermoplastic soil considering non‐isothermal conditions. The constitutive relationship of thermoplasticity is described by Laloui's advanced and unified constitutive model for environmental geomechanical thermal effect (ACMEG‐T), which is based on multi‐mechanism plasticity and bounding surface theory. The problem is formulated by incorporating ACMEG‐T into the theoretical framework of cavity expansion, yielding a series of partial differential equations (PDEs). Subsequently, the PDEs are transformed into a system of first‐order ordinary differential equations (ODEs) using a similarity solution technique. Solutions to the response parameters of cavity expansion (stress, excess pore pressure, and displacement) can then be obtained by solving the ODEs numerically using mathematical software. The results suggest that soil temperature has a significant influence on the pressure‐expansion relationships and distributions of stress and excess pore pressure around the cavity wall. The proposed solution quantifies the influence of temperature on cavity expansion for the first time and provides a theoretical framework for predicting thermoplastic soil behavior around the cavity wall. The solution found in this paper can be used as a theoretical tool that can potentially be employed in geotechnical engineering problems, such as thermal cone penetration tests, and nuclear waste disposal problems.  相似文献   

2.
This paper presents a general semi-analytical solution for undrained cylindrical and spherical cavity expansion in Modified Cam Clay (MCC) and subsequent consolidation. The undrained cylindrical and spherical cavity expansion response in MCC model is obtained through the similarity solution technique. Then, the subsequent consolidation process around the cavity is governed by the classical partial differential equation for consolidation. Finite Difference Method (FDM) is selected for solving the consolidation equation numerically. The proposed semi-analytical solution is validated by comparing the prediction of the dissipations of the pore pressure with Randolph’s closed-form solution for elastic-perfectly plastic soil. Parametric study shows that G0/p0′, R and M have significant influence on the cavity wall excess pore pressure dissipation curve, while it is not sensitive to the value of ν′. It is also found that the negative pore pressure generates around the expanded cylindrical and spherical cavity wall during the consolidation process when R > 5 for typical Boston blue clay. The developed solution has potential applications in geotechnical problems, such as the pile foundation, in-situ test, tunnel construction, compaction grouting, and so forth.  相似文献   

3.
4.
晁明颂  高盟  张继严  陈青生 《岩土力学》2016,37(7):1986-1993
以空间准滑动面(SMP)准则为基础,推导了扩底桩扩孔压力的理论解。从能量耗散的角度分析球孔扩张的全过程,利用应力不变量推导了符合球孔扩张的屈服准则;化简微分方程得到了弹塑性区应力表达式,进而求出位移、应变表达式;分别利用体积守恒和能量守恒性推导出扩孔压力的表达式。该法考虑了塑性区弹性变形,并得到了扩孔压力p、塑性区半径R与扩孔半径a的关系。算例分析表明,该方法计算的扩孔压力与现场试验得出的结果较好地吻合,塑性区半径和扩孔压力均随扩孔半径的增加而增大,但增幅逐渐减小而趋于稳定值,剪胀角对塑性区半径和扩孔压力影响显著,随着剪胀角的增加,塑性区半径和扩孔压力明显增加。  相似文献   

5.
We present a numerical method for solving a class of systems of partial differential equations (PDEs) that arises in modeling environmental processes undergoing advection and biogeochemical reactions. The salient feature of these PDEs is that all partial derivatives appear in linear expressions. As a result, the system can be viewed as a set of ordinary differential equations (ODEs), albeit each one along a different characteristic. The method then consists of alternating between equations and integrating each one step-wise along its own characteristic, thus creating a customized grid on which solutions are computed. Since the solutions of such PDEs are generally smoother along their characteristics, the method offers the potential of using larger time steps while maintaining accuracy and reducing numerical dispersion. The advantages in efficiency and accuracy of the proposed method are demonstrated in two illustrative examples that simulate depth-resolved reactive transport and soil carbon cycling.  相似文献   

6.
考虑混凝土孔隙压实效应的球形空腔膨胀理论   总被引:1,自引:0,他引:1  
李志康  黄风雷 《岩土力学》2010,31(5):1481-1485
根据混凝土材料动态响应的特点,将常规弹速范围内混凝土球形空腔的动态响应区域划分为弹性区、开裂区和孔隙压实区,孔隙压实区的混凝土材料采用两段式线性状态方程和考虑拉伸破坏的Mohr-Coulomb屈服准则描述。运用相似变换方法推导了球形空腔动态膨胀响应的理论表达式,采用Runge-Kutta-Felhberg数值方法给出了球形空腔动态响应的数值解。结果表明,运用该理论建立的侵彻模型与试验结果具有良好的一致性。  相似文献   

7.
This paper presents a novel, exact, semi-analytical solution for the quasi-static undrained expansion of a cylindrical cavity in soft soils with fabric anisotropy. This is the first theoretical solution of the undrained expansion of a cylindrical cavity under plane strain conditions for soft soils with anisotropic behaviour of plastic nature. The solution is rigorously developed in detail, introducing a new stress invariant to deal with the soil fabric. The semi-analytical solution requires numerical evaluation of a system of six first-order ordinary differential equations. The results agree with finite element analyses and show the influence of anisotropic plastic behaviour. The effective stresses at critical state are constant, and they may be analytically related to the undrained shear strength. The initial vertical cross-anisotropy caused by soil deposition changes towards a radial cross-anisotropy after cavity expansion. The analysis of the stress paths shows that proper modelling of anisotropic plastic behaviour involves modelling not only the initial fabric anisotropy but also its evolution with plastic straining.  相似文献   

8.
A cavity expansion–based solution is proposed in this paper for the interpretation of CPTu data under a partially drained condition. Variations of the normalized cone tip resistance, cone factor, and undrained-drained resistance ratio are examined with different initial specific volume and overconsolidation ratio, based on the exact solutions of both undrained and drained cavity expansion in CASM, which is a unified state parameter model for clay and sand. A drainage index is proposed to represent the partially drained condition, and the critical state after expansion and stress paths of cavity expansion are therefore predicted by estimating a virtual plastic region and assuming a drainage-index–based mapping technique. The stress paths and distributions of stresses and specific volume are investigated for different values of drainage index, which are also related to the penetration velocity with comparisons of experimental data and numerical results. The subsequent consolidation after penetration is thus predicted with the assumption of constant deviatoric stress during dissipation of the excess pore pressure. Both spherical and cylindrical consolidations are compared for dissipation around the cone tip and the probe shaft, respectively. The effects of overconsolidation ratio on the stress paths and the distributions of excess pore pressure and specific volume are then thoroughly investigated. The proposed solution and the findings would contribute to the interpretation of CPTu tests under a random drained condition, as well as the analysis of pile installation and the subsequent consolidation.  相似文献   

9.
Theoretical formulations to the problem of expansion of spherical and cylindrical cavities in a layered elastic system are presented. The medium surrounding the cavity is assumed to consist of several layers, and each is idealized as a linear elastic solid. The solutions are expressed in matrix forms and can be obtained using a programmable calculator. The developed solutions are of some importance in geomechanics. The spherical cavity solution can be used to compute the settlement of single axially loaded piles. The predicted settlement using the analysis outlined herein agrees reasonably well with one case of field measurements. The cylindrical cavity solution can be used to manifest the effect of disturbed mass at the cavity wall on the stress–strain and deformation characteristics of the intact mass.  相似文献   

10.
In this article, an approach for the efficient numerical solution of multi-species reactive transport problems in porous media is described. The objective of this approach is to reformulate the given system of partial and ordinary differential equations (PDEs, ODEs) and algebraic equations (AEs), describing local equilibrium, in such a way that the couplings and nonlinearities are concentrated in a rather small number of equations, leading to the decoupling of some linear partial differential equations from the nonlinear system. Thus, the system is handled in the spirit of a global implicit approach (one step method) avoiding operator splitting techniques, solved by Newton’s method as the basic algorithmic ingredient. The reduction of the problem size helps to limit the large computational costs of numerical simulations of such problems. If the model contains equilibrium precipitation-dissolution reactions of minerals, then these are considered as complementarity conditions and rewritten as semismooth equations, and the whole nonlinear system is solved by the semismooth Newton method.  相似文献   

11.
栾茂田  李波 《岩土力学》2006,27(12):2105-2110
采用应力跌落的简化应力-应变模型考虑土的应变软化特性,同时采用简化的体积应变?v与大主应变?1及大主应变?1与小主应变?3之间的相互关系反映土的剪胀特性,根据空间准滑动面(SMP)理论和平面应变轴对称问题的柱形孔扩张基本方程,推导并给出一般黏性土中柱形孔扩张问题的应力场、应变场、位移场、塑性区半径和孔扩张压力。通过算例分析,探讨了土的剪胀因素、软化特性对孔扩张问题的影响程度。为了反映中主应力的影响,将本文解与基于Mohr-Coulomb破坏准则的解答进行了比较。计算结果表明,土的剪胀性和软化特性及中主应力对孔扩张问题的影响是显著的,基于Mohr-Coulomb破坏准则的孔扩张解答往往偏于保守。  相似文献   

12.
This paper presents analytical elastic-plastic solutions for static stress loading analysis and quasi-static expansion analysis of a cylindrical cavity in Tresca materials, considering biaxial far-field stresses and shear stresses along the inner cavity wall. The two-dimensional static stress solution is obtained by assuming that the plastic zone is statically determinate and using the complex variable theory in the elastic analysis. A rigorous conformal mapping function is constructed, which predicts that the elastic-plastic boundary is in an elliptic shape under biaxial in situ stresses, and the range of the plastic zone extends with increasing internal shear stresses. The major axis of the elliptical elastic-plastic boundary coincides with the direction of the maximum far-field compression stress. Furthermore, considering the internal shear stresses, an analytical large-strain displacement solution is derived for continuous cavity expansion analysis in a hydrostatic initial stress filed. Based on the derived analytical stress and displacement solutions, the influence of the internal shear stresses on the quasi-static cavity expansion process is studied. It is shown that additional shear stresses could reduce the required normal expansion pressure to a certain degree, which partly explains the great reduction of the axial soil resistance due to rotations in rotating cone penetration tests. In addition, through additionally considering the potential influences of biaxial in situ stresses and shear stresses generated around the borehole during drillings, an improved cavity expansion approach for estimating the maximum allowable mud pressure of horizontal directional drillings (HDDs) in undrained clays is proposed and validated.  相似文献   

13.
传统的栅格离散方式不能很好反映流域水文过程的边界特征,且难以实现流域水文过程的多尺度模拟.采用有限体积法构建了基于不规则三角形网格的物理性水文模型,将物理性描述的偏微分方程组在控制体积内积分得到空间半离散的常微分方程组,保证数值求解中的水量平衡,并可与概念性描述部分水文过程(如截留、填洼等)的常微分方程组更好地耦合;建立了数值求解方案,采用Triangle对计算区域进行离散,并在沁河上游流域进行了验证,结果表明模型具有较高的模拟精度和良好的应用前景.  相似文献   

14.
按照波函数展开法和镜像方法,对直角域中半圆形凸起和圆形孔洞对SH波的散射进行了分析,得到其稳态解。对含孔洞和凸起的直角域做分区,等效为一个含孔洞与凹陷的直角域和一个圆域的契合,其在分界面上满足位移和应力的连续性条件,即契合条件,分别构造两个区域内的位移波函数,按照孔洞边界柱面上的应力自由和契合条件定解波函数展开式的系数。按Fourier级数展开法,得到定解条件的线性代数方程组,截断求解,进而得到问题的解析解。数值算例给出圆形孔洞边沿动应力和地表位移幅值的分布情况,得到直角域自由边界、凸起、孔洞对散射和地震动的影响。  相似文献   

15.
周航  吴晗  曾少华 《岩土力学》2023,(3):757-770
扩孔理论作为一种简单适用的理论工具,目前已经被广泛用于隧道、土工原位测试、桩基和锚定板承载力设计等岩土工程问题的研究中。现有扩孔理论无法考虑土体小半径扩孔的尺寸效应问题,以砂土中的圆柱孔和球孔扩张为研究对象,基于应变梯度塑性理论,引入能够考虑土体尺寸效应的力学参数——土体特征长度l并给出解释,同时考虑土体大变形特性,推导出能够考虑土体微观结构尺寸效应的扩孔问题闭合解。通过将土体归一化特征长度l/a0(a0为初始圆孔半径)退化为0(即不考虑尺寸效应),将该解退化为经典不考虑尺寸效应的扩孔解答,验证了本文理论解答的正确性。同时开展参数分析,详细探讨了土体归一化特征长度l/a0、摩擦系数μ、剪胀系数β、形状系数k对压力扩张关系、孔周应力分布、孔周应变梯度、极限扩孔应力的影响规律。最后将提出的理论解答应用到微型圆锥贯入试验(micro cone penetration test,简称MCPT)等实际问题中,提出了MCPT贯入阻力的计算公式,通过跟既有试验结果对比,验证了本文理论的适用性。  相似文献   

16.
以现有半无限土体中球孔扩张挤土位移的解答为基础,分别对水平地表和非轴对称斜边两个位移边界进行应力修正,运用坐标转换法和叠加法的原理,改进现有的分析方法,得到较为简化的非轴对称位移边界下扩孔问题的解答,并对非轴对称斜边倾角以及球孔离斜边距离等因素对挤土位移的影响进行了分析。结果表明:倾斜边界条件的存在对球孔两侧的挤土位移有明显影响,且随着非轴对称边界倾角的增大,靠近倾斜边界侧的挤土位移也随之增大;球孔距自由边界的距离越大,自由边界对挤土位移的影响也越小。该解答对非轴对称边界条件下的静压沉桩以及相关扩孔问题的设计和施工具有一定的指导意义和实用价值。  相似文献   

17.
The instantaneous response of saturated low permeability grounds to tunnel excavation is important for deformations and stability close to the tunnel face. It is characterized by zero volume change in combination with the development of excess pore pressures. In tunnelling through poor quality ground under great depth of cover and high in situ pore pressure, heavily squeezing conditions (characterized by very large convergences) may occur soon after excavation. This paper presents exact finite strain analytical solutions for the undrained ground response around cylindrical and spherical openings that are unloaded from uniform and isotropic initial stress states, on the basis of the Modified Cam Clay (MCC) model and the Mohr–Coulomb (MC) model. The solution for a Drucker–Prager material is also given as it requires only a very small modification to the MC solution. The so‐called ground response curve, that is, the relationship between the support pressure and the cavity wall displacement, is derived in closed form for the MC model. The solution for the MCC problem is semi‐analytical in that it uses the trapezium rule for the computation of a definite integral. The influence of the significant parameters of the problem on the predicted deformation behaviour is shown by means of dimensionless charts. Finally, the practical usefulness of the solutions presented is illustrated by applying them to the breccia zones of the planned Gibraltar Strait tunnel – an extreme case of weak, low permeability ground under high pore pressure. The solutions can serve as a trustworthy benchmark for numerical procedures that incorporate material and geometric nonlinearities. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This paper deals with the unloading problem of a spherical or circular opening excavated in elastic‐perfectly plastic media with a nonassociated Mohr–Coulomb yield criterion. A large strain similarity solution, using incremental velocity approach, is presented by replacing partial differential equations from stress equilibrium, constitutive law, consistency condition, and displacement equation with first‐order ordinary differential equations. The classical Runge–Kutta method is used to solve the first‐order ordinary differential equations. Comparisons among small and large strain solutions are made using some data sets of soil and rock. The results show that the displacements by large strain similarity solution are smaller than those by exact small strain solution and somewhat larger than those by large strain solution using total strain approach. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
We develop an ELLAM-MFEM approximation to the strongly coupled systems of time-dependent nonlinear partial differential equations (PDEs) and constraining equations, which describe fully miscible, highly compressible, multicomponent flows through heterogeneous and compressible porous media with singular sources and sinks. An Eulerian–Lagrangian localized adjoint method (ELLAM) is presented to solve the transport equations for concentrations. A mixed finite element method (MFEM) is used to solve the pressure PDE for the pressure and Darcy velocity simultaneously, which generates accurate fluid velocities and minimizes the numerical difficulties occurring in standard methods caused by differentiation of the pressure and then multiplication by rough coefficients. The ELLAM-MFEM solution technique symmetrizes and stabilizes the governing transport PDEs and greatly reduces nonphysical oscillation and/or excessive numerical dispersion present in many large-scale simulators. Computational experiments show that the ELLAM-MFEM solution technique can generate stable and physically reasonable numerical simulations even if coarse spatial grids and very large time steps are used.  相似文献   

20.
饶平平  李镜培  刘颖 《岩土力学》2011,32(9):2681-2687
针对斜边非轴对称位移边界条件下的沉桩球孔扩张,将桩体贯入模拟为球孔扩张过程,在线弹性土体模型的基础上,通过对地表边界以及倾斜边界上应力修正的镜像法,改进现有直边非轴对称球孔扩张理论,得到了斜边非轴对称位移边界下的球孔扩张挤土位移解答,并分析边界倾角及球孔边界距离等因素的挤土位移规律。研究结果表明,边界倾角越小,倾斜边界对球孔挤土位移的影响也越小;球孔边界距离越大,其对挤土位移的影响反而越小。文中解答可为类似斜边工程挤土位移的控制及参数设置提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号