首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The study reports estimates of above ground phytomass carbon pools in Indian forests for 1992 and 2002 using two different methodologies. The first estimate was derived from remote sensing based forest area and crown density estimates, and growing stock data for 1992 and 2002 and the estimated pool size was in the range 2,626–3,071 Tg C (41 to 48 Mg C ha???1) and 2,660–3,180 Tg C (39 to 47 Mg C ha???1) for 1992 and 2002, respectively. The second methodology followed IPCC 2006 guidelines and using an initial 1992 pool of carbon, the carbon pool for 2002 was estimated to be in the range of 2,668–3,112 Tg C (39 to 46 Mg C ha???1), accounting for biomass increment and removals for the period concerned. The estimated total biomass increment was about 458 Tg over the period 1992–2002. Removals from forests include mainly timber and fuel wood, whereby the latter includes large uncertainty as reported extraction is lower than actual consumption. For the purpose of this study, the annual extraction values of 23 million m3 for timber and 126 million m3 for fuel wood were used. Out of the total area, 10 million ha are plantation forests with an average productivity (3.2 Mg ha???1 year???1) that is higher than natural forests, a correction of 408 Tg C for the 10 year period was incorporated in total estimated phytomass carbon pool of Indian forests. This results in an estimate for the net sink of 4 Tg C year???1. Both approaches indicate Indian forests to be sequestering carbon and both the estimates are in agreement with recent studies. A major uncertainty in Indian phytomass carbon pool dynamics is associated with trees outside forests and with soil organic carbon dynamics. Using recent remote-sensing based estimates of tree cover and growing stock outside forests, the estimated phytomass carbon pool for trees outside forests for the year 2002, is 934 Tg C with a national average tree carbon density of 4 Mg C ha???1 in non-forest area, in contrast to an average density of 43 Mg C ha???1 in forests. Future studies will have to consider dynamics in both trees outside forests and soil for total terrestrial carbon dynamics.  相似文献   

2.
The aim of this work was to study the forest fire potential and frequency of forest fires under the projected climate change in Finland (N 60°–N 70°). Forest fire index, generally utilized in Finland, was used as an indicator for forest fire potential due to climatological parameters. Climatic scenarios were based on the A2 emission scenario. According to the results, the forest fire potential will have increased by the end of this century; as a result of increased evaporative demand, which will increase more than the rise in precipitation and especially in southern Finland. The annual number of forest fire alarm days is expected to increase in southern Finland to 96–160 days by the end of this century, compared to the current 60–100 days. In the north, the corresponding increase was from 30 to 36 days. The expected increase in the annual frequency of forest fires over the whole country was about 20% by the end of this century compared to the present day. The greatest increase in the frequency of fires, per 1,000 km2, was in the southernmost part of the country, with six to nine fires expected annually per 1,000 km2 at the end of this century, meaning a 24–29% increase compared to the present day frequencies.  相似文献   

3.
A physiological growth and yield model was applied for assessing the effects of forest management and climate change on the carbon (C) stocks in a forest management unit located in Finland. The aim was to outline an appropriate management strategy with regard to C stock in the ecosystem (C in trees and C in soil) and C in harvested timber. Simulations covered 100 years using three climate scenarios (current climate, ECHAM4 and HadCM2), five thinning regimes (based on current forest management recommendations for Finland) and one unthinned. Simulations were undertaken with ground true stand inventory data (1451 hectares) representing Scots pine (Pinus sylvestris), Norway spruce (Picea abies) and silver birch (Betula pendula) stands. Regardless of the climate scenario, it was found that shifting from current practices to thinning regimes that allowed higher stocking of trees resulted in an increase of up to 11% in C in the forest ecosystem. It also increased the C in the timber yield by up to 14%. Compared to current climatic conditions, the mean increase over the thinning regimes in the total C stock in the forest ecosystem due to the climate change was a maximum of 1%; but the mean increase in total C in timber yield over thinning regimes was a maximum of 12%.  相似文献   

4.
With the implementation of the Chinese Natural Forest Conservation Program (NFCP) in 1998, over millions of hectares of forest in northeastern China have been protected through natural restoration (closure of hills). The impact of this program on the carbon budget of soil has not been evaluated until now. This paper presents results from a 6-year study of total CO2 efflux from both soil and litter (R total), CO2 flux from soil (R soil), soil organic matter (SOM), soil microbe density, and litter input and root biomass at an uncut larch (Larix gmelinii) forest and at a natural restoration site. The natural restoration area is a clear-cut site that was formerly part of a continuous portion of the uncut larch forest. Our objectives were to: (1) quantify the magnitude of CO2 efflux from typical sites in northeastern China; (2) explore the changes in thermal conditions, SOM, and annual CO2 flux during the 6-year natural restoration, and (3) evaluate the impact of NFCP on soil carbon processes. The annual R soil at the clear-cut site (58.6–68.2 mol m???2 year???1) was 113.6–228.4% (mean 141.5%) higher than that at the uncut larch site (29.6–58.4 mol m???2 year???1). At the same time, annual CO2 from litter at the clear-cut site (2.0–14.2 mol m???2 year???1) was only 23.5–84.5% (mean 52.5%) of that at the uncut larch site (5.4–16.8 mol m???2 year???1). SOM at the surface layer of the clear-cut site was 75% of that at the uncut larch site, but the soil microbial biomass (carbon) at the clear-cut site was much higher than that at the larch site (p?<?0.05). The percentage of bacteria, fungi and actinomycetes also were largely different between both sites. Natural restoration at the clear-cut site strongly affected thermal conditions. Although the soil temperature (T soil) and effective accumulated $T_{\rm soil} > 0^{\circ}$ C at the clear-cut site was much higher, the temperature sensitivity (Q 10) was much lower than that at the uncut larch site, and their differences decreased linearly from 2001 to 2006 (p?<?0.05). Moreover, Q 10 at the clear-cut site significantly increased with the progress of natural restoration, which diminished the Q 10 difference between the two sites (slope?=???0.2792, r 2?=?0.4744, p?<?0.05). These data imply that the NFCP natural restoration process has positively recovered the thermal condition of the clear-cut site to the level of uncut larch forest during the 6-year period. However, linear regression analysis showed that the 6-year natural restoration only slightly affected the annual soil CO2 efflux and SOM at both sites, and also did not diminish the differences between the two sites (p?>?0.10), indicating that a much longer time is necessary to restore the soil carbon in the clear-cut site.  相似文献   

5.
We studied forest land-use and carbon storage over a 40-year period in the Middle Zavolgie region of Russia, an area of approximately 287,000 km2. Data were obtained from state forest inventories for 1958 and 1995. In spite of the effects of disturbances and uncontrolled harvesting between 1958 and 1990, the forests of the Middle Zavolgie Region remained a considerable pool of ecosystem carbon (C). Over the study period the total area of forest lands decreased by approximately 2%, while the growing stock increased by 8%. There were significant changes in the age class structure of these forest ecosystems toward a larger proportion of young and middle aged stands. The total amount of carbon in the stem biomass of forests in all regions of Middle Zavolgie increased over the 40-year period and was equal to about 307 TgC in 1995. A regional approach for estimating the C dynamics of forest ecosystems in response to land use in the Middle Zavolgie region can contribute to understanding the potential role of Russian forests in C sequestration. This information is important for implementation of international conventions concerning national carbon budgets and reducing the potential negative impacts of climate change.  相似文献   

6.
Snow pack in the Romanian Carpathians under changing climatic conditions   总被引:2,自引:0,他引:2  
Snow pack characteristics and duration are considered to be key indicators of climate change in mountain regions, especially during the winter season (herein considered to last from the 1st of November to the 30th of April). Deviations recorded in the regime of the main explanatory variables of snow pack changes (i.e. temperature and precipitation) offer useful information on winter climate variability, in the conditions of the winter warming trend already seen in some areas of the Romanian Carpathians. The present work focuses on changes and trends in snow pack characteristics and its related parameters, registered at the 15 weather stations located in the alpine, sub-alpine and forest belts in all the three Romanian Carpathian branches (>1,000 m) over the 1961–2003 period. Changes in the snow pack regime were investigated in relation with the modifications of winter temperature and precipitation having been detected mostly at the end of the twentieth century. A winter standardized index was calculated to group winters over the 43-year period into severity classes and detect the respective changes. Links between the number of snow cover days and seasonal NAO index were also statistically analysed in this study. The general results show large regional and altitudinal variations and the complex character of the climate in the Romanian Carpathians, leading to the idea of an ongoing warming process associated with a lower incidence of snow cover, affecting to a large extent the forested mountain areas located below 1,600–1,700 m altitude. Also negative and weak correlations were found, particularly over the December–March interval, between the number of snow cover days and seasonal NAO index values.  相似文献   

7.
Particles >30 nm diameter collected in a forest in Finland from 22 April–4 May 1998 and from 23 March–16 April 1999 were examined by transmission electron microscopy. The 1st period had no nucleation events, the second had many and differences in particle properties are described. Particles predominantly 100–200 nm in diameter and having a large organic content were found to accumulate in an enclosure above a snow surface in the forest. The explanation given is that on sunny days water from melting snow penetrated the soil and leaf litter beneath the snow, displacing gases produced by decomposition of organic material. It is assumed that the bursting of bubbles produced at the soil–snow interface by the escaping gases led to the production of the particles in the enclosure. Soil pit data at the site showed that on sunny days water commenced to penetrate to at least 29 cm soon after sunrise and reached a maximum in early afternoon. Particles similar to those found in the enclosure were present in the free atmosphere on days with nucleation events. Data from other observers showed that compounds that might be expected to arise from soil emissions were all present in greater concentrations on days with nucleation events than on days without. It is suggested that the material for production of condensable vapours leading to the nucleation and growth of particles was contained either in the escaping gases or in the aqueous material initially surrounding the particles produced by bubble bursting. The hypothesis has the advantage of explaining the very sharp maximum found in spring as the winter snow melts.  相似文献   

8.
At a national scale, the carbon (C) balance of numerous forest ecosystem C pools can be monitored using a stock change approach based on national forest inventory data. Given the potential influence of disturbance events and/or climate change processes, the statistical detection of changes in forest C stocks is paramount to maintaining the net sequestration status of these stocks. To inform the monitoring of forest C balances across large areas, a power analysis of a forest inventory of live/dead standing trees and downed dead wood C stocks (and components thereof) was performed in states of the Great Lakes region, U.S. Using data from the Forest Inventory and Analysis (FIA) program of the U.S. Forest Service, it was found that a decrease in downed wood C stocks (?1.87 Mg/ha) was nearly offset by an increase in standing C stocks (1.77 Mg/ha) across the study region over a 5-year period. Carbon stock change estimates for downed dead wood and standing pools were statistically different from zero (α?=?0.10), while the net change in total woody C (?0.10 Mg/ha) was not statistically different from zero. To obtain a statistical power to detect change of 0.80 (α?=?0.10), standing live C stocks must change by at least 0.7 %. Similarly, standing dead C stocks would need to change by 3.8 %; while downed dead C stocks require a change of 6.9 %. While the U.S.’s current forest inventory design and sample intensity may not be able to statistically detect slight changes (<1 %) in forest woody C stocks at sub-national scales, large disturbance events (>3 % stock change) would almost surely be detected. Understanding these relationships among change detection thresholds, sampling effort, and Type I (α) error rates allows analysts to evaluate the efficacy of forest inventory data for C pool change detection at various spatial scales and levels of risk for drawing erroneous conclusions.  相似文献   

9.
The seasonal cycle of snow cover in Eastern Siberia is characterized, and synoptic preconditions of snow accumulation in winter and snow ablation in spring are determined using daily datasets. It was ascertained that cyclone activity has a strong impact on the occurrence of abundant snowfalls in Eastern Siberia. Negative anomalies of sea level pressure (SLP) usually spread westward or southwestward from the place of recorded substantial snowfalls, and they are associated with positive anomalies of air temperature located to the east or northeast of SLP depressions. Cyclonic circulation causes inflow of relatively warm and humid southern air masses originating from the Pacific Ocean, to the eastern parts of cyclones. During the days with snow ablation in spring much lower SLP anomalies occur than during snow accumulation in winter. This may suggest smaller influence of air circulation on snow cover reduction in spring and higher impact of insolation; both result in strong positive anomalies of air temperature which extend over entire Asia. These findings imply that the position, intensity, and dimension of pressure patterns are crucial for determining the location and intensity of rapid changes in snow cover depth during the snow cover season in Eastern Siberia.  相似文献   

10.
The aim of this study was to estimate the potential impacts of climate change on the spatial patterns of primary production and net carbon sequestration in relation to water availability in Norway spruce (Picea abies) dominated forests throughout Finland (N 60°–N 70°). The Finnish climatic scenarios (FINADAPT) based on the A2 emission scenario were used. According to the results, the changing climate increases the ratio of evapotranspiration to precipitation in southern Finland, while it slightly decreases the ratio in northern Finland, with regionally lower and higher soil water content in the south and north respectively. During the early simulation period of 2000–2030, the primary production and net carbon sequestration are higher under the changing climate in southern Finland, due to a moderate increase in temperature and atmospheric CO2. However, further elevated temperature and soil water stress reduces the primary production and net carbon sequestration from the middle period of 2030–2060 to the final period of 2060–2099, especially in the southernmost region. The opposite occurs in northern Finland, where the changing climate increases the primary production and net carbon sequestration over the 100-year simulation period due to higher water availability. The net carbon sequestration is probably further reduced by the stimulated ecosystem respiration (under climate warming) in southern Finland. The higher carbon loss of the ecosystem respiration probably also offset the increased primary production, resulting in the net carbon sequestration being less sensitive to the changing climate in northern Finland. Our findings suggest that future forest management should carefully consider the region-specific conditions of sites and adaptive practices to climate change for maintained or enhanced forest production and carbon sequestration.  相似文献   

11.
Compared to the 50-year mean climatological value (1961–2010), the precipitation of middle-eastern Inner Mongolia exhibited a significant decrease during the past 10 years (2001–2010). To identify the climatic causes, a comprehensive investigation was conducted by inspecting climatic factors from this 50-year period, which appear to work together in connecting closely to the precipitation. Significant positive correlations with precipitation were found in sea level pressure (SLP) difference between the area of (30° N–20° S; 50–160° E) and the northeastern Pacific Ocean, between the Northern Atlantic and the northeastern Pacific Oceans, and sea surface temperature difference between the northeastern and northwestern Pacific in the previous year, while negative connections were found in the 500-hPa temperature difference between the Antarctic and the belt region around 60° S. During the period of 2001–2010, East Asia was prevailingly controlled by a huge high, which was regarded as one of unfavorable factors for producing rain or snow. Other factors were the enlarged 500 hPa temperature differences between the Antarctic and the zones around 60° S and the Equator, the negative SLP difference between the East Asia, northern Atlantic, and Pacific Oceans. Finally, the unique wind flows and associated moisture transports also played a key role in the precipitation reduction for the first decade of the twenty-first century.  相似文献   

12.
This study comprises (1) an analysis of recent climate trends at two sites in north-west India (Ludhiana in Punjab and Delhi) and (2) an impact and risk assessment for wheat yields associated with climatic variability. North-west Indian agriculture is dominated by rice-wheat rotation in which the wheat season (‘rabi’, November to March) is characterized by predominantly dry conditions—superimposed by very high inter-annual variability of rainfall (17 to 260 mm in Ludhiana and <1 to 155 mm in Delhi). While rainfall remained without discernable trend over the last three decades, minimum and average temperatures showed increasing trends of 0.06 and 0.03°C year???1, respectively, at Ludhiana. The site in (metropolitan) Delhi was apparently influenced by city-effects, which was noticeable from the decrease in solar radiation of 0.09 MJ m???2 day???1 year???1. The CERES-wheat model was used to calculate yields of rainfed wheat that were at both locations highly correlated with seasonal rainfall. An assessment framework was developed to quantify yield impacts due to rainfall variability in three steps: (1) data from different years were aggregated into four classes, i.e., years with scarce, low, moderate, and high rainfall, (2) yield records of each rainfall class were ranked according to yield to facilitate (3) a comparison of yields with identical rank, i.e. among the best yield of each class, the second-best, etc. The class with moderate rainfall was taken as baseline yield to compute yield impacts of other rainfall scenarios. Years with scarce rainfall resulted in only 34% (Ludhiana) and 35% (Delhi) of the baseline yield. The yields in years with low rainfall accounted for 61% (Delhi) and 49% (Ludhiana) of the baseline yields. In Ludhiana, high rainfall years resulted in 200% yield as compared to the baseline yield, whereas they reached only 105% in Delhi. Low-intensity (1× and 3×) irrigation decreased the relative yield losses, but entailed a higher vulnerability in terms of absolute yield losses. Only high-intensity (4×) irrigation buffered wheat yields against adverse rainfall years. Early sowing was beneficial for wheat yields under all rainfall scenarios. The framework could be a valuable decision-support tool at the farm level where seasonal rainfall variability is high.  相似文献   

13.
Arctic environments are generally believed to be highly sensitive to human-induced climatic change. In this paper, we explore the impacts on the hydrological system of the sub-arctic Tana Basin in Northernmost Finland and Norway. In contrast with previous studies, attention is not only given to river discharge, but also to the spatial patterns in snow coverage and evapotranspiration. We used a distributed water balance model that was coupled to a regional climate model in order to calculate a scenario of climate change by the end of this century. Three different model experiments were performed, adopting different approaches to using the climate model output in the hydrological model runs. The results were largely consistent, indicating a much shorter snow season and, accordingly, decreased sublimation, an increase in evapotranspiration, and a shift in the annual runoff peak. As the snow-free season is extended, the amount of solar radiation that is received during this period increases significantly. The results also show important local differences in the hydrological response to climate change. For example, in the scenario runs, the snow season was more than 30 days shorter at higher elevations, but in some of the river valleys, this was up to 70 days.  相似文献   

14.
Abundant evidence indicates the growing season has been changed in the Alaskan terrestrial ecosystems in the last century as climate warms. Reasonable simulations of growing season length, onset, and ending are critical to a better understanding of carbon dynamics in these ecosystems. Recent ecosystem modeling studies have been slow to consider the interactive effects of soil thermal and hydrological dynamics on growing season changes in northern high latitudes. Here, we develop a coupled framework to model these dynamics and their effects on plant growing season at a daily time step. In this framework, we (1) incorporate a daily time step snow model into our existing hydrological and soil thermal models and (2) explicitly model the moisture effects on soil thermal conductivity and heat capacity and the effects of active layer depth and soil temperature on hydrological dynamics. The new framework is able to well simulate snow depth and soil temperature profiles for both boreal forest and tundra ecosystems at the site level. The framework is then applied to Alaskan boreal forest and tundra ecosystems for the period 1923–2099. Regional simulations show that (1) for the historical period, the growing season length, onset, and ending, estimated based on the mean soil temperature of the top 20 cm soils, and the annual cycle of snow dynamics, agree well with estimates based on satellite data and other approaches and (2) for the projected period, the plant growing season length shows an increasing trend in both tundra and boreal forest ecosystems. In response to the projected warming, by year 2099, (1) the snow-free days will be increased by 41.0 and 27.5 days, respectively, in boreal forest and tundra ecosystems and (2) the growing season lengths will be more than 28 and 13 days longer in boreal forest and tundra ecosystems, respectively, compared to 2010. Comparing two sets of simulations with and without considering feedbacks between soil thermal and hydrological dynamics, our analyses suggest coupling hydrological and soil thermal dynamics in Alaskan terrestrial ecosystems is important to model ecosystem dynamics, including growing season changes.  相似文献   

15.
In many regions of the world, increasing temperatures in recent decades are paradoxically associated with declining pan evaporation, but evidence is sparse for this trend from the southern hemisphere in general and sub-Saharan Africa in particular. In this study, we examined changes in pan evaporation and four other meteorological variables (rainfall, wind run, temperature and vapour pressure deficit) at 20 climate stations in the predominantly winter-rainfall Cape Floristic Region (CFR) of South Africa over the period 1974?C2005. Our results show that pan evaporation has declined significantly at 16 climate stations at an average rate of 9.1 mm a???2 while wind run has declined significantly at all climate stations by more than 25% over the study period. Annual rainfall has not changed significantly at any of the climate stations while maximum temperature has increased significantly at all but one climate station at an average rate of 0.03°C a.???1 over the study period. The trends in vapour pressure deficit are mixed and no clear regional pattern is evident. Our results raise important questions about the predicted catastrophic impact that the projected changes in twenty-first century climates will have on the rich flora of the region. If evaporative demand has declined over the last 30 years in the Cape Floristic Region then it is possible that more water has become available for plant growth, infiltration and runoff despite the widespread increase in temperature. However, decreased pan evaporation and wind run combined with increased temperatures could potentially reduce transpiration and exacerbate heat stress of plants on increasingly frequent hot and windless days during the summer drought. Contrary to other predictions for the area, it is also likely that the changing conditions will decrease the frequency and/or intensity of fires which are an important component of the ecology of the fire-adapted CFR. Consideration of other factors besides changes in temperature and rainfall are essential in debates on the impact of climate change on the vegetation of this region.  相似文献   

16.
Various remote sensing products and observed data sets were used to determine spatial and temporal trends in climatic variables and their relationship with snow cover area in the higher Himalayas, Nepal. The remote sensing techniques can detect spatial as well as temporal patterns in temperature and snow cover across the inaccessible terrain. Non-parametric methods (i.e. the Mann–Kendall method and Sen's slope) were used to identify trends in climatic variables. Increasing trends in temperature, approximately by 0.03 to 0.08 °C year?1 based on the station data in different season, and mixed trends in seasonal precipitation were found for the studied basin. The accuracy of MOD10A1 snow cover and fractional snow cover in the Kaligandaki Basin was assessed with respect to the Advanced Spaceborne Thermal Emission and Reflection Radiometer-based snow cover area. With increasing trends in winter and spring temperature and decreasing trends in precipitation, a significant negative trend in snow cover area during these seasons was also identified. Results indicate the possible impact of global warming on precipitation and snow cover area in the higher mountainous area. Similar investigations in other regions of Himalayas are warranted to further strengthen the understanding of impact of climate change on hydrology and water resources and extreme hydrologic events.  相似文献   

17.
Measurements carried out in Northern Finland on radiation and turbulent fluxes over a sparse, sub-arctic boreal forest with snow covered ground were analysed. The measurements represent late winter conditions characterised by low solar elevation angles. During the experiment (12–24 March 1997) day and night were about equally long. At low solar elevation angles the forest shades most of the snow surface. Therefore an important part of the radiation never reaches the snow surface but is absorbed by the forest. The sensible heat flux above the forest was fairly large, reaching more than 100 W m-2. The measurements of sensible heat flux within and above the forest revealed that the sensible heat flux from the snow surface is negligible and the sensible heat flux above the forest stems from warming of the trees. A simple model for the surface energy balance of a sparse forest is presented. The model treats the diffuse and direct shortwave (solar) radiation separately. It introduces a factor that accounts for the shading of the ground at low solar elevation angles, and a parameter that deals with the partial transparency of the forest.Input to the model are the direct and diffuse incoming shortwave radiation.Measurements of the global radiation (direct plus diffuse incoming shortwaveradiation) above the forest revealed a considerable attenuation of the globalradiation at low solar elevation. A relation for the atmospheric turbidity asfunction of the solar elevation angle is suggested. The global radiation wassimulated for a three month period. For conditions with a cloud cover of lessthan 7 oktas good agreement between model predictions and measurementswere found. For cloud cover 7 and 8 oktas a considerable spread can beobserved. To apply the proposed energy balance model, the global radiationmust be separated into its diffuse and direct components. We propose a simpleempirical relationship between diffuse shortwave and global radiation asfunction of cloud cover.  相似文献   

18.
Columnar observations of liquid water and of radar echo intensity in cloud were carried out, using a microwave radiometer and a vertically pointing radar respectively, in Ny-Ålesund, Svalbard. Chemical concentrations were also measured in aerosols, gases and snowfalls. Clouds with a large proportion of liquid water moved over the site after snow clouds, with a much lower liquid water content, had been present for about 16 h. The mass concentrations of most chemical species in snowfalls were lower from the first set of clouds than the second. The NO3 and SO42− concentrations in gases and aerosols associated with the first set of clouds were higher than in the second set, but Cl concentration was less for the first set than the second.  相似文献   

19.
Based on model computations, the regeneration of Scots pine (Pinus sylvestris L.) was studied at the northern timber line in Finland (70°N) in relation to elevating temperature and atmospheric CO2. If a transient increase of 4°C was assumed during the next 100 years, the length of growing season increased from the current 110–120 days to 150–160 days. This was associated with ca. 5°C increase in the soil temperature over June–August with larger variability in temperature and deeper freezing of the soil due to the reduced depth and duration of the snow cover. At the same time, the moisture content of the surface soil decreased ca. 10% and was more variable, due to less infiltration of water into the soil as a consequence of the enhanced evapotranspiration and deeper freezing of the soil. The temperature elevation alone, or combined with elevating CO2, increased flowering and the subsequent seed crop of Scots pine with a decrease in the frequency of zero crops. In both cases, temperature elevation substantially increased the success of regeneration in terms of the number of seedlings produced after each seed crop. The increasing number of mature seeds was mainly responsible for the enhanced regeneration, but increasing soil temperature also increased the success of regeneration. The soil moisture was seldom limited for seed germination. In terms of the density of seedling stands, and the height and diameter growth of the seedlings, the establishment of a seedling stand was substantially improved under the combined elevation of temperature and CO2 in such a way that the temperature increased the number of mature seeds and enhanced germination of seeds and CO2 increased seedling growth. Even under the changing climatic conditions, however, the growth of the seedling stands was slow, which indicated that the northward advance of the timber line would probably be very slow, even though regeneration was no longer a limiting factor.  相似文献   

20.
Global climate models predict that terrestrial northern high-latitude snow conditions will change substantially over the twenty-first century. Results from a Community Climate System Model simulation of twentieth and twenty-first (SRES A1B scenario) century climate show increased winter snowfall (+10–40%), altered maximum snow depth (?5 ± 6 cm), and a shortened snow-season (?14 ± 7 days in spring, +20 ± 9 days in autumn). By conducting a series of prescribed snow experiments with the Community Land Model, we isolate how trends in snowfall, snow depth, and snow-season length affect soil temperature trends. Increasing snowfall, by countering the snowpack-shallowing influence of warmer winters and shorter snow seasons, is effectively a soil warming agent, accounting for 10–30% of total soil warming at 1 m depth and ~16% of the simulated twenty-first century decline in near-surface permafrost extent. A shortening snow season enhances soil warming due to increased solar absorption whereas a shallowing snowpack mitigates soil warming due to weaker winter insulation from cold atmospheric air. Snowpack deepening has comparatively less impact due to saturation of snow insulative capacity at deeper snow depths. Snow depth and snow-season length trends tend to be positively related, but their effects on soil temperature are opposing. Consequently, on the century timescale the net change in snow state can either amplify or mitigate soil warming. Snow state changes explain less than 25% of total soil temperature change by 2100. However, for the latter half of twentieth century, snow state variations account for as much as 50–100% of total soil temperature variations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号