首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flocculation of colloidal size fraction for Cu, Zn, Pb, Ni and Mn was investigated on a series of mixtures with water salinities ranging from 1.5 to 9.5‰ during mixing of Haraz River with the Caspian Sea water. The flocculation trend of Zn (85.5%) > Mn (55.2%) > Cu (39.6%) > Pb (33.7%) > Ni (11.3%) indicates that Cu, Zn, Pb and Mn have non-conservative behavior and Ni has relatively conservative behavior during estuarine mixing. Highest flocculation of heavy metals occurs between salinities of 1.5 and 4.5‰. Statistical analysis indicates that the flocculation of Cu, Zn and Ni is governed by pH and total nitrogen.  相似文献   

2.
The flocculation process of metals can play an effective and important role in self-purification of metals during the mixing of freshwater with seawater in estuary. Such processes are of highly ecological and biological importance. The present study deals with the effect of pH and salinity on the flocculation process of dissolved Cu, Mn, Ni, Zn and Pb on a series of mixtures with salinities ranging from 0.5 to 2.5 ‰ with various pHs values (pH 7, 7.5 and 8) during the mixing of the Aras River water with the Caspian Sea water. The flocculation trend of Pb (100 %) > Ni (62.5 %) > Zn (30.43 %) > Mn (25 %) > Cu (18.18 %) at different salinity regimes (0.5–2.5 ‰) at pH 7, indicates well that Pb, Ni, Zn and Mn have non-conservative behavior and Cu has relatively conservative behavior. At various salinity ranges (0.5–2.5 ‰) and pH 7.5, the flocculation trend of Pb (100 %) > Ni (62.5 %) > Mn (37.5 %) > Cu (24.24 %) > Zn (17.39 %) indicates that Pb, Ni, Mn and Cu have non-conservative behavior and Zn has relatively conservative behavior. Also, the flocculation trend of Pb (100 %) > Zn (78.26 %) > Ni (62.5 %) > Mn (37.5 %) > Cu (15.15 %) at different salinities (0.5–2.5 ‰) and pH 8, indicates that Pb, Zn, Ni and Mn have non-conservative behavior and Cu has relatively conservative behavior. Cluster analysis indicates Mn and Ni are mainly governed by salinity. According to the mean annual discharge of the Aras River (5,323 × 106 m3/year), the annual discharge of dissolved Cu, Mn, Ni, Zn and Pb into the Caspian Sea would reduce from 175.66, 85.17, 85.17, 1,224.29 and 53.23 to 149.04, 53.23, 31.94, 266.15 and 0.00 ton/year, respectively.  相似文献   

3.
Role of metal species in flocculation rate during estuarine mixing   总被引:4,自引:4,他引:0  
Flocculation can be considered as an effective mechanism in self-purification of metals during estuarine mixing. In the present investigation, flocculation of metals during mixing of Minab River water with the Strait of Hormuz (The Persian Gulf) water is studied for the first time. Flocculation behavior of metals (except for Pb) is governed by dissolved organic carbon. The source of dissolved organic carbon is terrigenous in the estuarine waters of study area. The general pattern of flocculation of studied metals is manganese (180 μg/L) > zinc (88 μg/L)> nickle (73 μg/L)> copper (30 μg/L)> lead (19 μg/L). The results of present study show that metal species are a very important factor in overall flocculation rate. It is found that solids and oxides have the highest and lowest flocculation levels, respectively. Eh-pH diagram indicated that lead is present as lead oxide in Minab River water and the least flocculation rate is attributed to this element. The results also showed that flocculation rate of metal species could be as solids > free ions ≈ hydroxides > oxides. The amount of metal flocculation is about 30.5, 6.6, 25.3, 10.4 and 62.5 ton/y for zinc, Pb, Ni, Cu and Mn, respectively.  相似文献   

4.
Seasonal dynamics of dissolved trace metals (Cd, Co, Cu, Ni and Zn) and its relationship with redox conditions and phytoplankton activity has been studied in the Scheldt estuary, during nine surveys carried out between May 1995 and June 1996. Seasonal profiles of dissolved trace metals and general estuarine water quality variables are compared, to identify the geochemical and biological processes responsible for the observed trace metal distributions. In keeping with previous studies, the behavior of dissolved Cd, Cu, and Zn can be explained by the presence of anoxic headwaters and the restoration of dissolved oxygen within the estuary. In the river water, the concentration of dissolved Cu and Zn is generally low, except during winter when dissolved oxygen is present in the water column, although highly undersaturated. Mobilization of particle-bound Cd, Cu, and Zn occurs as dissolved oxygen increases with increasing salinity, possibly because of oxidation of metal sulfides in the suspended matter. The geochemistry of dissolved Co is also related to the redox conditions but in an opposite way. Dissolved Co is mobilized in the anoxic upper estuary, along with the reduction in Mn (hydro) oxides, and subsequently coprecipitated with Mn (hydro) oxides when dissolved oxygen is restored. Conservative behavior is observed for dissolved Ni within the estuary. In the middle estuary, Cd and Zn are readsorbed during phytoplankton blooms, as suggested by the low concentrations of these metals during the most productive periods in spring and early summer. The removal may be caused by direct biological uptake and/or increased adsorption to suspended matter because of the pH increase associated with algae blooms. In the lower estuary, chemical gradients are much weaker and dilution with seawater is the dominant process.  相似文献   

5.
《Applied Geochemistry》1998,13(3):359-368
Studies on the speciation (particulate, colloidal, anionic and cationic forms) of trace metals (Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, Zn) in the water column and in pore waters of the Gotland Deep following the 1993/94 salt-water inflows showed dramatic changes in the total “dissolved” metal concentrations and in the ratios between different metal species in the freshly re-oxygenated waters below 125 m. Changes in concentrations were greatest for those metals for which the solubility differs with the redox state (Fe, Mn, Co) but were also noted for those metals which form insoluble sulphides (Cd, Pb, Cu, Zn) and/or stable complexes with natural ligands (Cu). Pore water data from segmented surface muds (0–200 mm) indicated that significant redox and related metal speciation changes took place in the surface sediments only a few weeks after the inflow of the oxygenated sea water into the Gotland Deep.  相似文献   

6.
Distribution of colloidal trace metals in the San Francisco Bay estuary   总被引:11,自引:0,他引:11  
The size distribution of trace metals (Al, Ag, Cd, Cu, Fe, Mn, Ni, Sr, and Zn) was examined in surface waters of the San Francisco Bay estuary. Water samples were collected in January 1994 across the whole salinity gradient and fractionated into total dissolved (<0.2 μm colloidal (10 KDa–0.2 μm) and < 10 kDa molecular weight phases. In the low salinity region of the estuary, concentrations of colloidal A1, Ag, and Fe accounted for ≥84% of the total dissolved fraction, and colloidal Cu and Mn accounted for 16–20% of the total. At high salinities, while colloidal Fe was still relatively high (40% of the dissolved), very little colloidal Al, Mn, and Cu (<10%) and no colloidal Ag was detectable. Colloidal Zn accounted for <3% of the total dissolved along the estuary, and colloidal Ni was only detectable (<2%) at the river endmember. All of the total dissolved Cd and Sr throughout the estuary consisted of relatively low molecular weight (<10 kDa) species. The relative affinity of metals for humic substances and their reactivity with particle surfaces appear to determine the amounts of metal associated with colloids. The mixing behavior of metals along the estuary appears to be determined by the relative contribution of the colloidal phase to the total dissolved pool. Metals with a small or undetectable colloidal fraction showed a nonconservative excess (Cd, Cu, Ni, and Mn) or conservative mixing (Sr) in the total dissolved fraction, relative to ideal dilution of river water and seawater along the estuary.

The salt-induced coagulation of colloidal A1, Fe, and Cu is indicated by their highly nonconservative removal along the salinity gradient. However, colloidal metals with low affinity for humic substances (Mn and Zn) showed conservative mixing behavior, indicating that some riverine colloids are not effectively aggregated during their transport to the sea. While colloidal metal concentrations correlated with dissolved organic carbon, they also covaried with colloidal Al, suggesting that colloids are a mixture of organic and inorganic components. Furthermore, the similarity between the colloidal metal:A1 ratios with the crustal ratios indicated that colloids could be the product of weathering processes or particle resuspension. Distribution coefficients for colloidal particles (Kc) and for large, filter-retained particles (Kd) were of the same magnitude, suggesting similar binding strength for the two types of particles. Also, the dependence of the distribution coefficients on the amount of suspended particulate matter (the so-called particle concentration effect) was still evident for the colloids-corrected distribution coefficient (Kp+c) and for metals (e.g., Ni) without affinity for colloidal particles.  相似文献   


7.
 Geochemical characteristics of six trace metals – Cu, Co, Ni, Zn, Cd and Cr – in the bulk sediment and sand, silt and clay fractions of a tropical estuary on the southwest coast of India have been studied and discussed. In bulk sediment, the trace metal concentration is controlled mainly by the textural composition of the sample. Mud, sandy mud and sandy silt register higher concentrations of trace metals than that in sand-dominant sediments. The granulometric partitioning studies also re-affirmed the role of particle size in enriching the trace metals. The silt and clay fractions exhibit 7–8 times the enrichment of Cu and Cd compared to that in sand. The enrichment factors of Zn, Cr, Ni and Co in the silt and clay fractions, compared to that in sand, are 5–6, 4–5, 2–5 and 2–3 times, respectively. The trace metals in the sand fraction, particularly Ni and Cr, exhibit strong positive correlation with the heavy mineral content of the samples. It clearly indicates a heavy mineral pathway to the trace metals in the sand fraction. Cu and Co in silt and clay fractions exhibit a marked decrease towards the high saline zones of the estuary. This is attributed to the desorption of Cu and Co from particulate phases during estuarine mixing. Contrary to Cu and Co, the content of Zn in the clay fraction shows a marginal increase towards the estuarine mouth. This could be explained by the influx of Zn-rich contaminant discharges from Zn-smelting industries located slightly north of the estuarine mouth. The released Zn will effectively be held in the lattices of the clay mineral montmorillonite, which also exhibits a marked increase towards the estuarine mouth. The anomalously high values of Cd in some places of the Central Vembanad estuary is attributed to the local pollution. Received: 10 July 1995 · Accepted: 3 June 1996  相似文献   

8.
The distributions of particulate elements (Al, P, Mn, Fe, Co, Cu, Zn, Cd, and Pb), dissolved trace metals (Mn, Fe, Co, Cu, Zn, and Cd), and dissolved nutrients (nitrate, phosphate, and silicic acid) were investigated in the Gulf of the Farallones, a region of high productivity that is driven by the dynamic mixing of the San Francisco Bay plume, upwelled waters, and California coastal surface waters. Particulate metals were separated into >10 and 0.4-10 μm size-fractions and further fractionated into leachable (operationally defined with a 25% acetic acid leach) and refractory particulate concentrations. Dissolved metals (< 0.4 μm pore-size filtrate) were separated into colloidal (0.03-0.4 μm) and soluble (<0.03 μm) fractions. The percent leachable particulate fractions ranged from 2% to 99% of the total particulate concentration for these metals with Mn and Cd being predominantly leachable and Fe and Al being predominantly refractory. The leachable particulate Pb concentration was associated primarily with suspended sediments from San Francisco Bay and was a tracer of the plume in coastal waters. The particulate trace metal data suggest that the leachable fraction was an available source of trace metal micronutrients to the primary productivity in coastal waters. The dissolved trace metals in the San Francisco Bay plume and freshly upwelled surface waters were similar in concentration, with the exception of Cu and Co, which exhibited relatively high concentrations in plume waters and served as tracers of this water mass. The dissolved data and estimates of the plume dynamics suggest that the impact of anthropogenic inputs of nutrients and trace metals in the San Francisco Bay plume contributes substantially to the concentrations found in the Gulf of the Farallones (10-50% of estimated upwelled flux values), but does not greatly disrupt the natural stoichiometric balance of trace metal and nutrient elements within coastal waters given the similarity in concentrations to sources in upwelled water. In all, the data from this study demonstrate that the flux of dissolved nutrients and bioactive trace metals from the San Francisco Bay plume contribute to the high and relatively constant phytoplankton biomass observed in the Gulf of the Farallones.  相似文献   

9.
The uptake and release of trace metals (Cu, Ni, Zn, Cd, and Co) in estuaries are studied using river and sea end-member waters and suspended particulate matter (SPM) collected from the Changjiang Estuary, China. The kinetics of adsorption and desorption were studied in terms of environmental factors (pH, SPM loading, and salinity) and metal concentrations. The uptake of the metals studied onto SPM occurred mostly within 10 h and reached an asymptotic value within 40 h in the Changjiang Estuary. As low pH river water flows into the high pH seawater and the water become more alkaline as it approaches to the seaside of estuary, metals adsorb more on SPM in higher pH water, thus, particulate phase transport of metal become increasingly important in the seaward side of the estuary. The percentage of adsorption recovery and the distribution coefficients for trace metals remained to be relatively invariable and a significant reduction only occurred in very high concentrations of metals (>0.1 mg L−1). The general effect of salinity on metal behavior was to decrease the degree of adsorption of Cu, Zn, Cd, Co, and Ni onto SPM but to increase their adsorption equilibrium pH. The adsorption–desorption kinetics of trace metals were further investigated using Kurbatov adsorption model. The model appears to be most useful for the metals showing the conservative behavior during mixing of river and seawater in the estuary. Our work demonstrates that dissolved concentration of trace metals in estuary can be modeled based on the metal concentration in SPM, pH and salinity using a Kurbatov adsorption model assuming the natural SPM as a simple surfaced molecule.  相似文献   

10.
Transport and sediment–water partitioning of trace metals (Cr, Co, Fe, Pb, Cu, Ni, Zn, Cd) in acid mine drainage were studied in two creeks in the Kwangyang Au–Ag mine area, southern part of Korea. Chemical analysis of stream waters and the weak acid (0.1 N HCl) extraction, strong acid (HF–HNO3–HClO4) extraction, and sequential extraction of stream sediments were performed. Heavy metal pollution of sediments was higher in Chonam-ri creek than in Sagok-ri creek, because there is a larger source of base metal sulfides in the ores and waste dump upstream of Chonam-ri creek. The sediment–water distribution coefficients (K d) for metals in both creeks were dependent on the water pH and decreased in the order Pb ≈ Al > Cu > Mn > Zn > Co > Ni ≈ Cd. K d values for Al, Cu and Zn were very sensitive to changes in pH. The results of sequential extraction indicated that among non-residual fractions, Fe–Mn oxides are most important for retaining trace metals in the sediments. Therefore, the precipitation of Fe(–Mn) oxides due to pH increase in downstream sites plays an important role in regulating the concentrations of dissolved trace metals in both creeks. For Al, Co, Cu, Mn, Pb and Zn, the metal concentrations determined by 0.1 N HCl extraction (Korean Standard Method for Soil Pollution) were almost identical to the cumulative concentrations determined for the first three weakly-bound fractions (exchangeable + bound to carbonates + bound to Fe–Mn oxides) in the sequential extraction procedure. This suggests that 0.1 N HCl extraction can be effectively used to assess the environmentally available and/or bioavailable forms of trace metals in natural stream sediments.  相似文献   

11.
River water (Water of Luce, Scotland) is used in laboratory experiments designed to investigate physical and chemical properties of Fe. Mn, Cu, Ni, Co, Cd and humic acids in riverine and estuarine systems. Using NaCl, MgCl2 and CaCl2 as coagulating agents, coagulation of dissolved (0.4 μm filtered) Fe, Cu, Ni, Cd and humic acids increases in a similar matter with increasing salt molarily: Ca2+ is the most dominant coagulating agent. Removal by coagulation with Ca2+ at seawater concentrations ranges from large (Fe-80%. HA-60%, Cu-40%) to small (Ni, Cd-15%) to essentially nothing (Cd, Mn-3%). Destabilization of colloids is the indicated mechanism. Solubility-pH measurements show that between a pH of 3 and 9, Fe, Cu, Ni, Mn, Co and Cd are being held in the dissolved phase by naturally occurring organic substances. Between pH of 2.2 and 1.2 a large proportion of dissolved Fe, Cu. Ni and Cd (72, 35,44 and 36% respectively) is precipitated along with the humic acids; in contrast, Mn and Co show little precipitation (3%). Adsorption-pH experiments, using unfiltered river water spiked with Cu, indicate that adsorption of Cu onto suspended particles is inhibited to a large extent by the formation of dissolved Cu-organic complexes.The experimental results demonstrate that solubilities and adsorption properties of certain trace metals in freshwaters can be opposite to those observed with artificial solutions or predicted with chemical models. Interaction with organic substances is a critical factor.  相似文献   

12.
《Applied Geochemistry》1997,12(4):447-464
The controls on metal concentrations in a plume of acidic (pH 3.29–5.55) groundwater in the Moon Creek watershed in Idaho, U.S.A., were investigated with the use of property-property plots. A plot of Ca vs S demonstrated that a plume of contaminated groundwater was being diluted by infiltration of rain and creek water at shallow depths and by ambient groundwater near bedrock. The small amount of dissolved Fe (2.1 mg/l) was removed while dissolved Pb was added, reaching a maximum concentration of 0.37 mg/l. The other metals (Zn ≤ 16, Al ≤ 6.2, Cu ≤ 2.1 and Cd ≤ 0.077 mg/l) in the shallow groundwater were essentially conserved until they emerged as a seep along the creek bank. Upon mixing with the creek water, groundwater was diluted by factors between 11 and 50, and the pH of the mixture became neutral. Metals originating from the contaminated groundwater were removed in the creek in the following order: Fe > Al > Pb ≫ Cu > Mn > Zn = Cd.Pb and Cu continued to be removed from solution even as the creek passed adjacent to a tailings pile. In contrast, Zn concentrations in the creek increased adjacent to the tailings area, presumably as a result of the reemergence of the upgradient plume as the creek lost elevation.Below the tailings dam, contaminated creek water (400–800 μg Zn/l) was diluted by both smaller side streams and a creek of equal flow. The presence of 3 distinctive water masses required the use of two tracers (dissolved Si and S) to distinguish between mixing and geochemical reactions. The removal of metals was greater during low flow conditions. Pb was removed to the greatest extent, falling below detection limits (0.5 μ/l) at the first sampling location. Copper and Mn were removed to a lesser extent during low flow conditions and approached conservative behavior during high flow conditions. During a 5-km journey through two hydrological regimes, less than 10% of the dissolved Zn and Cd was lost.  相似文献   

13.
Serpentinite soils, common throughout the world, are characterized by low calcium-to-magnesium ratios, low nutrient levels and elevated levels of heavy metals. Yet the water quality and heavy metal concentrations in sediments of streams draining serpentine geology have been little studied. The aim of this work was to collect baseline data on the water quality (for both wet and dry seasons) and metals in sediments at 11 sites on the Marlborough Creek system, which drains serpentine soils in coastal central Queensland, Australia. Water quality of the system was characterized by extremely hard waters (555–698 mg/L as CaCO3), high dissolved salts (684–1285 mg/L), pH (8.3–9.1) and dissolved oxygen (often >110% saturation). Cationic dominance was Mg > Na > Ca > K and for anions HCO3 > Cl > SO4. Al, Cu and Zn in stream waters were naturally high and exceeded Australian and New Zealand Environment and Conservation Council guidelines. Conductivity displayed the highest seasonal variability, decreasing significantly after wet season flows. There was little seasonal variation in pH, which often exceeded regional guidelines. Stream sediments were enriched with concentrations of Ni, Cr, Co and Zn up to 35, 21, 10 and 2 times the world average for shallow sediments, respectively. Concentrations for Ni and Cr were up to 60 and 16 times those of the relevant Interim Sediment Quality Guidelines Low Trigger Values, respectively. The distinctive nature of the water and sediment data suggests that it would be appropriate to establish more localized water quality and sediment guidelines for the creek system for the water quality parameters conductivity, Cu and Zn (and possibly Cr and Cd also), and for sediment concentrations of Cd, Cr and Ni.  相似文献   

14.
Dissolved (<1 kDa) and colloidal (1 kDa-0.45 μm) size fractions of sulfate, organic carbon (OC), phosphate and 17 metals/metalloids were investigated in the acidic Vörå River and its estuary in Western Finland. In addition, geochemical modelling was used to predict the formation of free ions and complexes in these waters. The sampling was carried out during high-water flow in autumn and in spring when the abundantly occurring acid sulfate (AS) soils in the catchment area are extensively flushed. Based on the high concentrations of sulfate, acidity and several metals, it is clear that the Vörå River and its estuary is strongly affected by AS soils. The high dissolved form of metals limits also the existence of fish and other organisms in this estuary, and certainly also in other similar shallow brackish estuaries elsewhere in the Gulf of Bothnia. However, generally already <20% saline sea water reduces the concentration for OC and several elements (Al, Cu, Cr, Fe, Pb, PO4 and U) by half and c. 20–30% saline sea water is needed to halve concentrations of Cd, Co, Mn, Ni and Zn. Consequently, these elements as well as organic matters were rapidly precipitated in the estuary, even after mixing with fairly small amounts of the alkaline brackish sea water. Aluminium, Cu, Fe and U most likely precipitate together with organic matter closest to the river mouth. Manganese is relatively persistent in solution and, thus, precipitates further down the estuary as Mn oxides, which concomitantly capture Ba, Cd, Co, Cu, Ni and Zn. In the inner estuary, the high contents of Al is as important than Fe in removing PO4 and, thus, also reducing the risk of algae blooms in near coastal areas influenced by AS soils in the Gulf of Bothnia. Moreover, the dispersion of metals far out in the estuary is dependent on hydrological conditions, i.e. with high flows the plume of metal-rich water will spread further out in the estuary. Furthermore, the extensive drainage of the catchment and subsequent artificial enlargement of the river channel during recent decades has not only enabled oxidation of sulfidic sediments, but strongly increased flow peaks that reach further out in the estuary.  相似文献   

15.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

16.
Assessment of heavy metal pollution in surface water   总被引:4,自引:3,他引:1  
A total of 96 surface water samples collected from river Ganga in West Bengal during 2004–05 was analyzed for pH, EC, Fe, Mn, Zn, Cu, Cd, Cr, Pb and Ni. The pH was found in the alkaline range (7.21–8.32), while conductance was obtained in the range of 0.225–0.615 mmhos/cm. Fe, Mn, Zn, Ni, Cr and Pb were detected in more than 92% of the samples in the range of 0.025–5.49, 0.025–2.72, 0.012–0.370, 0.012–0.375, 0.001–0.044 and 0.001–0.250 mg/L, respectively, whereas Cd and Cu were detected only in 20 and 36 samples (0.001–0.003 and 0.003–0.032 mg/L). Overall seasonal variation was significant for Fe, Mn, Cd and Cr. The maximum mean concentration of Fe (1.520 mg/L) was observed in summer, Mn (0.423 mg/L) in monsoon but Cd (0.003 mg/L) and Cr (0.020 mg/L) exhibited their maximum during the winter season. Fe, Mn and Cd concentration also varied with the change of sampling locations. The highest mean concentrations (mg/L) of Fe (1.485), Zn (0.085) and Cu (0.006) were observed at Palta, those for Mn (0.420) and Ni (0.054) at Berhampore, whereas the maximum of Pb (0.024 mg/L) and Cr (0.018 mg/L) was obtained at the downstream station, Uluberia. All in all, the dominance of various heavy metals in the surface water of the river Ganga followed the sequence: Fe > Mn > Ni > Cr > Pb > Zn > Cu > Cd. A significant positive correlation was exhibited for conductivity with Cd and Cr of water but Mn exhibited a negative correlation with conductivity.  相似文献   

17.
A sequential extraction method was employed to extract the metals Al, Ag, Cd, Co, Cr, Cu, Pb, Fe, Li, Mn, Ni, and Zn from a 10-m sediment core taken from the Tilbury Basin on the Thames Estuary. Characteristics of the observed metal partitioning distributions were attributed primarily to the composition of the estuarine waters at the time of deposition. For some metals, a decrease in the bulk sediment metal concentrations from a depth of ?6.59 m ODN to the surface was also observed in one of the solid phases. This was the case for Cr, Cu, and Pb extracted from the organic phase and for Zn extracted from the carbonate phase. This decrease in sediment concentrations is thought to reflect reported improvements to water quality in this region of the Thames Estuary in the early 1960s, following updating of major sewage treatment works (STW) approximately 20 km upstream. These findings give an indication of the influence of estuarine inputs from STW on metal partitioning distributions. The order of mobility for the metals of environmental concern was Cd>Ag>Cr>Ni, Zn>Co, Cu, Pb. for Cd and Ag there was a tendency to partition towards the exchangeable phase, both at the surface and at depth, which indicates the potential for long-term leaching of these metals from the sediments.  相似文献   

18.
海洋胶体与痕量金属的相互作用   总被引:6,自引:0,他引:6  
痕量金属的胶体结合态是海洋中金属的一种相当普遍的存在形式。胶体与痕量金属之间的相互作用影响着痕量金属在海水中的形态、迁移、生物可利用性及其归宿。总结了海洋胶体态金属的存在及其显著性,概述了胶体对金属在河口混合过程中行为的影响,并简要讨论了胶体在海水中痕量金属的固液相分配中的作用。  相似文献   

19.
《Applied Geochemistry》2005,20(7):1391-1408
Surface water samples from the St. Lawrence River were collected in order to study the processes controlling minor and trace elements concentrations (Al, Fe, Mn, Cd, Co, Cu, Ni and Zn), and to construct mass balances allowing estimates of the relative importance of their natural and anthropogenic sources. The two major water inputs, the upper St. Lawrence River, which drains waters originating from the Lake Ontario, and the Ottawa River were collected fortnightly over 18 months. In addition, other tributaries were sampled during the spring floods. The output was monitored near Quebec City at the river mouth weekly between 1995 and 1999. Dissolved metal concentrations in the upper St. Lawrence River carbonated waters were lower than in the acidic waters of the tributaries draining the crystalline rocks of the Canadian shield and the forest cover. Biogeochemical and hydrodynamic processes occurring in Lake Ontario drive the seasonal variations observed in the upper St. Lawrence River. Biogeochemical processes relate to biological uptake, regeneration of organic matter (for Cd and Zn) and oxyhydroxide formation (for Mn and Fe), while hydrodynamic processes mainly concern the seasonal change in vertical stratification (for Cd, Mn, and Zn). In the Ottawa River, the main tributary, oxyhydroxide formation in summer governs seasonal patterns of Al, Fe, Mn, Cd, Co and Zn. The downstream section of the St. Lawrence River is a transit zone in which seasonal variations are mainly driven by the mixing of the different water masses and the large input of suspended particulate matter from erosion. The budget of all dissolved elements, except Fe and Zn, was balanced, as the budget of particulate elements (except Cd and Zn). The main sources of metals to the St. Lawrence River are erosion and inputs from tributaries and Lake Ontario. Direct anthropogenic discharges into the river accounted for less than 5% of the load, except for Cd (10%) and Zn (21%). The fluxes in transfer of dissolved Cd, Co, Cu and Zn species from the river to the lower St. Lawrence estuary were equal to corresponding fluxes calculated for Quebec City since the distributions of dissolved concentrations of these metals versus salinity were conservative. For Fe, the curvature of the dilution line obtained suggests that dissolved species were removed during early mixing.  相似文献   

20.
 Extensive irrigation by the effluents released from a paper mill near Nanjangud have led to the accumulation of heavy metals in the soil and different parts of the paddy crops. In this paper, the physicochemical characteristics of paper mill effluents and the accumulation of heavy metals (Cu, Zn, Pb, Co, Cd, Cr, and Ni) in the soil and different parts (root, leaf, and seed) of the paddy crops growing in the irrigated area are described and compared with the soil and paddy crops irrigated by natural waters (unpolluted). Chemical and biological oxygen demands of wastewater were found to be 437 and 1070 ppm respectively, which are beyond the tolerance limits set by Indian standards. The total dissolved and suspended solids are 1754 and 900 ppm respectively. The concentration of heavy metals (except Zn) in the seeds is remarkably less than that in the roots and leaves of the paddy crops. The heavy metal uptake by plants shows the greatest accumulation of Cu, Cr, Co, and Pb in the roots; Cd and Ni in the leaves; and Zn in the seeds of rice. The heavy metal content of the soil and their total uptake by paddy roots has the relation: Pb>Zn>Cu>Cd and Pb>Cu>Zn>Cd. Survival of paddy crops irrigated by polluted waters indicates tolerance to toxic heavy metals. In conclusion, since in many tropical countries the common diet of people is rice, the accumulation of toxic heavy metals in rice may lead to health disorders. Received: 18 July 1995 / Accepted: 24 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号